TASCA Control Modifications

On 21.11.2011 16:12, Jaeger, Egon wrote:

Jetzt läuft zu Beispiel das EVR (Beam off bei Event)-Programm auf einer aufgebohrten Version des Beam-Monitor-Programms. Hier ist das Signal so schnell, das fängt die NI-Zählerkarte nicht ein. Das sind z.B. thematisch zwei verschieden Aufgaben in einem Programm.

So wie diese einzelne Programmteile, gibt es noch das Pyrometer-Programm, das auch noch nicht komplett ist.

Jon Petter würde ganz gern unbedingt ein weiteres Videoauswerteprogramm
, das den Strahl in X/Y-Richtung bewertet, haben.

Es gäbe auch einige Dinge zu tun, die nicht unbedingt etwas mit der

Benutzeroberfläche zu tun haben. Hierbei ist zu überlegen ob wir im Vorfeld beim Einlesen der Daten, jetzt Zählerkarten, diese auf einen FPGA geben bzw. erweitern, um schnelle Signale noch mit einzufangen zu können, wollen!

Hier hat Holger den Vorschlag
gemacht einen separaten, nur für die

Datenaufnahme verantwortlichen Teil zu programmieren. Der andere Teil

schaut nur auf die laufende Akquisition und greift mittels Shared Variables
(SV) diese Daten heraus und stellt sie mittels GUI dar.
Diese Zusammenfassung und Implementierung der erweiterten Dateneingänge wäre aber ein Generationswechsel in der eigentlichen Aufnahme der einlaufenden Daten.

Hierbei wäre noch mal nach zu überdenken wie die Daten in welcher Genauigkeit
gesichert werden sollen.

Wollt ihr ein neues Gemeinsamtkonzept oder wollt ihr "nur" etwas in dem bestehenden Programm die GUI für bessere Visualisierung, die Datenbearbeitung vereinfachen/-Sicherung , verschlanken, anderen Schwellwertalgorithmus der die CPU entlastet, ...haben ?

Mann könnte auch eine übergeordnete Maschine etablieren, die alle PC's (Beamcontrol, Tasca-Gas, RTC-Gas, Magnete etc.) anschaut und eine gemeinsame Datensicherung vornimmt, vorstellen.

On 21.11.2011 21:32, Omtvedt, Jon Petter wrote:

First of all I want to make it clear that in my opinion we should do a complete rewrite of all the control programs
 - there have been many versions, programmers, quick-fixes and philosophies
 behind what we currently are running and I think very few actually know intimately what is going in each program. I think we should:

1) Divide our inputs and outputs in two distinct categories: Fast and slow. Everything that is fast should be handled by one single FPGA program. Slow will be mostly status monitoring of everything which is not time critical (on the ms time scale
). We need to agree on *one
* way to communicate between the fast and slow programs
, and we should agree on how different task should be divided between programs and computers
.

2) We should not be bound by how tasks are divided between the current computers and screens
. For instance the TASCA gas-control is really simple and it is a total overkill to reserve a complete computer for this. It might be practical to have it running on a single screen, though.

3)
 The shape and style of all windows and screens should be equal, and we should use the same style of controls, display elements, fonts, colours, etc. on each one.

4) We should implement an electronic log
 which record specific happenings and user commands (e.g. start measurement file, insert Faraday cup, detector rate limit bypassed, etc.). The log file should be unified and synchronised - i.e. it should fetch data from all systems and collect it in a single (text) file.

5) The DIDIEM (or whatever it is called) logging format should not be used
 (no one likes it, it discourage use of the log files) and makes life extra difficult for the people analysing the detector data. It's a good principle, but it do not work for us. At the very least, we should have a conversion program which generates text files
 in "the normal format". I've started writing one, but it just gets too complicated and is a waste of time.

6) We should generate beam intensity output (i.e. triggers which is generated after a certain amount of dose on target) which can be feed to the data acquisition so we do not need to manually start a "measurement file" on the control system in sync with detector data acquisition files. This is error prone, tedious and totally unnecessary when the computers can do it much more reliable and automatic. We should have two such triggers, one for TR2 and another for TR3 (TR3 is not always reliable). We also need to implement better zeroing of the beam intensity counters - could we e.g. use the period between macro pulses to determine the zero level count rate and automatically subtract this from the count rate during the macro pulse
?

7) We need to get status info from the target wheel control program into the labview system
 for unified monitoring and logging, including remote monitoring.

8) We should implement the interlock
system in FPGA, as most of the signals to the interlock system originates from the PC's in the first place. This will enable remote monitoring of the interlock status and automatic responses to a wider range of situations. At the very least, all monitoring signals should be feed back to the computers for monitoring - but I think an FPGA solution is much better.

9) It looks to me as there is quite a lot of unused NIM electronics in the control station. I suggest that we remove everything which is not in use and that we consider FPGA solution
 to replace as much as possible of the NIM electronics.

10
) As you have seen above, I very much favour to use the FPGA to perform important tasks. This will TASCA very dependent on the FPGA firmware (as is already the case). Thus, in my opinion the FPGA programming should ABSOLUTELY be done "in-house" at GSI. To be practical, I think one programmer should be given this task (and

responsibility) - and it should be a "professional" LabView programmer...

11
) The GUI is much less important than the FPGA and communication between the computers and processes. This part can be done by outside personel (me?) as it is mostly "cosmetic" and should not be able to bring the system to complete halt if something goes wrong. Furthermore, in-house programmers will easily be able to understand what's been done by outside people.

12) We should aim at providing only vital information to the user, but when something goes wrong
 provide the relevant parameters and guidance to how to deal with it. This is currently impossible since the Beam Control program needs to manage one loop per macro pulse. Clearly, this is not a good solution when we have the FPGA which easily can handle all the fast stuff and leave a lot of time and resources to the top-level program. Also, many tasks could be automated like always engage the chopper when you insert/remove a Faraday cup, etc.

OK, so this was a lot of thoughts - but how should we implement them?

(and of course, before that, discuss them.) I think we need structural, graphical visualisation of the complete
 system so we can discuss the organisation of tasks and inputs/outputs without going into too much details. Once we have such diagrams we should agree on programming philosophies - how units should communicate, how to use the FPGA, how to use log files, how to "talk to" the data acquisition program etc. Only then can we proceed to discuss particular details.

This was written in a great hurry, hope you find it useful and that it can contribute to developing the control system. I currently have Robert Eichler et al. here from PSI running experiments for two weeks at our cyclotron - it sort of demand a lot of attention...!

Maybe we should start to use the Wiki to work on a common set of principles and recommendations for the Control System? Might be better than distributing our thoughts in a lot of e-mails...

Looking forward to continue this discussion!

Best Regards,

Jon Petter

�This is new to me. Which kind of camera and measurement type, destructive?

A LVOOP IMAQDevice class is already available.

�Separation of GUI and Device

�Publisher-Subscriber-Protokoll via Network

�And which interval.

�In this case we should also switch to the most recent LV (2011) version.

�Do you think of using a framework, e.g. CS used at trap experiments and PHELIX. Or do you mean just the same programming approach using standard LV techniques.

�Ms on the windows host CPU is already advanced. 100ms might be feasible.

�This might be not possible, since one NI-RIO (FPGA) board supports 3 DMA channels only. At least some properties or meadurements must be polled via frontpanel elments.

�Within another project I encapsulated the FPGA stuff within subVIs. Other VI are using queues or notification to exchange data with the FPGA-Host part.

�The streaming VIs could be used to transfer measurment data with double buffering between different hosts, e.g. VIs collecting data from serial line interfaces to be stored on another computer.

�Indeed!

VIs controlling/monitoring devices can subscribe to SV and can publish current data to SV.

�Agreed!

�I already proposted eLog, � HYPERLINK "http://midas.psi.ch/elog/" ��http://midas.psi.ch/elog/�, in the past, but it was declined

�I proposed and used it, since it can contain metadata. Also Data can be filtered with conditions in DIAdem easily.

�Of course an ASCII data import filter can be created to make it available in DIAdem.

�Could be done in FPGA much easier then with NI-6602 Counter-Card

�For security & safety reasons the target wheel control is located in a virtual LAN at this time.

�We need to distiunuish between a real interlock signals which must be set in realtime or something like inhibit beam signals or information that is generated by slow software processes

�Harald Hahn (EE) has developed TTL-NIM-Line driver to be used with the NI-RIO modules.

�Agreed!

�Welcome!

�I propose the usage of the Data Logging and Supervisory Control Module for LabVIEW for alarmin and trending.

This provides also the option to export data to ASCII spreadsheets.

�Agreed! We need the final version in mind and define the Stepps n in mind anatam���

