
Saftlib

Types

The saftlib interfaces documentation uses a number of types which are character encoded.
Because Saftlib used DBus in the past, the encoding is similar but not identical to the DBus
type encoding. The following table lists all types and their representation in the C++ API:

y uint8_t

b bool

n int16_t

q uint16_t

i int32_t

u uint32_t

x int64_t

t uint64_t

d double

T saftlib::Time

s std::string

aX std::vector<X> where X is can be any type

a{KV} std::map<K,V> K and V are are key and value types



de.gsi.saftlib.ActionSink

Name

de.gsi.saftlib.ActionSink — An output through which actions flow.

Methods

ToggleActive ();

ReadFill (OUT q result);

Signals

SigLate (u count,

t event,

t param,

T deadline,

T executed);

SigEarly (u count,

t event,

t param,

T deadline,

T executed);

SigConflict (t count,

t event,

t param,

T deadline,

T executed);

SigDelayed (t count,

t event,

t param,

T deadline,

T executed);

Properties

AllConditions readable as

ActiveConditions readable as

InactiveConditions readable as

MinOffset readwrite x

MaxOffset readwrite x

Latency readable t



EarlyThreshold readable t

Capacity readable q

MostFull readwrite q

SignalRate readwrite t

OverflowCount readwrite t

ActionCount readwrite t

LateCount readwrite t

EarlyCount readwrite t

ConflictCount readwrite t

DelayedCount readwrite t

Description

Conditions created on this ActionSink specify which timing events are translated into ac-
tions. These actions have execution timestamps which determine when the action is to be
executed, precise to the nanosecond.

More specialized versions of this interface provide the ’NewCondition’ method to create
conditions specific to the type of ActionSink. For example, SoftwareActionSinks create
conditions that emit signals to software. This interface captures the functionality common
to all ActionSinks, such as atomic toggle, offset constraints, and introspection. In particular,
ActionSinks have common failure modes.

Actions are queued for delivery at the appropriate time, in hardware. Hardware has
limited storage, reflected by the Fill, Capacity, and MostFull properties. These should be
monitored to ensure that the queue never overflows.

The first failure mode of an ActionSink is that the queue overflows. In this case, the
hardware drops an action. Obviously, this is a critical error which may result in an undefined
state. To prevent these failures, MostFull should be kept below some safety margin with
respect to Capacity. Note: several distinct ActionSinks may share underlying hardware,
and the Fill property is shared amongst all instances. Each overflow is recorded in the
OverflowCount register. Due the rate at which this counter might increase, the API throttles
updates using the SignalRate property.

Another critical error for an ActionSink is the possibility of a late action. This indicates
that hardware was instructed to execute an action at a time in the past. This is typically
caused by either a malfunctioning data master, desynchronized clocks, or conditions with
large negative offsets. This is a critical failure as it might leave the system in an undefined
state. Conditions may be configured to either drop or execute late actions. If late actions are
dropped, a magnet might never be turned off. If late actions are executed, a magnet might
be turned on again after it was supposed to be turned off (ie: the actions get misordered).
In any case, LateCount is increased.

Similar to late actions, one can also have early actions. If an action is scheduled for
execution too far into the future, the timing receiver will choose to mark it as early. This
prevents these actions from permanently consuming space in the finite hardware buffers.
Early actions are also critical failures as it can leave the system in an undefined state, just
as a late action. Conditions may be configured to either drop or execute early actions.



The final misordering failure for an ActionSink is the possibilty of a Conflict. If two ac-
tions are scheduled to be executed at the same nanosecond, their relative order is undefined.
These conflicts are a critical error as they may leave the system in an undefined state, just
as with early and late actions. Conflicts should be prevented by never creating two Con-
ditions on the same ActionSink which could occur at the same time. Note that it is NOT
a Conflict for two actions to be executed at the same time by two different ActionSinks.
For software, this means that two programs, each with their own SoftwareActionSink do
not need to be concerned about conflicts between their schedules. As another example, two
different LEMO output cables (corresponding to two OutputActionSinks) can be toggled
high at the same time.

Finally, these is the possibility of a delayed action. Unlike late, early, and conflicting
actions, delayed actions are never misordered. Thus, delayed actions are typically not as
severe a failure mode, and Conditions default to allowing their execution. Delays can happen
when the delivery rate of actions (potentially 1GHz) exceeds the capability of the receiver
to process the actions. For example, an output might require 100ns to deliver an action.
If two actions are scheduled for delivery back-to-back with 1ns between, the second action
is delayed. For SoftwareActionSinks, delays can probably always be ignored because the
handler is much much slower than the hardware. For a kicker, on the other hand, a delay
is probably a critical error.

Method Details

The ToggleActive() method

ToggleActive ();

Atomically toggle the active status of conditions.

When reconfiguring an ActionSink, it is sometimes necessary to apply many changes
simultaneously. To achieve this, simply use NewCondition to create all the new conditions
in the inactive state. Then use this method to simultaneous toggle all conditions on this
ActionSink. The new active conditions will be applied such that on one nanosecond, the
old set is active and on the next nanosecond the new set is active.

The ReadFill() method

ReadFill (OUT q result);

Report the number of currently pending actions.

The timing receiver hardware can only queue a limited number of actions. This method
reports the current number of queued actions, which includes actions from all users of the
underlying hardware. So two programs each using a SoftwareActionSink will potentially see



an increase in this value when both programs are active. Also, this value can change very
rapidly and is thus changes are not signalled. Polling it is likely to miss short fluctuations.
See MostFull for a better approach to monitoring.

‘OUT q result’:
Number of pending actions.

Signal Details

The "SigLate" signal

SigLate (u count,

t event,

t param,

T deadline,

T executed);

‘u count’:

‘t event’:

‘t param’:

‘T deadline’:
‘T executed’:

The "SigEarly" signal

SigEarly (u count,

t event,

t param,

T deadline,

T executed);

‘u count’:

‘t event’:

‘t param’:

‘T deadline’:
‘T executed’:



The "SigConflict" signal

SigConflict (t count,

t event,

t param,

T deadline,

T executed);

‘t count’:

‘t event’:

‘t param’:

‘T deadline’:
‘T executed’:

The "SigDelayed" signal

SigDelayed (t count,

t event,

t param,

T deadline,

T executed);

‘t count’:

‘t event’:

‘t param’:

‘T deadline’:
‘T executed’:

Property Details

The "AllConditions" property

AllConditions readable as

All conditions created on this ActionSink.

All active and inactive conditions on the ActionSink. Each object path implements the
the matching Condition interface; for example, a SoftwareActionSink will have Software-
Conditions.



The "ActiveConditions" property

ActiveConditions readable as

All active conditions created on this ActionSink.

All active conditions on the ActionSink. Each object path implements the the matching
Condition interface; for example, a SoftwareActionSink will have SoftwareConditions.

The "InactiveConditions" property

InactiveConditions readable as

All inactive conditions created on this ActionSink.

All inactive conditions on the ActionSink. Each object path implements the the matching
Condition interface; for example, a SoftwareActionSink will have SoftwareConditions.

The "MinOffset" property

MinOffset readwrite x

Minimum allowed offset (nanoseconds) usable in NewCondition.

Large offsets are almost always an error. A very negative offset could result in Late
actions. By default, no condition may be created with an offset smaller than -100us. At-
tempts to create conditions with offsets less than MinOffset result in an error. Change this
property to override this safety feature.

The "MaxOffset" property

MaxOffset readwrite x

Maximum allowed offset (nanoseconds) usable in NewCondition.

Large offsets are almost always an error. A large positive offset could result in early
actions being created. By default, no condition may have an offset larger than 1s. Attempts
to create conditions with offsets greater than MaxOffset result in an error. Change this
property to override this safety feature.

The "Latency" property

Latency readable t

Nanoseconds between event and earliest execution of an action.



The "EarlyThreshold" property

EarlyThreshold readable t

Actions further into the future than this are early.

If an action is scheduled for execution too far into the future, it gets truncated to at
most EarlyThreshold nanoseconds into the future.

The "Capacity" property

Capacity readable q

The maximum number of actions queueable without Overflow.

The timing receiver hardware can only queue a limited number of actions. This property
reports the maximum number of actions that may be simultaneously queued. Be aware that
this resource may be shared between multiple ActionSinks. For example, all SoftwareAc-
tionSinks share a common underlying queue in hardware. This Capacity represents the
total size, which must be shared.

The "MostFull" property

MostFull readwrite q

Report the largest number of pending actions seen.

The timing receiver hardware can only queue a limited number of actions. This property
reports the highest Fill level seen by the hardware since it was last reset to 0. Keep in mind
that the queue may be shared, including actions from all users of the underlying hardware.
So two programs each using a SoftwareActionSink will potentially see an increase in this
value when both programs are active.

The "SignalRate" property

SignalRate readwrite t

Minimum interval between updates (nanoseconds, default 100ms).

The properties OverflowCount, ActionCount, LateCount, EarlyCount, ConflictCount,
and DelayedCount can increase rapidly. To prevent excessive CPU load, SignalRate imposes
a minimum cooldown between updates to these values.



The "OverflowCount" property

OverflowCount readwrite t

The number of actions lost due to Overflow.

The underlying hardware queue may overflow once Fill=Capacity. This is a critical
error condition that must be handlded. The causes may be either: 1- the actions have an
execution time far enough in the future that too many actions are buffered before they
are executed, or 2- the receiving component is unable to execute actions as quickly as the
timing system delivers them. The second case is particularly likely for SoftwareActionSinks
that attempt to listen to high frequency events. Even though SoftwareActionSinks share a
common queue, Overflow is reported only to the ActionSink whose action was dropped.

As overflows can occur very rapidly, OverflowCount may increase by more than 1 between
emissions. There is a minimum delay of SignalRate nanoseconds between updates to this
property.

The "ActionCount" property

ActionCount readwrite t

The number of actions processed by the Sink.

As actions can be emitted very rapidly, ActionCount may increase by more than 1
between emissions. There is a minimum delay of SignalRate nanoseconds between updates
to this property.

The "LateCount" property

LateCount readwrite t

The number of actions delivered late.

As described in the interface overview, an action can be late due to a buggy data master,
loss of clock synchronization, or very negative condition offsets. This is a critical failure as
it can result in misordering of executed actions. Each such failure increases this counter.

As late acitons can occur very rapidly, LateCount may increase by more than 1 between
emissions. There is a minimum delay of SignalRate nanoseconds between updates to this
property.

The "EarlyCount" property

EarlyCount readwrite t

The number of actions delivered early.



As described in the interface overview, an action can be early due to a buggy data
master, loss of clock synchronization, or very positive condition offsets. This is a critical
failure as it can result in misordering of executed actions. Each such failure increases this
counter.

As early acitons can occur very rapidly, EarlyCount may increase by more than 1 between
emissions. There is a minimum delay of SignalRate nanoseconds between updates to this
property.

The "ConflictCount" property

ConflictCount readwrite t

The number of actions which conflicted.

If two actions should have been executed simultaneously by the same ActionSink, they
are executed in an undefined order. Each time this happens, the ConflictCount is increased.

As conflicts can occur very rapidly, ConflictCount may increase by more than 1 between
emissions. There is a minimum delay of SignalRate nanoseconds between updates to this
property.

The "DelayedCount" property

DelayedCount readwrite t

The number of actions which have been delayed.

The timing receiver emits actions potentially every nanosecond. In the case that the
receiver cannot immediately process an action, the timing receiver delays the action until
the receiver is ready. This can happen either because the receiver was still busy with a
previous action or the output was used externally (bus arbitration).

As actions can be emitted very rapidly, DelayedCount may increase by more than 1
between emissions. There is a minimum delay of SignalRate nanoseconds between updates
to this property.



de.gsi.saftlib.BurstGenerator

Name

de.gsi.saftlib.BurstGenerator — Burst generation service

Methods

instruct (IN u code,

IN au args,

OUT i result);

readBurstInfo (IN u id,

OUT au info);

readSharedBuffer (IN u size,

OUT au data);

Signals

sigInstComplete (u code);

Properties

Response readable u

Description

A dedicated firmware must be loaded and running in the embedded LM32 core prior to the
burst generation. The methods and signals of this interface are responsible to inform about
the underlying hardware, firmware and load the firmware binary if necessary.



Method Details

The instruct() method

instruct (IN u code,

IN au args,

OUT i result);

Instruction to the burst generator.

It is a common method to communicate with the burst generator. The method contains
an instruction code and corresponding arguments.

code: User instruction code for LM32 args: Instruction arguments (vector of u32 inte-
gers) result: Return result. 0 on success.

‘IN u code’:
‘IN au args’:
‘OUT i result’:

The readBurstInfo() method

readBurstInfo (IN u id,

OUT au info);

Get burst info.

The info includes the type and index of IO port, IDs of trigger and toggling events.

id: The burst ID info: The burst info (vector of u32 integers)

‘IN u id’:

‘OUT au info’:

The readSharedBuffer() method

readSharedBuffer (IN u size,

OUT au data);

Read the shared memory.

size: The amount of data to be read data: The read data

‘IN u size’:
‘OUT au data’:



Signal Details

The "sigInstComplete" signal

sigInstComplete (u code);

Notify the completion of an instruction.

It is the response of the burst generator on user instruction request.

code: User instruction code

‘u code’:

Property Details

The "Response" property

Response readable u

The burst generator response sent via mailbox.



de.gsi.saftlib.Condition

Name

de.gsi.saftlib.Condition — A rule matched against incoming events

Properties

ID readwrite t

Mask readwrite t

Offset readwrite x

AcceptLate readwrite b

AcceptEarly readwrite b

AcceptConflict readwrite b

AcceptDelayed readwrite b

Active readwrite b

Description

Conditions are created for ActionSinks to select which events the sink should respond to.
Different ActionSinks return handles to different Conditions. This interface is the common
denominator.

Property Details

The "ID" property

ID readwrite t

The event identifier which this condition matches against.

An incoming event matches if its ID and this ID agree on all the bits set in this condition’s
Mask.



The "Mask" property

Mask readwrite t

The mask used when comparing event IDs.

An incoming event matches if its ID and the ID property of this Condition agree on all
the bits set in this Mask.

The "Offset" property

Offset readwrite x

Added to an event’s time to calculate the action’s time.

The "AcceptLate" property

AcceptLate readwrite b

Should late actions be executed? Defaults to false

The "AcceptEarly" property

AcceptEarly readwrite b

Should early actions be executed? Defaults to false

The "AcceptConflict" property

AcceptConflict readwrite b

Should conflicting actions be executed? Defaults to false

The "AcceptDelayed" property

AcceptDelayed readwrite b

Should delayed actions be executed? Defaults to true



The "Active" property

Active readwrite b

The condition should be actively matched against events.

An inactive condition is not used to match against events. You can toggle the active
state of this condition via this property, or if multiple Conditions should be atomically
adjusted, use the ToggleActive method on the ActionSink.



de.gsi.saftlib.Device

Name

de.gsi.saftlib.Device — A device attached to saftd via Etherbone.

Methods

Remove ();

Properties

EtherbonePath readable s

Name readable s

Description

Devices are attached to saftlib by specifying a name and a path. The name should denote
the logical relationship of the device to saftd. For example, baseboard would be a good
name for the timing receiver attached to an SCU. If an exploder is being used to output
events to an oscilloscope, a good logical name might be scope. In these examples, the path
for the SCU baseboard would be dev/wbm0, and the scope exploder would be dev/ttyUSB3
or similar.

This scheme is intended to make it easy to hot-swap hardware. If the exploder dies, you
can simply attach a new one under the same logical name, even though the path might be
different.

Method Details

The Remove() method

Remove ();

Remove the device from saftlib management.



Property Details

The "EtherbonePath" property

EtherbonePath readable s

The path through which the device is reached.

The "Name" property

Name readable s

The logical name with which the device was connected.



de.gsi.saftlib.EmbeddedCPUActionSink

Name

de.gsi.saftlib.EmbeddedCPUActionSink — An output through which EmbeddedCPU ac-
tions flow.

Methods

NewCondition (IN b active,

IN t id,

IN t mask,

IN x offset,

IN u tag,

OUT s result);

Description

This inteface allows the generation of SCU timing events. A EmbeddedCPUActionSink is
also an ActionSink and Owned.

If two SoftwareConditions are created on the same SoftwareActionSink which require
simultaneous delivery of two Actions, then they will be delivered in arbitrary order, both
having the ’conflict’ flag set.

Method Details

The NewCondition() method

NewCondition (IN b active,

IN t id,

IN t mask,

IN x offset,

IN u tag,

OUT s result);

Create a condition to match incoming events

This method creates a new condition that matches events whose identifier lies in the
range [id & mask, id | ~mask]. The offset acts as a delay which is added to the event’s



execution timestamp to determine the timestamp when the matching condition fires its
action. The returned object path is a EmbeddedCPUCondition object.

‘IN b active’:
Should the condition be immediately active

‘IN t id’: Event ID to match incoming event IDs against

‘IN t mask’:
Set of bits for which the event ID and id must agree

‘IN x offset’:
Delay in nanoseconds between event and action

‘IN u tag’:
The 32-bit value to send on the EmbeddedCPU

‘OUT s result’:
Object path to the created EmbeddedCPUCondition



de.gsi.saftlib.EmbeddedCPUCondition

Name

de.gsi.saftlib.EmbeddedCPUCondition — Matched against incoming events on a Embed-
dedCPUActionSink.

Properties

Tag readwrite u

Description

EmbeddedCPUConditions are created by EmbeddedCPUActionSinks to select which events
should generate callbacks. This interface always implies that the object also implements
the general Condition interface.

Property Details

The "Tag" property

Tag readwrite u

The tag which is sent to the EmbeddedCPU by this condition



de.gsi.saftlib.EventSource

Name

de.gsi.saftlib.EventSource — An external source of timing events.

Properties

Resolution readable t

EventBits readable u

EventEnable readwrite b

EventPrefix readwrite t

Description

Normally, timing events come from the data master in the timing network. However,
external inputs to the timing receiver can also be used as a source of timing events. For
example, a LEMO input can be configured to generate a timing event on edge transitions.

When the external trigger occurs, it is timestamped and an event is created which
will be processed as normal by the timing receiver. The event identifier comes from the
EventPrefix. However, some external devices additionally provide data which is filled into
the low EventBits of the generated event identifier.

Property Details

The "Resolution" property

Resolution readable t

The precision of generated timestamps in nanoseconds.

The "EventBits" property

EventBits readable u

How many bits of external data are included in the ID



The "EventEnable" property

EventEnable readwrite b

Should the event source generate events

The "EventPrefix" property

EventPrefix readwrite t

Combined with low EventBits to create generated IDs



de.gsi.saftlib.FunctionGenerator

Name

de.gsi.saftlib.FunctionGenerator — Function Generator for creating timing triggered wave-
forms

Methods

Arm ();

Abort ();

ReadFillLevel (OUT t result);

AppendParameterSet (IN an coeff_a,

IN an coeff_b,

IN ai coeff_c,

IN ay step,

IN ay freq,

IN ay shift_a,

IN ay shift_b,

OUT b low_fill);

Flush ();

ReadExecutedParameterCount (OUT u result);

Signals

SigEnabled (b enabled);

SigArmed (b armed);

SigRunning (b running);

SigStarted (T time);

SigStopped (T time,

b aborted,

b hardwareMacroUnderflow,

b microControllerUnderflow);

Refill ();

Properties

Version readable u

SCUbusSlot readable y

DeviceNumber readable y

OutputWindowSize readable y

Enabled readable b



Armed readable b

Running readable b

StartTag readwrite u

Description

The function generator creates a waveform from a piecewise continuous sequence of second
order polynomials. These polynomials are specified using a fixed-width "parameter tuple"
format. Once triggered, the function generator outputs samples created from each tupled
polynomial until it exhausts the specified piecewise width of the polynomial, whereupon it
begins outputting samples from the next tupled polynomial.

The general work-flow to use the FunctionGenerator is to append sets of tuples describ-
ing the waveform using the AppendParameterSet function. Then, select a SCUbus timing
tag (StartTag) whose appearance should trigger waveform generation. Finally, the Func-
tionGenerator is armed by calling Arm, whereafter it may be triggered manually via the
SCUbusActionSink->InjectTag method, or by a timing event sent by the data master, which
is configured to create the StartTag.

If you need an unending waveform, follow the steps above, but additionally monitor the
Refill signal, and append additional parameter tuples until low fill is false.

The sequence of signals of successful waveform generation occur in this order: En-
abled(true) Armed(true) Armed(false) Started Running(true) Refill Running(false) Stopped
Enabled(false)

Method Details

The Arm() method

Arm ();

Enable the function generator and arm it.

A function generator can only be Armed if FillLevel is non-zero. An Enabled function
generator can not be Armed again until it either completes waveform generation or the user
calls Abort. Arming a function generator takes time. Wait for Armed to transition to true
before sending StartTag.



The Abort() method

Abort ();

Abort waveform generation.

This directs the hardware to stop waveform generation. If the function generator was
Armed, it is disarmed and disabled, without outputting any waveform data. If the function
generator is running, output is Stopped at the current value and disabled. Aborting a
function generator takes time, so even after a call to Abort, the function generator might
still be Started. However, it will reach the disabled state as quickly as it can, transitioning
through Stopped as usual. If the Owner of a FunctionGenerator quits without running
Disown, the Abort is run automatically.

The ReadFillLevel() method

ReadFillLevel (OUT t result);

Remaining waveform data in nanoseconds.

The SAFTd has sufficient parameters buffered to supply the function generator with
data for the specified time in nanoseconds. Note, due to the slow nature of software, if
the function generator is currently running, the read value will already be out-of-date upon
return. This property should be used for informational use only.

‘OUT t result’:
Remaining waveform data in nanoseconds.

The AppendParameterSet() method

AppendParameterSet (IN an coeff_a,

IN an coeff_b,

IN ai coeff_c,

IN ay step,

IN ay freq,

IN ay shift_a,

IN ay shift_b,

OUT b low_fill);

Append parameter tuples describing waveform to generate.

This function appends the parameter vectors (which must be equal in length) to the
FIFO of remaining waveform to generate. Each parameter set (coefficients) describes a
number of output samples in the generated wave form. Parameter sets are executed in
order until no more remain.

If the fill level is not high enough, this method returns true. Only once this function has
returned false can you await the Refill signal.



At each step, the function generator outputs high bits(c*2^32 + b*t + c*t*t), where t
ranges from 0 to numSteps-1. high bits are the high OutputWindowSize bits of the resulting
64-bit signed value.

‘IN an coeff_a’:
Quadratic coefficient (a), 16-bit signed

‘IN an coeff_b’:
Linear coefficient (b), 16-bit signed

‘IN ai coeff_c’:
Constant coefficient (c), 32-bit signed

‘IN ay step’:
Number of interpolated samples (0=250, 1=500, 2=1000, 3=2000, 4=4000,
5=8000, 6=16000, or 7=32000)

‘IN ay freq’:
Output sample frequency (0=16kHz, 1=32kHz, 2=64kHz, 3=125kHz,
4=250kHz, 5=500kHz, 6=1MHz, or 7=2MHz)

‘IN ay shift_a’:
Exponent of coeff a, 6-bit unsigned; a = coeff a*2^shift a

‘IN ay shift_b’:
Exponent of coeff b, 6-bit unsigned; b = coeff b*2^shift b

‘OUT b low_fill’:
Fill level remains too low

The Flush() method

Flush ();

Empty the parameter tuple set.

Flush may only be called when not Enabled. Flush does not clear the ExecutedParam-
eterCount.

The ReadExecutedParameterCount() method

ReadExecutedParameterCount (OUT u result);

Number of parameter tuples executed by hardware.

This counts the total number of parameter tuples executed since the last Started signal.
Obviously, if the function generator is running, the returned value will be old.

‘OUT u result’:
Number tuples executed by hardware.



Signal Details

The "SigEnabled" signal

SigEnabled (b enabled);

‘b enabled’:

The "SigArmed" signal

SigArmed (b armed);

‘b armed’:

The "SigRunning" signal

SigRunning (b running);

‘b running’:

The "SigStarted" signal

SigStarted (T time);

Function generation has begun.

This signal notifies software when function generation has begun, possibly to update a
GUI or other user-facing status information.

‘T time’: Time when function generation began in nanoseconds since 1970

The "SigStopped" signal

SigStopped (T time,

b aborted,

b hardwareMacroUnderflow,

b microControllerUnderflow);

Function generation has ended.



The function generator stops either successfully (when all data has been sent), or it stops
due to an error. When an error occurs, the function generator stops and holds its most
recent value. This can occur due to two causes:

hardwareMacroUnderflow, a fatal error indicating the hardware ran out of data. If the
SCUbus is too busy, it can happen that the waveform data stored in the function generator
HDL is not refilled in time. This error can only be mitigated by ensuring that the function
generator does not share the SCUbus with other users.

microControllerUnderflow, a fatal error indicating the microcontroller ran out of data.
If the host CPU running this software is too busy, it can happen that the waveform data is
not delivered to the microcontroller before the microcontroller runs out of data. This error
can be mitigated by reducing the number of busy processes running on the system.

Once the function generator has stopped, ExecutedParameterCount remains valid until
the next time the function generator starts. After stopping, regardless of if the generation
was successful or not, the parameter FIFO is cleared, Enabled is false, and this signal
emitted.

‘T time’: Time when function generation ended in nanoseconds since 1970

‘b aborted’:
‘b hardwareMacroUnderflow’:

A fatal error, indicating the SCUbus is congested

‘b microControllerUnderflow’:
A fatal error, indicating the host CPU is overloaded

The "Refill" signal

Refill ();

More tuples must be appended to ensure uninterrupted waveform.

In order to guarantee an uninterrupted supply of data to the function generator, there
should be data buffered in the SAFTd. When the buffer fill level gets too low, this signal is
emitted, and you should run AppendParameterSet. If you do not, function generation will
cease, signalling successful completion of the waveform with Stopped.

Property Details

The "Version" property

Version readable u

Version of the hardware macro



The "SCUbusSlot" property

SCUbusSlot readable y

Slot number of the slave card

The "DeviceNumber" property

DeviceNumber readable y

number of the hardware macro inside of the slave card

The "OutputWindowSize" property

OutputWindowSize readable y

Number of bits output by the function generator

The "Enabled" property

Enabled readable b

Hardware is allowed to generate an output waveform.

If a function generator is disabled, its output is constant. Enabled is set to true using
Arm and transitions to false either upon completion or after a call to Abort.

The "Armed" property

Armed readable b

Upon receipt of StartTag, output will begin.

If a function generator is Armed, it is also Enabled. Once waveform data has been loaded
into the function generator, Arm it. Shortly thereafter (once the hardware is ready), the
Armed property will transition to true, indicating the hardware is ready to react. Once
StartTag is received, Armed changes to false and Started is emitted.



The "Running" property

Running readable b

The function generator is currently producing a waveform.

Function generation is started by sending a SCUbus tag which matches the StartTag
property of an Armed function generator. When this property transitions to true, the
Started signal is emitted. When this property transitions to false, the Stopped signal is
emitted.

The "StartTag" property

StartTag readwrite u

The SCUbus tag which causes function generation to begin.

If the function generator is Armed and this tag is sent to the SCUbus, then the function
generator will begin generating the output waveform. StartTag may only be set when the
FunctionGenerator is not Enabled.



de.gsi.saftlib.FunctionGeneratorFirmware

Name

de.gsi.saftlib.FunctionGeneratorFirmware — Representation of the FunctionGenerator
Firmware

Methods

Scan (OUT a{ss} fgs);

ScanMasterFg (OUT a{ss} fgs);

ScanFgChannels (OUT a{ss} fgs);

Properties

Version readable u

Description

long description

Method Details

The Scan() method

Scan (OUT a{ss} fgs);

Scan bus for fg channels.

This function should only be called if no fg-channel is active. If any channel is active
and this function is called a saftbus::Error will be thrown! result: fgs found.

‘OUT a{ss} fgs’:

The ScanMasterFg() method

ScanMasterFg (OUT a{ss} fgs);

‘OUT a{ss} fgs’:



The ScanFgChannels() method

ScanFgChannels (OUT a{ss} fgs);

‘OUT a{ss} fgs’:

Property Details

The "Version" property

Version readable u

Version of the hardware macro



de.gsi.saftlib.InputEventSource

Name

de.gsi.saftlib.InputEventSource — An input used to generate timing events

Methods

ReadInput (OUT b result);

Properties

StableTime readwrite u

InputTermination readwrite b

SpecialPurposeIn readwrite b

GateIn readwrite b

InputTerminationAvailable readable b

SpecialPurposeInAvailable readable b

LogicLevelIn readable s

IndexIn readable u

TypeIn readable s

Output readable s

Description

An InputEventSource is also an EventSource and Owned.

InputEventSources generate two events: high and low transition. These are encoded in
the resulting event ID’s lowest bit.

Method Details



The ReadInput() method

ReadInput (OUT b result);

Read the current input value.

For inoutputs, this may differ from the Output value, if OutputEnable is false. To
receive a signal on Input changes, use the EventSource interface to create timing events and
monitor these via a SoftwareActionSink.

‘OUT b result’:
The current logic level on the input.

Property Details

The "StableTime" property

StableTime readwrite u

Deglitch threshold for the input

The number of nanoseconds a signal must remain high or low in order to be considered
a valid transition. Increasing this value will not impact the resulting timestamps, but will
hide transitions smaller than the threshold. For example, if StableTime=400, then a 5MHz
signal would be completely ignored.

The "InputTermination" property

InputTermination readwrite b

Set the input termination

Some inputs need termination to receive a clean input signal. However, if the same IO
is used as an Output, termination should probably be disabled. This defaults to on. See
also OutputEnable if this is an inoutput.

The "SpecialPurposeIn" property

SpecialPurposeIn readwrite b

Is the special function enabled.



The "GateIn" property

GateIn readwrite b

Set input gate or get gate status.

The "InputTerminationAvailable" property

InputTerminationAvailable readable b

Can (input) termination be configured.

The "SpecialPurposeInAvailable" property

SpecialPurposeInAvailable readable b

Can special configuration be configured.

The "LogicLevelIn" property

LogicLevelIn readable s

Logic level of the input (LVDS, LVTTL, ...)

The "IndexIn" property

IndexIn readable u

IO index.

The "TypeIn" property

TypeIn readable s

IO type (GPIO, LVDS, ...)



The "Output" property

Output readable s

If non-empty, path of the Output object for the same physical IO



de.gsi.saftlib.MILbusActionSink

Name

de.gsi.saftlib.MILbusActionSink — An output through which MILbus actions flow.

Methods

NewCondition (IN b active,

IN t id,

IN t mask,

IN x offset,

IN q tag,

OUT s result);

InjectTag (IN q tag);

Description

This inteface allows the generation of MIL timing events. A MILbusActionSink is also an
ActionSink and Owned.

If two SoftwareConditions are created on the same SoftwareActionSink which require
simultaneous delivery of two Actions, then they will be delivered in arbitrary order, both
having the ’conflict’ flag set.

Method Details

The NewCondition() method

NewCondition (IN b active,

IN t id,

IN t mask,

IN x offset,

IN q tag,

OUT s result);

Create a condition to match incoming events

This method creates a new condition that matches events whose identifier lies in the
range [id & mask, id | ~mask]. The offset acts as a delay which is added to the event’s



execution timestamp to determine the timestamp when the matching condition fires its
action. The returned object path is a MILBUSCondition object.

‘IN b active’:
Should the condition be immediately active

‘IN t id’: Event ID to match incoming event IDs against

‘IN t mask’:
Set of bits for which the event ID and id must agree

‘IN x offset’:
Delay in nanoseconds between event and action

‘IN q tag’:
The 16-bit value to send on the MILbus

‘OUT s result’:
Object path to the created MILbusCondition

The InjectTag() method

InjectTag (IN q tag);

Directly generate a MILbus timing event.

For debugging, it can be helpful to simply create MILbus events without a matching
timing event.

‘IN q tag’:
The 16-bit value to push to the MILbus.



de.gsi.saftlib.MILbusCondition

Name

de.gsi.saftlib.MILbusCondition — Matched against incoming events on a MILbusAction-
Sink.

Properties

Tag readwrite q

Description

MILbusConditions are created by MILbusActionSinks to select which events should gen-
erate callbacks. This interface always implies that the object also implements the general
Condition interface.

Property Details

The "Tag" property

Tag readwrite q

The tag which is sent to the MILbus by this condition



de.gsi.saftlib.MasterFunctionGenerator

Name

de.gsi.saftlib.MasterFunctionGenerator — Interface to multiple Function Generators

Methods

Arm ();

Abort (IN b wait_for_abort_ack);

InitializeSharedMemory (IN s shared_memory_name);

AppendParameterTuplesForBeamProcess (IN i beam_process,

IN b arm,

IN b wait_for_arm_ack);

AppendParameterSets (IN aan coeff_a,

IN aan coeff_b,

IN aai coeff_c,

IN aay step,

IN aay freq,

IN aay shift_a,

IN aay shift_b,

IN b arm,

IN b wait_for_arm_ack,

OUT b low_fill);

Flush ();

SetActiveFunctionGenerators (IN as names);

ResetActiveFunctionGenerators ();

ReadExecutedParameterCounts (OUT au result);

ReadFillLevels (OUT at result);

ReadAllNames (OUT as names);

ReadNames (OUT as names);

ReadArmed (OUT ai armed_states);

ReadEnabled (OUT ai enabled_states);

ReadRunning (OUT ai running_states);

Signals

SigStopped (s name,

T time,

b aborted,

b hardwareMacroUnderflow,

b microControllerUnderflow);

Armed (s name,



b armed);

Enabled (s name,

b enabled);

Running (s name,

b running);

SigStarted (s name,

T time);

Refill (s name);

SigAllStopped (T time);

AllArmed ();

Properties

StartTag readwrite u

GenerateIndividualSignals readwrite b

Description

Operation of function generators is aggregated to reduce the number of d-bus operations
required.

Method Details

The Arm() method

Arm ();

Enable all function generators that have data and arm them.

A function generator can only be Armed if FillLevel is non-zero. An Enabled function
generator can not be Armed again until it either completes waveform generation or the user
calls Abort. Arming a function generator takes time. Wait for Armed to transition to true
before sending StartTag.

The Abort() method

Abort (IN b wait_for_abort_ack);

Abort waveform generation in all function generators.

disabled state before returning.



This directs the hardware to stop waveform generation. If the function generator was
Armed, it is disarmed and disabled, without outputting any waveform data. If the function
generator is running, output is Stopped at the current value and disabled. Aborting a
function generator takes time, so even after a call to Abort, the function generator might
still be Started. However, it will reach the disabled state as quickly as it can, transitioning
through Stopped as usual. If the Owner of a FunctionGenerator quits without running
Disown, the Abort is run automatically.

‘IN b wait_for_abort_ack’:
If true, wait for all FGs to transition to the

The InitializeSharedMemory() method

InitializeSharedMemory (IN s shared_memory_name);

‘IN s shared_memory_name’:

The AppendParameterTuplesForBeamProcess() method

AppendParameterTuplesForBeamProcess (IN i beam_process,

IN b arm,

IN b wait_for_arm_ack);

‘IN i beam_process’:
‘IN b arm’:
‘IN b wait_for_arm_ack’:

The AppendParameterSets() method

AppendParameterSets (IN aan coeff_a,

IN aan coeff_b,

IN aai coeff_c,

IN aay step,

IN aay freq,

IN aay shift_a,

IN aay shift_b,

IN b arm,

IN b wait_for_arm_ack,

OUT b low_fill);

For each function generator, append parameter tuples describing

the waveform to generate. Each parameter is sent as a vector of vectors: per FG then
per tuple element



Parameters are sent as a vector of vectors. The outside vectors contain a coefficient
vector for each FG and must be of the same size and less or equal the number of active
FGs. The coefficient vectors for each FG’s parameter set must be the same size but different
FGs may have different parameter set sizes. If there is no data for an individual function
generator an empty vector should be sent.

coeff_a: Quadratic coefficient (a), 16-bit signed coeff_b: Linear coefficient (b), 16-bit
signed coeff_c: Constant coefficient (c), 32-bit signed step: Number of interpolated sam-
ples (0=250, 1=500, 2=1000, 3=2000, 4=4000, 5=8000, 6=16000, or 7=32000) freq: Out-
put sample frequency (0=16kHz, 1=32kHz, 2=64kHz, 3=125kHz, 4=250kHz, 5=500kHz,
6=1MHz, or 7=2MHz) shift_a: Exponent of coeff a, 6-bit unsigned; a = coeff a*2^shift a
shift_b: Exponent of coeff b, 6-bit unsigned; b = coeff b*2^shift b

arm: If true, arm each function generator that received data and wait for acknowledge-
ment wait_for_arm_ack: If true, and arm is true, wait for arm acknowledgements from all
fgs before returning low_fill: Fill level remains low for at least one FG - use ReadFillLevels

This function appends the parameter vectors (which must be equal in length) to the
FIFO of remaining waveform to generate. Each parameter set (coefficients) describes a
number of output samples in the generated wave form. Parameter sets are executed in
order until no more remain.

If the fill level is not high enough, this method returns true. Only once this function has
returned false can you await the Refill signal.

At each step, the function generator outputs high bits(c*2^32 + b*t + c*t*t), where t
ranges from 0 to numSteps-1. high bits are the high OutputWindowSize bits of the resulting
64-bit signed value.

‘IN aan coeff_a’:
‘IN aan coeff_b’:
‘IN aai coeff_c’:
‘IN aay step’:
‘IN aay freq’:
‘IN aay shift_a’:
‘IN aay shift_b’:
‘IN b arm’:
‘IN b wait_for_arm_ack’:
‘OUT b low_fill’:

The Flush() method

Flush ();

Empty the parameter tuple set of all function generators.

Flush may only be called when not Enabled. Flush does not clear the ExecutedParam-
eterCount.



The SetActiveFunctionGenerators() method

SetActiveFunctionGenerators (IN as names);

Set the list of active function generators handled by this master to the names
given. names: List of names identifying each FG to activate. Format: fg-[SCUBusSlot]-
[DeviceNumber]-[index] e.g. {"fg-3-0-0","fg-3-1-1"}

‘IN as names’:

The ResetActiveFunctionGenerators() method

ResetActiveFunctionGenerators ();

Resets the list of active function generators handled by this master to all available FGs.

The ReadExecutedParameterCounts() method

ReadExecutedParameterCounts (OUT au result);

Number of parameter tuples executed by each function generator

This counts the total number of parameter tuples executed since the last Started signal.
Obviously, if the function generator is running, the returned value will be old.

‘OUT au result’:
Number tuples executed by hardware.

The ReadFillLevels() method

ReadFillLevels (OUT at result);

Remaining waveform data in nanoseconds for each FG.

The SAFTd has sufficient parameters buffered to supply the function generator with
data for the specified time in nanoseconds. Note, due to the slow nature of software, if
the function generator is currently running, the read value will already be out-of-date upon
return. This property should be used for informational use only.

‘OUT at result’:
Remaining waveform data in nanoseconds for each FG.



The ReadAllNames() method

ReadAllNames (OUT as names);

‘OUT as names’:

The ReadNames() method

ReadNames (OUT as names);

Read the name for each active FG.

‘OUT as names’:
Name of each FG.

The ReadArmed() method

ReadArmed (OUT ai armed_states);

Read the armed state of each active FG.

‘OUT ai armed_states’:
State of each FG.

The ReadEnabled() method

ReadEnabled (OUT ai enabled_states);

Read the enabled state of each active FG.

‘OUT ai enabled_states’:
State of each FG.

The ReadRunning() method

ReadRunning (OUT ai running_states);

Read the running state of each active FG.

‘OUT ai running_states’:
State of each FG.



Signal Details

The "SigStopped" signal

SigStopped (s name,

T time,

b aborted,

b hardwareMacroUnderflow,

b microControllerUnderflow);

Stopped signal forwarded from a single Function Generator

The function generator stops either successfully (when all data has been sent), or it stops
due to an error. When an error occurs, the function generator stops and holds its most
recent value. This can occur due to two causes:

hardwareMacroUnderflow, a fatal error indicating the hardware ran out of data. If the
SCUbus is too busy, it can happen that the waveform data stored in the function generator
HDL is not refilled in time. This error can only be mitigated by ensuring that the function
generator does not share the SCUbus with other users.

microControllerUnderflow, a fatal error indicating the microcontroller ran out of data.
If the host CPU running this software is too busy, it can happen that the waveform data is
not delivered to the microcontroller before the microcontroller runs out of data. This error
can be mitigated by reducing the number of busy processes running on the system.

Once the function generator has stopped, ExecutedParameterCount remains valid until
the next time the function generator starts. After stopping, regardless of if the generation
was successful or not, the parameter FIFO is cleared, Enabled is false, and this signal
emitted.

‘s name’: Name of the FG that generated the signal.

‘T time’: Time when function generation ended in nanoseconds since 1970

‘b aborted’:
‘b hardwareMacroUnderflow’:

A fatal error, indicating the SCUbus is congested

‘b microControllerUnderflow’:
A fatal error, indicating the host CPU is overloaded

The "Armed" signal

Armed (s name,

b armed);

Armed signal forwarded from a single Function Generator

‘s name’:



‘b armed’:

The "Enabled" signal

Enabled (s name,

b enabled);

Enabled signal forwarded from a single Function Generator

‘s name’:

‘b enabled’:

The "Running" signal

Running (s name,

b running);

Running signal forwarded from a single Function Generator

‘s name’:

‘b running’:

The "SigStarted" signal

SigStarted (s name,

T time);

Started signal forwarded from a single Function Generator

‘s name’:

‘T time’:

The "Refill" signal

Refill (s name);

Refill signal forwarded from a single Function Generator

‘s name’:



The "SigAllStopped" signal

SigAllStopped (T time);

All Function generators have stopped.

This signal is generated when a function generator stops and all function generators
controlled by this master have then stopped.

‘T time’: Time when last function generation ended

The "AllArmed" signal

AllArmed ();

All Function generators that have a FillLevel>0 are armed.

This signal is generated when a function generator signals that it is armed, and all
function generators controlled by this master that have FillLevel>0 are armed.

Property Details

The "StartTag" property

StartTag readwrite u

The SCUbus tag which causes function generation to begin.

All function generators under control of the Master use the same tag. If the function
generator is Armed and this tag is sent to the SCUbus, then the function generator will begin
generating the output waveform. StartTag may only be set when the FunctionGenerator is
not Enabled.

The "GenerateIndividualSignals" property

GenerateIndividualSignals readwrite b

If true, signals from the individual

function generators are forwarded. The aggregate signals will still be generated. This
defaults to false to reduce the load on the d-bus message bus.



de.gsi.saftlib.OutputActionSink

Name

de.gsi.saftlib.OutputActionSink — An output through which on/off actions flow.

Methods

NewCondition (IN b active,

IN t id,

IN t mask,

IN x offset,

IN b on,

OUT s result);

WriteOutput (IN b value);

ReadOutput (OUT b value);

StartClock (IN d high_phase,

IN d low_phase,

IN t phase_offset,

OUT b running);

StopClock (OUT b running);

Properties

OutputEnable readwrite b

SpecialPurposeOut readwrite b

GateOut readwrite b

BuTiSMultiplexer readwrite b

PPSMultiplexer readwrite b

OutputEnableAvailable readable b

SpecialPurposeOutAvailable readable b

LogicLevelOut readable s

IndexOut readable u

TypeOut readable s

Input readable s



Description

This inteface allows the generation of Output pulses. An OutputActionSink is also an
ActionSink and Owned.

If two SoftwareConditions are created on the same SoftwareActionSink which require
simultaneous delivery of two Actions, then they will be delivered in arbitrary order, both
having the ’conflict’ flag set.

Method Details

The NewCondition() method

NewCondition (IN b active,

IN t id,

IN t mask,

IN x offset,

IN b on,

OUT s result);

Create a condition to match incoming events

This method creates a new condition that matches events whose identifier lies in the
range [id & mask, id | ~mask]. The offset acts as a delay which is added to the event’s
execution timestamp to determine the timestamp when the matching condition fires its
action. The returned object path is a OutputCondition object.

‘IN b active’:
Should the condition be immediately active

‘IN t id’: Event ID to match incoming event IDs against

‘IN t mask’:
Set of bits for which the event ID and id must agree

‘IN x offset’:
Delay in nanoseconds between event and action

‘IN b on’: The output should be toggled on (or off)

‘OUT s result’:
Object path to the created OutputCondition



The WriteOutput() method

WriteOutput (IN b value);

Directly manipulate the output value.

Set the output to on/off. Overwrite the previous state, regardless of whether it came
from WriteOutput or a matching Condition. Similarly, the value may in turn be overwritten
by a subsequent matching Condition or WriteOutput.

‘IN b value’:

The ReadOutput() method

ReadOutput (OUT b value);

Read the output state.

This property reflects the current value which would be output when OutputEnable is
true. This may differ from ReadInput on an inout.

‘OUT b value’:

The StartClock() method

StartClock (IN d high_phase,

IN d low_phase,

IN t phase_offset,

OUT b running);

Starts the clock generator with given parameters.

All parameters expect the value in nanoseconds.

‘IN d high_phase’:
‘IN d low_phase’:
‘IN t phase_offset’:
‘OUT b running’:

The StopClock() method

StopClock (OUT b running);

Stops the clock generator.

‘OUT b running’:



Property Details

The "OutputEnable" property

OutputEnable readwrite b

Is the output driver enabled.

When OutputEnable is false, the output is not driven. This defaults to off. See also
Termination if this is an inoutput.

The "SpecialPurposeOut" property

SpecialPurposeOut readwrite b

Is the special function enabled.

The "GateOut" property

GateOut readwrite b

Set output gate or get gate status.

The "BuTiSMultiplexer" property

BuTiSMultiplexer readwrite b

Output BuTiS t0 with timestamp.

The "PPSMultiplexer" property

PPSMultiplexer readwrite b

Output PPS signal from White Rabbit core.



The "OutputEnableAvailable" property

OutputEnableAvailable readable b

Can output enable be configured.

The "SpecialPurposeOutAvailable" property

SpecialPurposeOutAvailable readable b

Can special configuration be configured.

The "LogicLevelOut" property

LogicLevelOut readable s

Logic level of the output (LVDS, LVTTL, ...)

The "IndexOut" property

IndexOut readable u

IO index.

The "TypeOut" property

TypeOut readable s

IO type (GPIO, LVDS, ...)

The "Input" property

Input readable s

If non-empty, path of the Input object for the same physical IO



de.gsi.saftlib.OutputCondition

Name

de.gsi.saftlib.OutputCondition — Matched against incoming events on an OutputAction-
Sink.

Properties

On readwrite b

Description

OutputConditions are created by OutputActionSinks to select which events should generate
signal toggles. This interface always implies that the object also implements the general
Condition interface.

Property Details

The "On" property

On readwrite b

Should the Output be turned on or off



de.gsi.saftlib.Owned

Name

de.gsi.saftlib.Owned — A DBus object which can grant exclusive access.

Methods

Disown ();

Own ();

Destroy ();

Signals

Destroyed ();

Properties

Owner readable s

Destructible readable b

Description

This interface allows clients to claim ownership of the object. When the object has no owner,
full access is granted to all clients. When owned, only the owner may execute priveledged
methods. If the object is Destructible and has an Owner, the object will be automatically
Destroyed when the Owner quits.



Method Details

The Disown() method

Disown ();

Release ownership of the object.

This method may only be invoked by the current owner of the object. A disowned object
may be accessed by all clients and will persist until its Destroy method is called.

The Own() method

Own ();

Claim ownership of the object.

This method may only be invoked if the object is unowned.

The Destroy() method

Destroy ();

Destroy this object.

This method may only be invoked by the current owner of the object. However, if the
condition has been disowned, it may be invoked by anyone.

Signal Details

The "Destroyed" signal

Destroyed ();

The object was destroyed.



Property Details

The "Owner" property

Owner readable s

The dbus client which owns this object.

If there is no Owners, the empty string is returned. Only the owner may access privileged
methods on the object. When the owning client disconnects, ownership will be automatically
released, and if the object is Destructable, the object will also be automatically Destroyed.

The "Destructible" property

Destructible readable b

Can the object be destroyed.

A destructible object represents a temporary allocated resource. When the owner quits,
the object will be automatically Destoyed. Some objects are indestructible, representing a
physical resource.



de.gsi.saftlib.SAFTd

Name

de.gsi.saftlib.SAFTd — Report instances of managed hardware

Methods

AttachDevice (IN s name,

IN s path,

OUT s result);

EbForward (IN s saftlib_device,

OUT s saft_eb_fwd);

RemoveDevice (IN s name);

Quit ();

Properties

SourceVersion readable s

BuildInfo readable s

Devices readable a{ss}

Description

This D-Bus interface is the main entry point into the saftlib. All device drivers register
their top-level hardware objects here.

Method Details

The AttachDevice() method

AttachDevice (IN s name,

IN s path,

OUT s result);

Instruct saftd to control a new device.

Devices are attached to saftlib by specifying a name and a path. The name should
denote the logical relationship of the device to saftd. For example, baseboard would be



a good name for the timing receiver attached to an SCU. If an exploder is being used to
output events to an oscilloscope, a good logical name might be scope. In these examples,
the path for the SCU baseboard would be dev/wbm0, and the scope exploder would be
dev/ttyUSB3 or similar.

This scheme is intended to make it easy to hot-swap hardware. If the exploder dies, you
can simply attach a new one under the same logical name, even though the path might be
different.

‘IN s name’:
The logical name for the device

‘IN s path’:
The etherbone path where the device can be found

‘OUT s result’:
Object path of the created device

The EbForward() method

EbForward (IN s saftlib_device,

OUT s saft_eb_fwd);

Get the name of the device that forwards etherbone requests to saftlib device.

‘IN s saftlib_device’:
The name of an attached device.

‘OUT s saft_eb_fwd’:

The RemoveDevice() method

RemoveDevice (IN s name);

Remove the device from saftlib management.

‘IN s name’:
The logical name for the device

The Quit() method

Quit ();

Instructs the saftlib daemon to quit.

Be absolutely certain before calling this method! All clients will have their future calls
throw exceptions.



Property Details

The "SourceVersion" property

SourceVersion readable s

SAFTd source version.

The version of the SAFTd source code this daemon was compiled from. Format is
"saftlib #.#.# (git-id): MMM DD YYYY HH:MM:SS".

The "BuildInfo" property

BuildInfo readable s

SAFTd build information.

Information about when and where the SAFTd was compiled. Format is "built by
USERNAME on MMM DD YYYY HH:MM:SS with HOSTNAME running OPERATING-
SYSTEM".

The "Devices" property

Devices readable a{ss}

List of all devices attached to saftd.

The key is the name of the device as provided to AttachDevice. The value is the dbus
path to the Device object, NOT the etherbone path of the device. Each object is guaranteed
to implement at least the Device interface, however, typically the objects implement the
TimingReceiver interface.



de.gsi.saftlib.SCUbusActionSink

Name

de.gsi.saftlib.SCUbusActionSink — An output through which SCUbus actions flow.

Methods

NewCondition (IN b active,

IN t id,

IN t mask,

IN x offset,

IN u tag,

OUT s result);

InjectTag (IN u tag);

Description

This inteface allows the generation of SCU timing events. A SCUbusActionSink is also an
ActionSink and Owned.

If two SoftwareConditions are created on the same SoftwareActionSink which require
simultaneous delivery of two Actions, then they will be delivered in arbitrary order, both
having the ’conflict’ flag set.

Method Details

The NewCondition() method

NewCondition (IN b active,

IN t id,

IN t mask,

IN x offset,

IN u tag,

OUT s result);

Create a condition to match incoming events

This method creates a new condition that matches events whose identifier lies in the
range [id & mask, id | ~mask]. The offset acts as a delay which is added to the event’s



execution timestamp to determine the timestamp when the matching condition fires its
action. The returned object path is a SCUBUSCondition object.

‘IN b active’:
Should the condition be immediately active

‘IN t id’: Event ID to match incoming event IDs against

‘IN t mask’:
Set of bits for which the event ID and id must agree

‘IN x offset’:
Delay in nanoseconds between event and action

‘IN u tag’:
The 32-bit value to send on the SCUbus

‘OUT s result’:
Object path to the created SCUbusCondition

The InjectTag() method

InjectTag (IN u tag);

Directly generate a SCUbus timing event.

For debugging, it can be helpful to simply create SCUbus events without a matching
timing event.

‘IN u tag’:
The 32-bit value to push to the SCUbus.



de.gsi.saftlib.SCUbusCondition

Name

de.gsi.saftlib.SCUbusCondition — Matched against incoming events on a SCUbusAction-
Sink.

Properties

Tag readwrite u

Description

SCUbusConditions are created by SCUbusActionSinks to select which events should gen-
erate callbacks. This interface always implies that the object also implements the general
Condition interface.

Property Details

The "Tag" property

Tag readwrite u

The tag which is sent to the SCUbus by this condition



de.gsi.saftlib.SoftwareActionSink

Name

de.gsi.saftlib.SoftwareActionSink — An output through which software actions flow.

Methods

NewCondition (IN b active,

IN t id,

IN t mask,

IN x offset,

OUT s result);

Description

A SoftwareActionSink guarantees ordered execution of all callbacks on SoftwareConditions
created via the NewCondition method. Each SoftwareActionSink is independent of all oth-
ers, so a single program may operate in isolation without concern about potential conflicting
rules from other clients on the same machine.

A SoftwareActionSink is both an ActionSink and Owned.

If two SoftwareConditions are created on the same SoftwareActionSink which require
simultaneous delivery of two Actions, then they will be delivered in arbitrary order, both
having the ’conflict’ flag set.

Method Details

The NewCondition() method

NewCondition (IN b active,

IN t id,

IN t mask,

IN x offset,

OUT s result);

Create a condition to match incoming events

This method creates a new condition that matches events whose identifier lies in the
range [id & mask, id | ~mask]. The offset acts as a delay which is added to the event’s



execution timestamp to determine the timestamp when the matching condition fires its
action. The returned object path is a SoftwareCondition object.

‘IN b active’:
Should the condition be immediately active

‘IN t id’: Event ID to match incoming event IDs against

‘IN t mask’:
Set of bits for which the event ID and id must agree

‘IN x offset’:
Delay in nanoseconds between event and action

‘OUT s result’:
Object path to the created SoftwareCondition



de.gsi.saftlib.SoftwareCondition

Name

de.gsi.saftlib.SoftwareCondition — Matched against incoming events on a SoftwareAction-
Sink.

Signals

SigAction (t event,

t param,

T deadline,

T executed,

q flags);

Description

SoftwareConditions are created by SoftwareActionSinks to select which events should gen-
erate callbacks. This interface always implies that the object also implements the general
Condition interface.

Signal Details

The "SigAction" signal

SigAction (t event,

t param,

T deadline,

T executed,

q flags);

Emitted whenever the condition matches a timing event.

While the underlying hardware strives to deliver the action precisely on the deadline,
the software stack adds non-deterministic delay, so the deadline may be milliseconds in the
past. The late flag only indicates that the hardware failed to meet the required deadline.
Similarly, the executed timestamp is the time when the hardware delivered the action, not
when software has received it.

Actions with error flags (late, early, conflict, delayed) are only delivered to this signal if
the Condition which generated them specified that the respective error should be accepted.

‘t event’: The event identifier that matched this rule.



‘t param’: The parameter field, whose meaning depends on the event ID.

‘T deadline’:
The scheduled execution timestamp of the action (event time + offset).

‘T executed’:
The actual execution timestamp of the action.

‘q flags’: Whether the action was (ok=0,late=1,early=2,conflict=4,delayed=8)



de.gsi.saftlib.TimingReceiver

Name

de.gsi.saftlib.TimingReceiver — A timing receiver.

Methods

CurrentTemperature (OUT i result);

CurrentTime (OUT T result);

NewSoftwareActionSink (IN s name,

OUT s result);

InjectEvent (IN t event,

IN t param,

IN T time);

Signals

SigLocked (b locked);

Properties

GatewareInfo readable a{ss}

GatewareVersion readable s

Locked readable b

TemperatureSensorAvail readable b

SoftwareActionSinks readable a{ss}

Outputs readable a{ss}

Inputs readable a{ss}

Interfaces readable a{sa{ss}}

Free readable u



Description

Timing receivers can respond to timing events from the data master. The can also respond
to external timing triggers via inputs.

The general idea is that a TimingReceiver has ActionSinks to which it sends actions in
response to incoming timing events. Timing events are matched with Conditions to create
the Actions sent to the Sinks.

EventSources are objects which create timing events, to be matched by the conditions.
The data master is a global EventSource to which all TimingReceivers listen. However,
external inputs can also be configured to generate timing events. Furthermore, a Timin-
gReceiver can simulate the receipt of a timing event by calling the InjectEvent method.

Timing receivers always typically have binary outputs lines (OutputActionSinks),
which are listed in the Outputs property. Similarly, they often have digital inputs
(InputEventSources).

Some timing receivers have special purpose interfaces. For example, an SCU has the
SCUbusActionSink which generates 32-bit messages over the SCU backplane. These special
interfaces can be found in the interfaces property. The SCU backplane would be found under
the SCUbusActionSink key, and as there is only one, it would be the 0th.

Method Details

The CurrentTemperature() method

CurrentTemperature (OUT i result);

The current temperature in degree Celsius.

The valid temperature range is from -70 to 127 degree Celsius. The data type is 32-bit
signed integer.

‘OUT i result’:
Temperature in degree Celsius.

The CurrentTime() method

CurrentTime (OUT T result);

The current time of the timingreceiver.

The result type is saftlib::Time, which can be used to obtain either the number of
nanoseconds since 1970, or the same value minus the current UTC offset. Due to delays in
software, the returned value is probably several milliseconds behind the true time.

‘OUT T result’:
the current time of the timingreceiver



The NewSoftwareActionSink() method

NewSoftwareActionSink (IN s name,

OUT s result);

Create a new SoftwareActionSink.

SoftwareActionSinks allow a program to create conditions that match incoming timing
events. These conditions may have callback methods attached to them in order to receive
notification. The returned path corresponds to a SoftwareActionSink that is owned by the
process which claimed it, and can thus be certain that no other processes can interfere with
the results.

‘IN s name’:
A name for the SoftwareActionSink. Can be left blank.

‘OUT s result’:
Object path to the created SoftwareActionSink.

The InjectEvent() method

InjectEvent (IN t event,

IN t param,

IN T time);

The method is depricated, use InjectEvent with saftlib::Time instead.

Simulate the receipt of a timing event Sometimes it is useful to simulate the receipt of
a timing event. This allows software to test that configured conditions lead to the desired
behaviour without needing the data master to send anything.

‘IN t event’:
The event identifier which is matched against Conditions

‘IN t param’:
The parameter field, whose meaning depends on the event ID.

‘IN T time’:
The execution time for the event, added to condition offsets.



Signal Details

The "SigLocked" signal

SigLocked (b locked);

‘b locked’:

Property Details

The "GatewareInfo" property

GatewareInfo readable a{ss}

Key-value map of hardware build information

The "GatewareVersion" property

GatewareVersion readable s

Hardware build version

Returns "major.minor.tiny" if version is valid (or "N/A" if not available)

The "Locked" property

Locked readable b

The timing receiver is locked to the timing grandmaster.

Upon power-up it takes approximately one minute until the timing receiver has a correct
timestamp.

The "TemperatureSensorAvail" property

TemperatureSensorAvail readable b

Check if a temperature sensor is available

in a timing receiver.



The "SoftwareActionSinks" property

SoftwareActionSinks readable a{ss}

A list of all current SoftwareActionSinks.

Typically, these SoftwareActionSinks will be owned by their processes and not of much
interest to others. Therefore, many of the entries here may be of no interest to a particular
client. However, it is possible for a SoftwareActionSink to be Disowned, in which case it
may be persistent and shared between programs under a well known name.

The "Outputs" property

Outputs readable a{ss}

A list of all the high/low outputs on the receiver.

Each path refers to an object of type Output.

The "Inputs" property

Inputs readable a{ss}

A list of all the high/low inputs on the receiver.

Each path refers to an object of type Input.

The "Interfaces" property

Interfaces readable a{sa{ss}}

List of all object instances of various hardware.

The key in the dictionary is the name of the interface. The value is all object paths to
hardware implementing that interface.

The "Free" property

Free readable u

The number of additional conditions that may be activated.

The ECA has limited hardware resources in its match table.



de.gsi.saftlib.WbmActionSink

Name

de.gsi.saftlib.WbmActionSink — An output through which Wbm actions flow.

Methods

NewCondition (IN b active,

IN t id,

IN t mask,

IN x offset,

IN u tag,

OUT s result);

ExecuteMacro (IN u idx);

RecordMacro (IN u idx,

IN aau commands);

ClearMacro (IN u idx);

ClearAllMacros ();

Properties

Status readable y

MaxMacros readable u

MaxSpace readable u

Enable readwrite b

LastExecutedIdx readable u

LastRecordedIdx readable u

Description

This inteface allows the generation of SCU timing events. A WbmActionSink is also an
ActionSink and Owned.

If two SoftwareConditions are created on the same SoftwareActionSink which require
simultaneous delivery of two Actions, then they will be delivered in arbitrary order, both
having the ’conflict’ flag set.



Method Details

The NewCondition() method

NewCondition (IN b active,

IN t id,

IN t mask,

IN x offset,

IN u tag,

OUT s result);

Create a condition to match incoming events

This method creates a new condition that matches events whose identifier lies in the
range [id & mask, id | ~mask]. The offset acts as a delay which is added to the event’s
execution timestamp to determine the timestamp when the matching condition fires its
action. The returned object path is a SCUBUSCondition object.

‘IN b active’:
Should the condition be immediately active

‘IN t id’: Event ID to match incoming event IDs against

‘IN t mask’:
Set of bits for which the event ID and id must agree

‘IN x offset’:
Delay in nanoseconds between event and action

‘IN u tag’:
The 32-bit value to send on the Wbm

‘OUT s result’:
Object path to the created WbmCondition

The ExecuteMacro() method

ExecuteMacro (IN u idx);

Executes macro at idx

‘IN u idx’:
index of macro that should be executed



The RecordMacro() method

RecordMacro (IN u idx,

IN aau commands);

Records a macro at idx

‘IN u idx’:
index at which the macro is recorded

‘IN aau commands’:

The ClearMacro() method

ClearMacro (IN u idx);

Clear macro at idx

‘IN u idx’:
index of macro that should be cleared

The ClearAllMacros() method

ClearAllMacros ();

Clears all macros

Property Details

The "Status" property

Status readable y

Shows if the device is rdy/busy

The "MaxMacros" property

MaxMacros readable u

Shows maximum number of macros



The "MaxSpace" property

MaxSpace readable u

Shows maximum memory space

The "Enable" property

Enable readwrite b

Macro execution on/off

The "LastExecutedIdx" property

LastExecutedIdx readable u

Shows idx of last executed macro

The "LastRecordedIdx" property

LastRecordedIdx readable u

Shows idx of last recorded macro



de.gsi.saftlib.WbmCondition

Name

de.gsi.saftlib.WbmCondition — Matched against incoming events on a WbmActionSink.

Description

WbmConditions are created by WbmActionSinks to select which events should generate
callbacks. This interface always implies that the object also implements the general Condi-
tion interface.



de.gsi.saftlib.WrMilGateway

Name

de.gsi.saftlib.WrMilGateway — A converter for WhiteRabbit timing events to MIL.

Methods

StartSIS18 ();

StartESR ();

ClearStatistics ();

ResetGateway ();

KillGateway ();

UpdateOLED ();

RequestFillEvent ();

IncrementLateMilEvents ();

ResetLateMilEvents ();

Signals

SigFirmwareState (u state);

SigFirmwareRunning (b running);

SigEventSource (u source);

SigReceivedMilEvent (u message);

SigInUse (b inUse);

Properties

RegisterContent readable au

MilHistogram readable au

WrMilMagic readable u

FirmwareState readable u

FirmwareRunning readable b

EventSource readable u

UtcTrigger readwrite y

EventLatency readwrite u

UtcUtcDelay readwrite u

TriggerUtcDelay readwrite u

UtcOffset readwrite t

NumMilEvents readable t

OpReady writable b

LateHistogram readable au



NumLateMilEvents readable u

InUse readable b

Description

The WhiteRabbit-MIL-Gateway receives WhiteRabbit timing events, translates them into
MIL timing events and outputs them with few microsecond accuracy. This device is needed
to run SIS18 and ESR.

Method Details

The StartSIS18() method

StartSIS18 ();

Configure Gateway as SIS18 "Pulszentrale" and start

The StartESR() method

StartESR ();

Configure Gateway as ESR "Pulszentrale" and start

The ClearStatistics() method

ClearStatistics ();

Reset all event counters and histograms

The ResetGateway() method

ResetGateway ();

Stop WR-MIL Gateway and restart after 1 second pause



The KillGateway() method

KillGateway ();

Kill WR-MIL Gateway. Only MCU reset can recover (useful to

do before loading new firmware)

The UpdateOLED() method

UpdateOLED ();

causes the OLED screen to be redrawn. only useful if

OP-READY was changed

The RequestFillEvent() method

RequestFillEvent ();

The gatway is instructed to send a MIL fill event if possible

The IncrementLateMilEvents() method

IncrementLateMilEvents ();

increment the number in the late mil register

The ResetLateMilEvents() method

ResetLateMilEvents ();

set the number in the late mil register to zero

Signal Details



The "SigFirmwareState" signal

SigFirmwareState (u state);

signal emitted if firmware state changes

‘u state’:

The "SigFirmwareRunning" signal

SigFirmwareRunning (b running);

signal emitted if starts/stops running

‘b running’:

The "SigEventSource" signal

SigEventSource (u source);

signal emitted if event source changes

‘u source’:

The "SigReceivedMilEvent" signal

SigReceivedMilEvent (u message);

received a MIL signal on the MIL piggy

‘u message’:

The "SigInUse" signal

SigInUse (b inUse);

signal emitted if number of events increases

‘b inUse’:



Property Details

The "RegisterContent" property

RegisterContent readable au

Access all registers of the WrMilGateway

The "MilHistogram" property

MilHistogram readable au

Access MIL event histogram WrMilGateway

The "WrMilMagic" property

WrMilMagic readable u

WR-MIL magic number

The "FirmwareState" property

FirmwareState readable u

WR-MIL firmware state

The "FirmwareRunning" property

FirmwareRunning readable b

WR-MIL firmware is active (not stalled)



The "EventSource" property

EventSource readable u

WR-MIL event source.

This can be:

0 -> not configured (default)

1 -> SIS18 (work as SIS18 "Pulszentrale")

2 -> ESR (work as ESR "Pulszentrale")

The "UtcTrigger" property

UtcTrigger readwrite y

The event number that triggers generation of UTC events

The "EventLatency" property

EventLatency readwrite u

Event latency in microseconds.

This is the time between the WR-event deadline and the rising edge at the TIF module
caused by the translated MIL event

The "UtcUtcDelay" property

UtcUtcDelay readwrite u

Time between the generated UTC MIL events

The "TriggerUtcDelay" property

TriggerUtcDelay readwrite u

Time between the UTC trigger event and the first UTC MIL event



The "UtcOffset" property

UtcOffset readwrite t

seconds between 01.01.2008 and 01.01.1970

The number of seconds that is added to the WR-TAI (which starts at 1970) to create a
UTC time that starts at 2008 (64bit value)

The "NumMilEvents" property

NumMilEvents readable t

The number of translated events (as 64bit value)

The "OpReady" property

OpReady writable b

The "LateHistogram" property

LateHistogram readable au

read a histogram of event delays

Bin content:

[0]: delay less than 2^10 ns

[1]: delay less than 2^11 ns

[2]: delay less than 2^12 ns

...

[14]: delay less than 2^24 ns

[15]: delay less than 2^25 ns

The "NumLateMilEvents" property

NumLateMilEvents readable u

The number of translated events that were submitted later

than the anticipated WR event deadline



The "InUse" property

InUse readable b

indicates if the gateway is translating any events


