
Radius Vlan
Description of the mechanism used in WR switch

October 2020 (wr-switch-sw-v6.0-58-g0f08e51)

A. Rubini

i

Table of Contents

Introduction . 1

1 Related Kconfig Items . 1

2 Service Activation and Monitoring . 2

3 Internal Design . 2

4 Multiple Servers . 3

5 Robustness . 4

6 Diagnostic Tools . 5
6.1 Checking the Current Status . 5
6.2 Looking at Authorization Strings . 5
6.3 Verbose Operation . 5
6.4 Forcing Re-Authorizazion . 6

7 Bugs and Missing Features . 6

1

Introduction

This document describes a new feature of the White Rabbit Switch, to be used in GSI, which
is a subset of IEEE 802.1X.

When a devices is detected on a port which is configured as “access”, a Radius server is queried
for authorization.

The features is called radiusvlan or rvlan when a shorter name is to be preferred. It relies on
radclient, which was added to buildroot in a new freeradius-utils package. The package installs
radtest, radclient and a minimal dictionary (the full dictionary is more than 1MB worth of data).

I chose to install an older version of radclient because the current version requires a special
allocator (libtalloc), that had to be added to buildroot too.

1 Related Kconfig Items

Like most features in White Rabbit Switch, radiusvlan is configured through Kconfig. The
dot-config file is used both at build time and at run time (where it lives in /wr/etc).

This is the list of configuration items related to radiusvlan. None of them has effects on the
firmware build, they are only used at runtime.

RVLAN_DAEMON

The boolean option selects whether the tool is to be run or not. If disabled, the
tool will not run and the related monit rule won’t be activated. No further config
option has any effect if this flag is false.

RVLAN_PMASK

A port mask. If any bit in the mask is 0, the associated port will not be monitored
by the tool. Port wri1 is associated to bit 0, and so on until wri18 associated to bit
17. Bits 18-31 are ignored. The default value is all-1.

RVLAN_AUTH_VLAN

A temporary vid to be used during port authorization. Defaults to 4094.

RVLAN_NOAUTH_VLAN

The vid to be used for ports that are not authorized. Defaults to 4094.

RVLAN_OBEY_DOTCONFIG

A boolean option. If set, radiusvlan will obey the vid value set forth in dot-config
rather than what the Radius server returned. Thus, the Radius server’s reply is
only used to authorize or not the port (if not, NOAUTH_VLAN is applied).

RVLAN_RADIUS_SERVERS

A comma-separated list of the names or IP addresses of a set of Radius servers. See
Chapter 4 [Multiple Servers], page 3.

CONFIG_RVLAN_RADIUS_SECRET

The string used to encrypt radius frames, called “secret” in radius documentation.

2

2 Service Activation and Monitoring

The tool is a standalone program that ignores its own command line; all configuration informa-
tion comes from dot-config, as described above.

The service is executed at boot from /etc/init.d/radiusvlan, which has the same structure of all
other similar scripts.

In /etc/rcS, the symbolic link must be after vlan configuration.

The service, like most other wrs services, is monitored by monit, with the same parameters as
all other services. Working monit setup can be confirmed by running

while true; do killall radiusvlan; sleep 3; done; done

which will properly trigger a monit-triggered reboot.

Both invocation and monitoring depend on dot-config : if RVLAN_DAEMON is false, neither of them
is activated.

3 Internal Design

The tools enumerates all wri* interfaces in /sys/net/class. It opens a netlink socket to get
notification of any change in interface up/down status, and then checks whether each of them
is up or down (thus, no change can get undetected).

Only ports configured as VLAN_PORTxx_MODE_ACCESS are monitored, and only if the correspond-
ing bit in RVLAN_PMASK is set.

For each monitored port, the tool runs a state machine, where the initial state is DOWN or
JUSTUP. Whenever a state change is reported by netlink, the port is moved to either JUSTUP
or GODOWN.

This is the list of states. No state is blocking, so operation on one port does not stop operation
on other ports (the engine is based on select()).

RVLAN_GODOWN

This state is the default state for enumerated ports, and it is entered whenever
netlink reports that the interface went down. This state turns the port to vlan auth
and forgets the peer’s mac address it. It also closes any open file descriptor and kills
the child process, if it exists. Thus, no remaining garbage remains in the system
even if the fiber is unplugged and re-plugged quickly several times.

RVLAN_DOWN

The port is quietly down.

RVLAN_JUSTUP

The port was just reported as “up” and we must start authentication. The first step
is identifying the MAC address of the peer. Thus, the tool starts sniffing the port,
but opening a raw socket listening to this port.

RVLAN_SNIFF

Get a frame from the port. If the frame is sent from the switch itlsef, it is ignored.
Any address configured in the switch is considered as self (i.e., also the eth0 mac
address, used by ppsi as sender address, is ignored). When a foreign frame is
received, the tool saves the MAC address of the peer, it closes the sniffing socket
and it moves to the next state.

RVLAN_RADCLIENT

The tool selects a radius server (see Chapter 4 [Multiple Servers], page 3, and runs
radclient, feeding data to its stdin and collecting its stdout+stderr. The pid of the
child process is retained for later cleanup.

3

RVLAN_AUTH

radclient returned some data. This state collects it until EOF. If radclient reports
an error in communication, the server is marked as “recently faulty” and radiusvlan
moves back to RVLAN_RACLIENT, where a different server will be selected. If the
server replied, the tool looks for “Framed-User” and “Tunnel-Private-Group-Id”.
If both exist authentication succeeded. The chosen vlan is either the one re-
turned by the Radius Server or the one set forth in dot-config, according to the
OBEY_DOTCONFIG parameter.

RVLAN_CONFIG

This state calls “wrs_vlans --port <port> --pvid <pvid>’’”, where pvid is
noauth vlan if authorization failed. We then move to CONFIGURED state. The exter-
nal wrs vlans tool is lazily executed with system(3), and thus this state is blocking.
However, wrs vlans completes in no time, so this is acceptable in my opinion.

RVLAN_CONFIGURED

The port is quietly running, no action is performed.

RVLAN_WAIT

Wait for the child process to terminate (if we killed it in GODOWN). This is a transient
state that leads to DOWN.

4 Multiple Servers

To support multiple Radius servers, radiusvlan creates an internal list of possible servers (by
splitting the comma-separated list it gets from dot-config).

When a port needs to call radclient, it asks for the “best” server. At the beginning, this is the
first server listed in the dot-config line.

Then, Whenever radclient returns, if it exited in error and the reply begins with “radclient:”,
then this is considered a communication error (which is different from an authorization denial).
Please note that radiusvlan merges stdout and stderr to the same file descriptor, due to developer
laziness.

Communication errors can happen because the server name cannot be resolved by dns; because
the shared secret is wrong, or because the radius server is not running at the selected address.

When such an error happens, the server name is marked as “recently faulty”, and another (or
the same) server is selected, to resend the same query. The selection process returns the radius
server whose failure is oldest, among the list of known servers; this ensures that if two servers
are out of order at different times, radiusvlan sticks to the one that is currently working, but
can get back to the other server when needed.

Thus, in a dynamic environment where ports feature “link up” and “link down” over time, we
always query the right server, if any in the list is off-service. However, when several port go up
at the same time (e.g. at power on time), we may query the wrong server for all ports, because
no failure is yet known to the system when we see the “link up” events.

What follows is an example, in verbose mode, using the string
tornado,gsi.de,192.168.16.201,192.168.16.200 as CONFIG_RVLAN_RADIUS_SERVERS.
Here, “tornado” is a host name but it can’t be resolved by dns (fast error reporting);
“gsi.de” is not responding (slow error); host 201 does not respond either (slow error); host
200 replies with an authorization error – i.e. it does “exit 1”, but for a different reason. The
log is augmented with timestamps (minutes:seconds), so we see that the timeout of radtest is
16 seconds.

13:49: Pmask = 0xffffffff

13:49: Radius server: "tornado"

4

13:49: Radius server: "gsi.de"

13:49: Radius server: "192.168.16.201"

13:49: Radius server: "192.168.16.200"

13:49: Interface "wri1": not access mode

13:49: Check wri2: down

[...]

13:50: FSM: wri3: justup -> sniff

13:51: recvfrom(wri3): 0800-90e2ba456c6b

13:51: dev wri3 queries server tornado

13:51: FSM: wri3: sniff -> auth

13:52: dev wri3, got 63 bytes so far

13:52: wri3: reaped radclient: 0x00000100

13:52: wri3: server failed

13:52: FSM: wri3: auth -> radclient

13:52: dev wri3 queries server gsi.de

13:52: FSM: wri3: radclient -> auth

14:08: dev wri3, got 55 bytes so far

14:08: wri3: reaped radclient: 0x00000100

14:08: wri3: server failed

14:08: FSM: wri3: auth -> radclient

14:09: dev wri3 queries server 192.168.16.201

14:09: FSM: wri3: radclient -> auth

14:25: dev wri3, got 55 bytes so far

14:25: wri3: reaped radclient: 0x00000100

14:25: wri3: server failed

14:25: FSM: wri3: auth -> radclient

14:25: dev wri3 queries server 192.168.16.200

14:25: FSM: wri3: radclient -> auth

14:27: dev wri3, got 46 bytes so far

14:27: wri3: reaped radclient: 0x00000100

14:27: dev wri3: vlan 4094

14:27: FSM: wri3: auth -> config

14:28: FSM: wri3: config -> configured

After the above events, if we plug wri2, only the right server is queried:
14:34: FSM: wri2: down -> sniff

14:34: recvfrom(wri2): 0026-0008546f9863

14:34: dev wri2 queries server 192.168.16.200

14:34: FSM: wri2: sniff -> auth

14:36: dev wri2, got 46 bytes so far

14:36: wri2: reaped radclient: 0x00000100

14:36: dev wri2: vlan 4094

14:36: FSM: wri2: auth -> config

14:36: FSM: wri2: config -> configured

5 Robustness

The tool is designed to be robust. All possible errors are reported back to the caller (and to
stderr) and no blocking operation is performed. The only exception is the call to wrs vlans,
which is blocking.

Any errors in the state machine leaves the port in the same state, so wrs vlans is re-run if it
fails, and so on. Failure in reading replies from radclient turn the FSM to GODOWN, so the
procedure is started again – because the port is up.

If the Radius server is not reachable radclient will time out, as shown, so the state machine is
not stuck.

The startup script uses CONFIG_WRS_LOG_OTHER as a destination for its own output, and it is
verified to work with my local rsyslog server.

The only weak point is in understanding radclient ’s replies. A sane tool would exit(1) or exit(2)
to mean different things, but radclient always does exit(1), so we ar forced to rely on the output
strings, which might change from one version to he next.

5

6 Diagnostic Tools

6.1 Checking the Current Status

You can always see the current configuration by running rvlan-status. This example is taken
in a running switch,where port wri1 is in trunk mode (and thus not monitored), and only port
wri17 is connected to a slave, which was authorized:

nwt0075m66# /wr/bin/rvlan-status

wri2 (70b3d591e346 <->): state down, vlan 0, pid 0, fd -1

wri3 (70b3d591e347 <->): state down, vlan 0, pid 0, fd -1

wri4 (70b3d591e348 <->): state down, vlan 0, pid 0, fd -1

wri5 (70b3d591e349 <->): state down, vlan 0, pid 0, fd -1

wri6 (70b3d591e34a <->): state down, vlan 0, pid 0, fd -1

wri7 (70b3d591e34b <->): state down, vlan 0, pid 0, fd -1

wri8 (70b3d591e34c <->): state down, vlan 0, pid 0, fd -1

wri9 (70b3d591e34d <->): state down, vlan 0, pid 0, fd -1

wri10 (70b3d591e34e <->): state down, vlan 0, pid 0, fd -1

wri11 (70b3d591e34f <->): state down, vlan 0, pid 0, fd -1

wri12 (70b3d591e350 <->): state down, vlan 0, pid 0, fd -1

wri13 (70b3d591e351 <->): state down, vlan 0, pid 0, fd -1

wri14 (70b3d591e352 <->): state down, vlan 0, pid 0, fd -1

wri15 (70b3d591e353 <->): state down, vlan 0, pid 0, fd -1

wri16 (70b3d591e354 <->): state down, vlan 0, pid 0, fd -1

wri17 (70b3d591e355 <-> 00267b0003d4): state configured, vlan 31, pid 0, fd -1

wri18 (70b3d591e356 <->): state down, vlan 0, pid 0, fd -1

This works by sending SIGUSR1 to the running radiusvlan, which creates /tmp/rvlan-status
with the above information. If radiusvlan is not running, rvlan-status will report “radiusvlan:
no process found”.

6.2 Looking at Authorization Strings

Communication with radclient happens using stdin and stdout. Currently radiusvlan saves in
/tmp both files, to help tracing any errors. The file names are port-specific, so only the last
iteration will be visible.

There are two example: a successful wri17 authentication and a failed wri3authentication:
nwt0075m66# grep . /tmp/radclient-wri17-*

/tmp/radclient-wri17-in:User-Name = "00267b0003d4"

/tmp/radclient-wri17-in:User-Password = "00267b0003d4"

/tmp/radclient-wri17-out:Received response ID 93, code 2, length = 50

/tmp/radclient-wri17-out: Tunnel-Type:0 = 13

/tmp/radclient-wri17-out: Tunnel-Medium-Type:0 = IEEE-802

/tmp/radclient-wri17-out: Framed-Protocol = PPP

/tmp/radclient-wri17-out: Service-Type = Framed-User

/tmp/radclient-wri17-out: Tunnel-Private-Group-Id:0 = "2984"

wrs# grep . /tmp/radclient-wri17-*

/tmp/radclient-wri3-in:User-Name = "90e2ba456c6b"

/tmp/radclient-wri3-in:User-Password = "90e2ba456c6b"

/tmp/radclient-wri3-out:radclient: no response from server for ID 98 socket 4

6.3 Verbose Operation

If you set RVLAN_VERBOSE to a non-empty value in the tool’s environment, initial enumeration
and state machine changes are reported to stdout.

This “verbose” mode can also be entered (or left) by seding SIGUSR2, see below. This is an
example on a running switch where radiusvlan was already automatically run:

wrs# export RVLAN_VERBOSE=y; killall radiusvlan; /wr/bin/radiusvlan

device wri3 left promiscuous mode

Chapter 7: Bugs and Missing Features 6

Pmask = 0xffffffff

Interface "wri1": not access mode

Check wri2: up

Check wri5: down

Check wri6: down

Check wri7: down

Check wri3: up

Check wri4: down

Check wri8: down

[...]

FSM: device wri3 entered promiscuous mode

wri2: justup -> sniff

FSM: wri3: justup -> sniff

vfrom(wri2): 0026-0008546f9863

FSM: wri2: sniff -> auth

recvfrom(wri3): 0800-90e2ba456c6b

FSM: wri3: sniff -> auth

dev wri2, got 55 bytes so far

wri2: reaped radclient: 0x00000100

dev wri2: vlan 4094

FSM: wri2: auth -> config

FSM: wri2: config -> configured

dev wri3, got 54 bytes so far

wri3: reaped radclient: 0x00000100

dev wri3: vlan 4094

FSM: wri3: auth -> config

FSM: wri3: config -> configured

In the above example, two interface were up and authorization failed for both (as seen, radclient
did exit(1)). Both interfaces are configured in vlan 4094.

6.4 Forcing Re-Authorizazion

By sending SIGUSR2 to a running radiusvlan all state machines are turned to JUSTUP so all
authorization is retried, and verbose mode is toggled. Please note that this is pretty raw, and
should only be run in a quiet system where all interfaces are configured or down (the cleanup of
state GODOWN is not performed).

The simple script rvlan-debug can be used to send SIGUR2 and check the new value of verbosity.
This example is in a system where radiusvlan was automatically started at boot:

wrs#rvlan-debug

radiusvlan verbose level is now 1

Diagnostic messages are then sent to syslog, using my CONFIG_WRS_LOG_OTHER and related
configuration choices. To turn off verbosity, run the command again:

wrs#rvlan-debug

radiusvlan verbose level is now 0

Let me repeat this trivial diagnostic feature is not meant for production use because it may
leave some garbage in the system (e.g. a zombie radclient process).

7 Bugs and Missing Features

A few, unfortunately

• It is not expected that MAC addresses change. Both identification of self frames and blessing
of peers (for authorization) has an ever-lasting effect. Clearly, if you change client in a port,
the link-down and link-up events will force authentication on the new mac address, but if
you change the mac address of a PTP slave while it runs, authorization is not re-run.

• Vlan configuration only happens with --pvid configuration, and no action is performed on
the routing table.

Chapter 7: Bugs and Missing Features 7

The last item is tricky. The White Rabbit Switch must be informed about vlan-sets, in order
to correctly route frames, but those sets sometimes cannot just be derived by the individual vid
settings.

I was told that for the current application (an “obey-dotconfig” one) I should not touch the
routing table, but I’m sure this is not correct for a real multi-vlan setup (especially a dynamic
radius-driven environment). This should be investigated when new use cases get real.

	Introduction
	Related Kconfig Items
	Service Activation and Monitoring
	Internal Design
	Multiple Servers
	Robustness
	Diagnostic Tools
	Checking the Current Status
	Looking at Authorization Strings
	Verbose Operation
	Forcing Re-Authorizazion

	Bugs and Missing Features

