

stashstash
staging
area

“index”
workspace local

repository

commit -a

remote
repository

commitadd (-u)

push (origin <branch>)

fetch

pull (origin <branch>)

clean -xfd/dev/null

reset HEAD 2,3checkout

checkout HEAD 2

diff HEAD 2

diff diff --staged

reset --hardstash (save <msg>) 1

1: implicitly, 'stash' performs a 'reset --hard' too!!!
2: you may use <branch> or <SHA> instead of HEAD
3: 'reset' might move pointers of HEAD and actual branch too!!!

stash pop

stash apply <stash>

stash list log

frequently used commands
● status
● log (or “gl” - see next page)
● help <command>
● branch : list local branches
● '-r' list remote branches
● '-a' list local and remote
● ' --contains <SHA>'
● '-d' delete a branch
● checkout
● '-b' create a new branch
● submodule init
● submodule update –recursive

syntax: 'git <command> ...'d.beck@gsi.de

Fundamental
1. all operations act on where HEAD is pointing at
2. if the HEAD pointer is moved, the local copy is recalculated

● concept of Directed Acyclic Graph (DAG):
 <SHA>: each node has a unique hash
 pointer: a “node” depends on another node (pointer)
 direction: a “node” only depends on its previous node(s); it does/must not know its next node(s)
● special pointers are HEAD (see 1. and 2.) and <branch(name)>

Good to Know
● attached head state: HEAD → <branch> → <SHA> (result of “git checkout <branch>”)
● detached head stated: HEAD → <SHA> (result of “git checkout <SHA>”)
● variables/settings are defined recursively (system->user->repo); user: ~/.gitconfig
● possibility to define alias in ~/.gitconfig; example: “gl = log --graph --oneline --decorate –branches”. Usage: “git gl”

● option “--amend”: tell “commit” to modify last commit (message) by committing again (staged changes); bad style for commits already pushed
● option “--patch”: useful for many commands to step through multiple changes in a series of hunks
● option “-b”: tell “diff” to ignore changes with spaces
● option “--word-diff”: tell “diff” to improve visibility of changes
● option “origin <branch>”: tell push/fetch to use a specific remote; useful in case of multiple remote repositories (see cmd “remote”)

● cmd “merge <branch>” merges <branch> onto HEAD
● cmd “fsck” shows unreachable commits
● cmd “rebase --interactive <'stable' SHA>” useful for cleaning up (not yet published!) history
● cmd “remote” manages a set of tracked repositories; use verbose mode for useful listing

● operand “~” or “~n” addresses previous (n) predecessors; example “reset HEAD~”
● operand “^” or “^n” addresses previous (n) 'joint'; example “reset HEAD^”

Alex’ git merge course
‘don’t use merge’, consider using pull
● 1st : ‘git fetch’, get all the latest stuff
● 2nd: ‘git pull origin A’, pulls branch A into the local working branch
● alternative (DB)
● 1st: ‘git pull’, brute force, policy ‘pull.ff only’ preferred
● 2nd: ‘git pull . origin/A’, pulls branch A into the local working branch
in case of conflicts, try ‘merge’
● ‘git merge origin/A’, merges branch A into the local working branch

http://ndpsoftware.com/git-cheatsheet.html : another git cheat sheet
https://xkcd.com/1597/ : the ultimate git cheat sheet

This cheat sheet has been inspired by http://blog.osteele.com/posts/2008/05/my-git-workflow

http://ndpsoftware.com/git-cheatsheet.html
https://xkcd.com/1597/

	Slide 1
	Slide 2

