
On Time, in Style:
Nanosecond Accuracy

in Network Control Systems

Kreider, M.

PhD August, 2017

Mathias Kreider
Diplomingenieur (FH) Elektrotechnik

On Time, in Style:
Nanosecond Accuracy

in Network Control Systems

DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE

DIRECTOR OF STUDIES:
Prof. Vic Grout

SUPERVISORS:
Prof. John Davies

Dr. Ralph Bär

Research was undertaken under the auspices of
Glyndŵr University and GSI Helmholtzzentrum für

Schwerionenforschung and was submitted in partial fulfilment for
the award of a Degree of the University of Wales

August, 2017

http://www.glyndwr.ac.uk/en/StaffProfiles/ProfessorVicGrout/
http://glyndwr.ac.uk
http://www.gsi.de
http://www.gsi.de

iii

Thesis Declaration

I hereby declare that this work has not been accepted in substance for any degree
and is not currently being submitted in candidature for any degree.

Date: 03/08/2017

This thesis is the result of my own investigations, except where otherwise stated.
Other sources are acknowledged by references. A bibliography is appended.

Date: 03/08/2017

I hereby give consent for my thesis, if accepted, to be available for photocopying
and for inter-library loan, and for the title and summary to be made available to
outside organisations.

Date: 03/08/2017

The research was completed under the guidance of:
Prof. Vic Grout (Director of Studies), Glyndŵr University.

Date: 03/08/2017

http://glyndwr.ac.uk

v

I didn’t go to university. Didn’t even finish A-levels.
But I have sympathy for those who did.

– Terry Pratchett

vii

GLYNDŴR UNIVERSITY

Abstract
Department of Computing

Doctor of Philosophy

On Time, in Style:
Nanosecond Accuracy

in Network Control Systems

by Mathias Kreider

The aim of this thesis is to prove it is possible to control and coordinate machines
at sub-nanosecond accuracy. The demonstration case was the conceptualisation of
a control system for large physics experiments, employing high precision timing
technology and deterministic communication.

The results were empirically proven by means of a control system for a next
generation particle accelerator, the Facility for Antiproton and Ion Research FAIR in
Darmstadt, Germany. In the scope of this thesis, concepts and prototypes for both
the control system’s master unit, the Data Master, and the employed low latency
network protocol, Etherbone were developed. In addition, a formal model of the
control system was created. Its purpose is to guarantee deterministic operation by
means of an offline analysis ahead of time, assaying latency bounds for a given set
of commands.

This research shows that an alarm-based control system with a timing resolu-
tion of 1 ns is feasible. A scheme which allows machine schedules to be steered at
runtime is presented and has been validated. Timely arrival can be guaranteed for
trees of alternative command sequences, known ahead of time, as well as for lim-
ited changes during runtime. The proposed approach scales to several thousand
controlled machines. It supports fully deterministic, parallel control processes that
can utilise the full accuracy of the underlying time distribution system. The rate of
control messages is only dependent on available network bandwidth.

The results of this work are already wholly in use at FAIR, controlling a real
world particle accelerator. Etherbone components are also already in productive
use at the European Centre for Nuclear Research CERN and other institutions, both
for particle accelerator control systems and communication applications.

HTTP://GLYNDWR.AC.UK

ix

Acknowledgements
Many thanks go to my supervisors, Vic Grout, for being ready to give good advice
at all hours and making even the most tricky administrative trouble magically dis-
appear, John Davies, for patiently editing out all my germanisms and always being
a great host, and Ralph Bär, for giving me the chance to study beside my normal
day job and especially for volunteering to become my supervisor when time was of
the essence. My project advisor Dietrich Beck also has my sincere gratitude for his
preparedness to read even my most cryptic drafts and discuss topics so far out of the
box. I cannot thank you all enough for your continuous support and engagement.

My deepest thanks go to my family, especially my parents, Bärbel and Klaus, for
their support and believing in me over the years it took me to write this thesis. The
same goes for my future husband Markus, who was, despite being neither an engi-
neer nor researcher, patiently listening to my ramblings about technology and maths
he had never heard of before. You have my heartfelt respect for patiently working
your way through all that, having nothing to gain from it than understanding my
troubles and feeding your curiosity. Deep thanks also go to my brother Michael and
my grandmother Ruth for proof reading and always listening to my nerdy ideas.
Lastly I’d like to express my gratitude to my late grandfathers, Ludwig and Heinz,
for trying to spark my interest in technology when I was but a child. It worked.

Many thanks go to my friends Daniel Fischer, whom I both hated and loved for giv-
ing the most hard-hitting feedback of them all, and Sabine Benda for proofreading.
I also like to thank my colleagues from GSI for their ongoing support in creating
this work. Thanks go to Stefan Rauch, for his readiness to talk ideas and being a
universal trouble shooter, Marcus Zweig, for taming the White Rabbit and his dark
sarcasm, Alexander Hahn, for his killer instinct and constructive feedback when
testing the Data Master, Jiaoni Bai, for the hard numbers her dissertation provided
and generally being a much nicer person than I could ever be, and finally Anjan
Suresh, for implementing the continuous integration system which saved me such
a lot of nerves.

Very special thanks go to my former colleague Wesley Terpstra, for his unconven-
tional ideas, high standards, the enjoyable teamwork on elegant solutions and his
both encouraging and brutally honest feedback. I’d also like to thank all the other
colleagues from CERN and GSI who contributed to this work and their collabora-
tion over all these years. My thanks also go to Steffen Bondorf and his colleagues
at University of Kaiserslautern for the DiscoDNC Simulator and the associated pro-
ductive exchange.

And finally, special thanks go to Ingo Stengel, the man who started this all by ca-
sually asking me at a Christmas party, more than six years ago, if I ever considered
doing my PhD. . .

xi

Contents

Thesis Declaration iii

Abstract vii

Acknowledgements ix

I Context and Background 1

1 Introduction 3
1.1 Motivation . 3
1.2 Research Methodology . 3
1.3 Contribution to Knowledge . 8
1.4 Generalisation and Impact . 8

2 Timekeeping 11
2.1 Overview . 11
2.2 Timekeeping History . 13
2.3 Time Systems . 16
2.4 Oscillators and Clock Signals . 17
2.5 Digital Representations of Timestamps 22
2.6 Time Distribution . 24
2.7 Network Timing Services . 26

3 Particle Accelerators 33
3.1 Overview . 33
3.2 Physics . 33
3.3 Types of Particle Accelerators . 35
3.4 Miscellaneous Components . 42
3.5 Control Systems for Particle Accelerators 43

II Problem Analysis 47

4 FAIR Accelerator Case Study 49
4.1 Overview . 49
4.2 Control Systems . 50
4.3 Beam Concept . 54
4.4 Timing Constraints . 57
4.5 Reliability . 60

xii

4.6 Summary of FAIR CS Requirements 62

5 Technology Survey 65
5.1 Overview . 65
5.2 CPUs . 65
5.3 Hardware . 66
5.4 Programmable Hardware . 67

III Approach and Implementation 75

6 Etherbone Protocol 77
6.1 Overview . 77
6.2 Purpose and Environment . 77
6.3 Requirements . 78
6.4 Further Applications . 79
6.5 Related Work . 79
6.6 Architecture . 80
6.7 Etherbone Design Choices . 81
6.8 Methods and Test Implementation . 83
6.9 Etherbone Data Format . 86

7 Data Master Hardware 91
7.1 Overview . 91
7.2 System on Chip Architecture . 91
7.3 Prototype Synthesis Analysis . 92
7.4 Message Priority Queue . 96
7.5 Etherbone Master . 101
7.6 Fast Input/Output Module . 105

8 Data Master Firmware 109
8.1 Overview . 109
8.2 Scheduler . 109
8.3 Payload Programs . 116
8.4 Memory Management . 117
8.5 Considerations on RT Flow Control . 122
8.6 Deterministic Programming . 128

9 Theoretical Model 137
9.1 Overview . 137
9.2 Introduction to Network Calculus . 138
9.3 Approach for modelling the Data Master 151
9.4 Scheduler Models . 155
9.5 Etherbone Master – Framer . 160
9.6 Etherbone Master – TX . 162
9.7 Forward Error Correction . 166
9.8 Etherbone Slave and Event-Condition-Action Unit 168

xiii

9.9 White Rabbit Network Model . 169
9.10 End-to-End Delay Analysis . 170

IV Conclusion 183

10 Evaluation 185
10.1 Overview . 185
10.2 Test and Verification . 185
10.3 Etherbone Analysis . 189
10.4 Network Calculus Simulation Models 191
10.5 Observed Simulation Results . 193
10.6 Full Test System Results . 200

11 Conclusion 205
11.1 Overview . 205
11.2 Experimental Results . 205
11.3 Real World Applications . 206
11.4 Conclusion . 209
11.5 Outlook & Future Work . 212

A Source Code 215
A.1 Data Master Gateware & Firmware . 215

B Employed Software 217
B.1 Programming Languages . 217
B.2 3rd Party Tools . 217
B.3 Custom Inhouse Tools . 218

C Tables 219
C.1 List of Publications . 219
C.2 Tables of Simulation Values . 221

References 227

xv

List of Figures

1.1 Overview of realtime CS and Settings Management. Endpoints (EP)
receive both commands and set values. Scope of Primary Research
is shown in grey. 5

1.2 Thesis Structure Coloured Slices indicate Parts, Arrows mark De-
pendencies between Chapters . 9

2.1 Block diagram of a Phase-Locked Loop [31] 21
2.2 Simplified PTP Synchronisation Handshake [42] 28
2.3 White Rabbit Phase Measurement Hardware [42] 30

3.1 Schematic of a drift tube linear accelerator based on the Alvarez de-
sign [49] C cavity, S struts, D tubes, G gaps, F RF input, B axis . . . 35

3.2 Inside of an Alvarez tank at GSI. The drift tubes in the centre are
supplied with the RF voltage by the diagonal struts. [52] 36

3.3 Schematic of the SIS18 Heavy Ion Synchrotron at GSI. The SIS18 is
built as a 12 sided polygon with an injection- (left), a re-injection-
(second on left) and an extraction-channel (right) [54] 38

3.4 Synchrotron Components (SIS18) Front to back: RF acceleration sec-
tion, yellow quadrupole focusing magnets, red dipole bending (cor-
ner) magnets [54] . 39

4.1 GSI accelerator and future FAIR extension [57] Existing GSI facility
in blue, planned FAIR machines in red 49

4.2 Overview of CERN Accelerator Complex [65]. Rings are shown by
labels with year of commissioning and circumference 52

4.3 FAIR beam-line schematic [71] . 55
4.4 Abstract view of BPCs, complete Pattern [71] Vertical Flow shows

BPCs, horizontal shows Sequences 56
4.5 Machine Schedules for the Accelerator 57
4.6 Bunch-to-Bucket-Transfer [76]. Bunches are filled, Buckets are empty

circles . 58

5.1 Block Diagram of an FPGA Macro Cell [87] 68
5.2 Functional Layout of an FPGA (Altera Arria V GX) [89] 70
5.3 Block Diagram of Lattice Mico 32 Soft CPU [91] 72

6.1 Compatibility between EB node types 80
6.2 Simplistic structure of the UDP Header 81
6.3 PC EB master and FPGA based EB slave 82
6.4 TCP Header. More powerful, but more complicated 83

xvi

6.5 EB streaming hardware slave . 84
6.6 UDP Header, fields causing dependencies for the reply are marked

in green . 84
6.7 Checksum coverage in a UDP/IP packet 85
6.8 IP Header, fields causing dependencies for the reply are marked in

green . 85
6.9 EB packet structure. The 8B header is followed by EB records con-

taining WB bus operations. 86

7.1 Visualisation of Chip Usage with 9 CPU instances. More details are
provided in the text. 95

7.2 Dispatch of Timing Messages in Soft-CPU Cluster [108] 96
7.3 Heap-based priority queue with Dual Port RAMs 97
7.4 Overview of Priority Queue v3 Hardware 99
7.5 3-1 Minimum Function Hardware 100
7.6 Hardware Queue Unit with tag-based sorting 100
7.7 Example Memory Map for EBM at 0x01000000 102
7.8 Example Addr. Fields for EBM at 0x01000000 (10 high bits: 8b Dev.

Addr., 1b Control/Data, 1b Read/Write) 103
7.9 EBM Output for Timing Messages 104
7.10 Altera LVDS SERDES Channel [111] 107

8.1 The Data Master’s EDF Scheduler . 110
8.2 Sub-Components of the Data Master’s EDF Scheduler 113
8.3 DM Payload Program Structure . 116
8.4 Virtual Address Translation . 121
8.5 CMD-Q Layout: Three prioritised generator queues, time aware,

partial/complete flush . 126
8.6 DM Command Message . 127
8.7 Possible Actions for DM Command Messages 127
8.8 Alternative Short-Hand for current MSI System 128

9.1 Equivalency: System Theory Low-Pass and NC Shaper [123] 139
9.2 Flow passing through a Shaper . 139
9.3 NC Examples . 140
9.4 Examples of piecewise-linear Functions [123] 143
9.5 Catalogue of commonly used Curve Functions in NC [123] 144
9.6 Visualisation of the Effect of min-plus Convolution: Shaping curve

σ is enforced at every point of input flow y(t) 145
9.7 Definition of Function PL [123] . 146
9.8 Minimal Network Example: 2 Nodes, 2 Flows 149
9.10 Generation of a piece-wise affine Arrival Curve from Flow. The cor-

responding Messages are shown in the stem plot below. 153
9.11 CPU Scheduler node . 157
9.12 PQ Scheduler node . 160
9.13 Block Diagram of EBM Framer Module 162
9.14 Packet Header Scaling Functions . 164

xvii

9.15 Block Diagram of EBM TX Module 166
9.16 Block Diagram of FEC Module . 167
9.17 Block Diagram of the DFEC Module 168
9.18 Block Diagram of NC Control System Model: Data Master (1st and

2nd row), White Rabbit Network (3rd row), Timing Receiver (4th
row). Tunnel coverage is shown in grey 172

9.19 Equivalent Circuits for Scalers . 174
9.20 Introduction of Symbols for static Delays and WR Network 175
9.21 Replacement of DM Scalers . 176
9.22 Scaling WR NW and Replacement of TR Scalers 177
9.23 Final TR Scaler Replacement and Join with DM Blocks 178

10.1 GSI Timing Test Facility, Schematic of Verification System 186
10.2 Screenshot of Delay Analysis with DiscoDNC 188
10.3 Overhead of EB, PCIe, and RDMA when transmitting 256 Bytes

read and write operations, 32 Bit word width. EtherBone distinctly
excels in random access operations and block writes [93] 190

10.5 FAIR CS Simulation, command latency bound over bandwidth. CPU
x Threads equals the number of flows per type of analysis (marker
shape). Infinum of curves of equal colours shows the corresponding
latency bound . 194

10.6 FAIR CS Tunnel Influence Simulation, command latency bound over
bandwidth. Removal of the tunneling effect on messages leads to a
strong latency increase compared to 10.5 196

10.7 TTF Simulation, command latency bound over bandwidth. 64 Flow
(8 x 8) PMOO and SFA analyses (red squares and circles) show the
goal of a 500 µs latency bound can be guaranteed up to 187 Mbit/s.
This more than satisfies the goal of 100 Mbit/s net bandwidth (see 4.6)

. 197
10.8 MTS Simulation, command latency over bandwidth. Real MTS’s

ratio of late messages to messages at 100 Mbit/s (table 10.3) is shown
in cyan. Position on the y-axis corresponds to latency budget, the
number to the observed ratio. Ratios of 0 show that budgets above
the curves’ infinum ensured timely delivery 199

10.9 GSI Timing Test Facility, Photos of actual Verification System 202

11.1 3D Model of the CRYRING Synchrotron and Injector [144] 208
11.2 Measurement on outputs of two timing receivers (red and green

curves). Time difference between curves (P5 skew measurement)
shows the achieved timing resolution and accuracy when executing
DM commands for two pulses offset by 1 ns 211

11.3 Excerpt from the Control System Interface Design Process 214

xix

List of Tables

2.1 Performance of Atomic Clocks . 15
2.2 Timing Receivers and possible accuracy 25
2.3 WR Performance Evaluation [47] . 31

3.1 Particle Accelerator Devices and Timing Requirements 45

4.1 Delay estimation for control messages Case for 5 Switches, 2 km link
length, Message Size 500 and 1500 B 60

5.1 RTOS latency measurement results [84]
Times in µs . 66

5.2 Simple Example of a Logic table In DNF: not(A) and B or A and
not(B) . 67

8.1 Execution Time per LM32-Instruction 134
8.2 Execution Time by Type of Conditional Assignment 134

10.1 Data Master Features . 200
10.2 Data Master Testbeds . 201
10.3 Late Messages Ratio at 100 Mbit/s

Net Bandwidth in the Minimal Test System 203

C.1 Publications with Contributions from this Research Work 221
C.2 Rate Scaling Factors for all Models 221
C.3 NC Node Values, final FAIR implementation 222
C.4 NC Node Values, 2016 GSI TTF Implementation 223
C.5 NC Node Values, Minimal Test Implementation 224
C.6 Estimated Background Flow Values

for WR Systems without QoS (TTF, Mini Test) 225

xxi

List of Abbreviations

ACM Association for Computing Machinery
ADC Analogue-to-Digital Converter
ADEV Allan Deviation
AES Advanced Encryption Standard
ARP Address Resolution Protocol
ASIC Application Specific Integrated Circuit
B2B Bunch to Bucket transfer
BPC Beam Production Chain
BP Beam Process
CB CrossBar
CERN European Centre for Nuclear Research
CMD-Q Command Queue
CNF Conjunctive Normal Form
CORBA Common Object Request Broker Architecture
CPLD Complex Programmable Logic Device
CPU Central Processing Unit
CRC Cyclic Redundancy Check
CS Control System
DAC Digital-to-Analogue Converter
DC Direct Current
DDS Direct Digital Synthesis
DESY Deutsches Elektronen Synchrotron (German Electron Synchrotron)
DHCP Dynamic Host Configuration Protocol
DM Data Master
DNF Disjunctive Normal Form
DSP Digital Signal Processor
EB Etherbone
EBM Etherbone Master
EBS Etherbone Slave
ECA Event Condition Action unit
EDF Earliest Deadline First
EPICS Experimental Physics and Industrial Control System
Eth IEEE 802.3 Ethernet
FAIR Facility for Antiproton and Ion Research
FEC Forward Error Correction
FH University of Applied Sciences
FIFO First In, First Out
FOI Flow Of Interest
FPGA Field Programmable Gate Array

xxii

FSM Finite State Machine
GbE Gigabit Ethernet
GMT Greenwich Mean Time
GPS Global Positioning System
GSI GSI-Helmholtz Centre for Heavy Ion Research
HDL Hardware Description Language
HP High Priority
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IO Input/Output
IP Internet Protocol Version 4
IRIG Inter Range Instrumentation Group
ITU International Telecommunication Union
JTAG Joint Test Action Group
LHC Large Hadron Collider
LINAC Linear Accelerator
LM32 Lattice Mico 32 Processor
lo left over service
LP Low Priority
LVDS Low Voltage Differential Signalling
MCU Microcontroller Unit
MSI Message Signalled Interrupt
MTS Minimal Test System
MUX Multiplexer
NCO Numerically Controlled Oscillator
NC Network Calculus
NIC Network Integrated Controller
NTP Network Timing Protocol
OSI Open Systems Interconnection Model
PAL Programmable Array Logic
PBOO Pay Burst Only Once
PCIe Peripheral Component Interconnect express
PGS Packetised Greedy Shapers
PHY Physical interface
PLA Programmable Logic Array
PLC Programmable Logic Controller
PLL Phase Locked Loop
PMOO Pay Multiplexing Only Once (Analysis)
PPS Pulse Per Second
PQ Priority Queue
PSCED Packetised Scheduler, Earliest Deadline First
PTP Precision Time Protocol
QoS Quality of Service
RDMA Remote Direct Memory Access
RF Radio Frequency
RR Round Robin

xxiii

RTC Realtime Clock
RTOS Realtime Operating System
RTS Realtime System
RX Receiver
SCPU Soft Central Processing Unit
SDB Self Describing Bus
SDH Synchronous Digital Hierarchy
SERDES SERialiser / DESerialiser
SFA Separate Flow Analysis
SI International System of Units
SNMP Simple Network Management Protocol
SOAP Simple Object Access Protocol
SoC System on a Chip
SONET Synchronous Optical Networking
SSL Secure Socket Layer
ST Standard Time
SyncE Synchronous Ethernet
TAI International Atomic Time
TCP Transmission Control Protocol
TDC Time to Digital Converter
TFA Total Flow Analysis
TLU Timestamp Latch Unit
TS Timestamp
TTF Timing Test Facility
TX Transceiver
UDP User Datagram Protocol
USB Universal Serial Bus
UTC Coordinated Universal Time
UT Universal Time
VAT Virtual Address Table
VC(X)O Voltage Controlled (Crystal) Oscillator
VME Versa Module Eurocard-bus
WB Wishbone
WBM Wishbone Slave
WBS Wishbone Master
WR White Rabbit

xxv

List of Symbols

R resistance Ω (V/A)
C capacitance F (V/C)
L inductance H (V s/A)

ω angular frequency rad

xxvii

To Markus

1

Part I

Context and Background

3

Chapter 1

Introduction

This chapter aims to give a general overview of this thesis. The context and moti-
vation for this work are explained, followed by a detailed breakdown of research
methodology. Moreover, the contribution to knowledge and its impact are pre-
sented. The structure of the thesis is then outlined, complemented by short sum-
maries of all chapters.

1.1 Motivation

The motivation for this thesis sprang from the need of a new type of control system
(CS) for large physics experiments, which can utilise high accuracy timing. It was
researched and developed in the context of a case study for the control of particle
accelerator facilities.

“White Rabbit” (WR), the underlying time synchronisation technology, was an
initiative started in 2008 by the European Centre for Nuclear Research (CERN) and
initially aimed at the modernisation of the CS of the Large Hadron Collider (LHC)
at CERN in Geneva, Switzerland. At the time, the GSI-Helmholtz Centre for Heavy
Ion Research (GSI), in Darmstadt, Germany, took an interest in evaluating suitable
technologies for a CS modernisation and a new CS for the upcoming Facility for
Antiproton and Ion Research (FAIR), which will become a major extension to the
GSI accelerator facilities.

Research and development of WR successively became a close collaboration be-
tween CERN and GSI/FAIR. The case study in this thesis is based on a CS design
suitable for the FAIR accelerators and GSI facilities. The joint FAIR research complex
is planned to go into operation in 2018.

1.2 Research Methodology

This thesis is dedicated to the problem of achieving deterministic control of large
realtime systems under the assumption of a common, highly accurate notion of ab-
solute time. The use of WR as the underlying time distribution system is axiomatic,
as it is based on a management decision prior to the start of this work. An evaluation
in greater depth within the scope of this thesis (see subsection 2.7.1) could confirm
that the properties of WR are sufficient for such a concept. The working hypothesis
is that a such a CS can be conceived as a deterministic, alarm based system, capable

4 Chapter 1. Introduction

of utilising the full accuracy of the WR time distribution scheme to synchronously
generate or distribute signals and assign timestamps to inputs.

Choice of Methodology A hypothesis can either be tested by experiment or by
theoretical proof, i.e. trying to, by logical deduction, either confirm all of its aspects
or refute one of them. For the research in this thesis, an experimental approach
was chosen. The reason for this decision was that the proposed hypothetical system
is complex, it consists of a combination of a large number of physical and logical
problems to overcome. To obtain a rigorous result in a meaningful timeframe, the
analysis must be built onto known theoretical models. This means the problems of
the hypothetical system must be separable and transferable to known problems for
which solutions have been found in order to prove or refute partial aspects. The ad-
vantage of a theoretical approach is that if the system can be modelled, the complete
behaviour will be calculable. On the downside, since neither the separability nor
the existence of known analogue problems is guaranteed, it is very possible to reach
an impasse in research within the given time frame.

An experimental approach, on the other hand, allows black-box tests of complex
systems to be conducted quickly, provided they can be built. Separation of the ex-
periment into partial systems is also possible, provided all inputs and outputs can
be observed. Since GSI could provide prototype implementations of the underlying
WR time distribution infrastructure from the very beginning, it was likely that an
adequate experiment setup to either prove or refute the hypothesis could be built.
This original prototype hardware and all that were devised within the scope of this
thesis feature industry standard interfaces, meaning all of the system’s inputs and
outputs could be accurately monitored using proven and well documented technol-
ogy, such as high end oscilloscopes and network analysers.

Objectives The purpose of the primary research is the provision of a concept for a
highly accurate CS, scalable to thousands of machines and distances of several kilo-
metres. In conjunction with the case study (see subsection 4.6), three main objectives
were defined:

• Scale in number of devices

• Scale in distance

• Accuracy of timing

The first objective requires evidence and/or theoretical justification that the system
will be able to support the required number of devices and in consequence provide
the required bandwidth, while the second objective requires evidence that the sys-
tem is able to cover the required geographic distance. The third objective is the most
complex, as it requires for the requested synchronicity, peak response time (latency)
and time resolution.

Research Objects The primary research covers three distinct objects. The first is
the master CS unit, which was named “Data Master” (DM) (chapter 7, 8). It has to

1.2. Research Methodology 5

generate and deliver control messages to all endpoints in order to control machines.
The second object is a concept for deterministic communication between WR plat-
forms, which has been named “Etherbone” network protocol (EB) (chapter 6).

The definition of the third research object emanated from the necessity to verify
the others. In order to show that deterministic control can be guaranteed in gen-
eral and not only for a specific test case, bounds for its application were required.
The third object therefore became the conception of a simulation model to provide
bounds within which the CS’s operation is guaranteed to be deterministic (chap-
ter 9). The model must be usable at run time, although it does not need to satisfy
hard realtime constraints.

DM
Settings
Management

EP EP

a b c d e

Time

Commands

a

b c d e

Progression

A
m

p
V

ol
t

Set Values

Machine
Schedules

Status
Information

x✓ y✘ z✓

Scope of
Primary Research

EB

Sim

FIGURE 1.1: Overview of realtime CS and Settings Management.
Endpoints (EP) receive both commands and set values.

Scope of Primary Research is shown in grey.

Scope The term “control system” will be used throughout this thesis in the con-
text of deterministic, hard realtime control. The hypothesis assumes an approach
as an alarm based system, which separates commands and set values. Figure 1.1
shows the distinction. The CS instructs machines what to do when during runtime
(green timeline). The corresponding set values, i.e. how the machine has to act, are
distributed beforehand in a relaxed timeframe by the settings management system.
The scope of primary research is indicated by the grey shaded area and the relation
of the research objectives, DM, EB and simulation model, to settings management
and endpoints (EP) is shown. Set values are data sets that describe the desired be-
haviour of specific EPs. In the context of a particle accelerator, this could, for exam-
ple be the output current of a power supply (blue curve) or a voltage applied to an
electrode (red curve).

6 Chapter 1. Introduction

1.2.1 Research

Literature Review The origin of the literature review was centred around publica-
tions associated with WR. Most of the related work used in this thesis was obtained
from online libraries, such as the IEEE Xplore digital library [1], the ACM digital li-
brary [2] and Springer Online [3]. Searches for papers, conference proceedings and
journal articles were conducted by search engines such as Google Scholar [4] and
CiteSeerX [5]. Most of the employed textbooks were obtained from GSI’s on site
library or interlibrary loans, the remaining books were perused online by means of
the Google Books service [6].

The majority of unpublished sources was GSI/FAIR internal material, such as
presentations, technical notes and specification documents for FAIR, which pro-
vided information on future machine requirements, compatibility to legacy equip-
ment and management decisions. Yet more background information was acquired
from private communications with accelerator physicists and operating engineers
at GSI/FAIR. The remaining unpublished sources were comprised of documents in
the Open Hardware Repository (OHWR), a website created by CERN to coordinate
development and host source code and documentation for WR related projects and
other programming or hardware related websites.

Detailed specifications Constraints and use-cases for the approach were obtained
from secondary research into existing CSs, available field bus technology, planned
experiments at FAIR and the architecture and properties of WR (chapter 4). The
related sources stemmed from publications on WR and CSs of particle accelerators,
from unpublished FAIR documents and private communication.

Technology The requirements gathered for the detailed specifications were used
as the foundation for a survey of suitable technologies for development of a pro-
totype system. The results did not indicate conflicts with the technology present
in the underlying WR system. The corresponding research mainly relied on ter-
tiary sources, such as data sheets, application notes and manuals (chapter 5) and
secondary accounts from hardware engineers at GSI about their experiences with
current technology in hard realtime scenarios.

Existing systems at other sites Existing CSs at accelerators such as GSI, CERN, Di-
amond and DESY were evaluated in the course of the case study (see chapter 4.2.2).
The secondary research into this area indicated that nearly all sites feature standard
PCs and servers, which are not realtime capable. They also all use VME and in-
dustrial PCs running realtime Kernels, as well as programmable logic controllers
(PLC). Both are able to achieve determinism down to microseconds. Finally, all the
sites also have an optical clock distribution system, accurate to low picosecond or
even femtosecond range. The only exception was CERN, which also provided UTC
time accurate to nanoseconds. None of the investigated cases provided a generic
control approach accurate to sub-nanosecond level. This very niche is the intended
target of the new CS approach.

1.2. Research Methodology 7

Future Plans at FAIR In 2018, not all accelerators of the FAIR complex will be com-
pleted and in operation. The new CS approach based on the research in this thesis
and other research work at GSI is planned to be used for a retro-fitting of GSI’s
synchrotron. This means a replacement of the old GSI technology and running its
main synchrotron, SIS18 with the new CS. This proposition is building on experi-
ence already gathered from controlling the smaller CRYRING accelerator. The CS
approach will be expanded, tested and adjusted as necessary to control the whole
FAIR facility in 2025.

1.2.2 Development

Prototype Design Based on the defined objectives, plans were specified to enable
development of prototype systems of the DM and the EB protocol. Development
occurred in both cases over several iterations, each intermitted by a phase of tests,
presentation to the WR developer community and, if necessary, adjustment of the
approach according to feedback and results.

Test Design and Equipment To test the hypothesis, hardware proving grounds for
the prototypes were created. Variables were isolated as far as feasible by employing
multiple different testbeds at different levels of integration. The lowest level were
individual tests of sub-components, whose performance in terms of reliability, de-
terminism, latency, and bandwidth was directly measured. The first step were unit
tests by simulation, using randomised test data. These were followed up by integra-
tion tests on prototype hardware, verifying the latency, determinism and bandwidth
predicted by the simulation. This was achieved by the application of on-chip logic
analysers, profiling code, network analysers and oscilloscopes. The same set of tools
was used to measure all quantitative targets imposed by the case study, allowing an
accuracy between 8 ns for logic analysers and profiling code, 1 ns for timestamping
by verified prototypes and below 20 ps for the oscilloscopes.

To conduct tests on higher abstraction levels, complete CS setups were assem-
bled, consisting of a DM, WR network switches and up to several dozen CS end-
points. These scenarios were devised to run both short and long term reliability
tests with randomised test data. To ensure the influence of individual platforms did
not dominate the results, different constellations were created.

Test The tests cover, among others, scenarios such as 1 on 1 connections, test of
time distribution only, high traffic scenarios and regular CS operation. To ensure
consistency, these testbeds are persistent. An example can be found in chapter 10,
“Timing Test Facility”, figure 10.1 and figure 10.9. Ongoing development was veri-
fied on a daily basis by a continuous integration system, running standardised tests
to ensure new developments did not negatively influence system performance.

Replicability All source code used in the FAIR CS design is open source and can
be freely downloaded to replicate test cases described in this thesis. So are most
hardware designs for WR infrastructure, easily allowing the replication of these ex-
periments by others. Unfortunately, legal issues prevented public release of the DM

8 Chapter 1. Introduction

hardware specifications and several other GSI form factors to this day. It is yet un-
known if and when a public release will occur. However, it is possible for interested
parties to develop a suitable platform for the DM based on the freely available open
hardware form factor designs [7].

Analysis and Conclusion Because the high level testbeds were run for long times
without interruption (several weeks) and for more than a year in total, sending and
receiving billions of control messages, a high degree of confidence in system perfor-
mance could be established. This was further enhanced by the successful control of
a production system in the form of a real accelerator since mid 2015 by a FAIR CS
prototype, including the DM and EB (see chapter 10).

1.3 Contribution to Knowledge

There are a large number of existing CS designs available today, some of them es-
tablished and well proven. The work in this thesis aims to improve timing accuracy
and resolution in CSs by several orders of magnitude, while simultaneously intro-
ducing a new level of determinism, flexibility and scalability. This sets it apart from
all other architectures published today.

In this thesis, it is shown, theoretically, and by experimental validation, that an
alarm-based CS with a timing resolution of 1 ns is feasible. It is further theoretically
shown that the proposed approach does scale to several thousand controlled ma-
chines and is validated for more than a hundred endpoints. In addition, it is shown
that the proposed CS supports fully deterministic, parallel control processes, syn-
chronised at the full accuracy of the system. Moreover, a control scheme that allows
machine schedules to be steered at runtime is presented and has been validated. It
is also shown that control loop speed is only limited by external input and control
message rate is only limited by network bandwidth. It is further shown theoretically
that timely arrival can be guaranteed for trees of alternative command sequences,
known ahead of time, as well as for limited changes during runtime.

1.4 Generalisation and Impact

The results of this work are already in use at GSI/FAIR [8], CERN and other insti-
tutions. Apart from the field of particle accelerators, wired machine coordination
over several kilometres at nanosecond accuracy can provide the greatest benefit to
the telecommunication industry, where phase antennas benefit from high accuracy
synchronisation. More details and examples of projects already employing WR and
EB based timing and CSs can be found in chapter 11.3.3 on page 208. There are
more than 20 institutions employing WR (usually with EB) and a complete list can
be found at the OHWR Website [9].

1.4. Generalisation and Impact 9

1.4.1 Thesis Structure

ChapterT6
EtherboneTProtocol

ChapterT7
DataTMasterTHardware

ChapterT8
DataTMasterTFirmware

ChapterT1
Introduction

ChapterT2
Timekeeping

ChapterT3
ParticleTAccelerators

ChapterT4
FAIRTAcc.TCaseTStudy

ChapterT5
TechnologyTSurvey

ChapterT10
Evaluation

ChapterT9
TheoreticalTModel

...is a prerequisite to...

...is recommended before...

I

II

III

IV

FIGURE 1.2: Thesis Structure
Coloured Slices indicate Parts,

Arrows mark Dependencies between Chapters

As shown in figure 1.2, the thesis is grouped into four main parts, indicated by the
coloured slices. The dependencies between individual chapters are marked with
solid lines, starting at the chapter that is the prerequisite and ending with an ar-
rowhead at the chapter depending on the content. Content which is not strictly
necessary, but considered helpful to understanding, is connected with dashed lines.
The four parts are:

I – Context and Background Apart from this general introduction, the first tech-
nical part is an introduction to the fields of timekeeping and particle accelerator

10 Chapter 1. Introduction

physics (chapter 2 and 3). Both are required to understand the problems discussed
in the case study. The former provides the necessary background for high precision
timing systems, while the latter covers the basic theory of particle accelerators and
their CS requirements. They form the introductory material for understanding the
problems discussed in the case study.

II – Problem Analysis The FAIR accelerator case study is presented and the prob-
lems formulated (chapter 4). This case study analyses existing accelerator CSs, given
requirements and planned experiments for FAIR and deduces the imposed require-
ments for a suitable CS. Building on this case study, a technology survey (chapter 5)
follows, which contains a detailed discussion of suitable hardware and software
platforms.

III – Approach and Implementation The third part contains different approaches,
their discussion, topic specific literature review and solutions to partial problems.
Chapter 6 covers deterministic data exchange and the development of the EB proto-
col. Chapter 7 and 8 contain the discussion on hardware and firmware of the main
control unit, the DM. Finally, chapter 9 provides a theoretical model for the calcula-
tion of the CS’s maximum end-to-end latency. This delivers the boundaries within
which deterministic operation of the CS can be guaranteed.

IV – Conclusion Finally, all chapters from part III are evaluated in terms of their
fitness as a solution to the problems presented in part II. This single chapter presents
the methods used for verification as well as the results from experiments and simu-
lation. It then draws a conclusion and indicates future work (chapter 10).

1.4.2 List of Publications

A complete list of publications containing contributions from my research that was
undertaken for this thesis or already existing material that has influenced this thesis
can be found in appendix C on page 219.

11

Chapter 2

Timekeeping

2.1 Overview

A standardised, common system of timekeeping is one of the most crucial agree-
ments necessary for life in a modern civilisation. Over the years, several standards
have been created to address this necessity. By now most of the requirements have
been successfully met by ever more accurate, stable or more generic systems. There
are at least 5 different timekeeping systems in use today (as of 2016), their design
criteria spanning from solar-cycle oriented human life, simplicity and stability, as-
tronomic scenarios and even relativistic time. The first part of this section will cover
the basics of clocks and their possible accuracy, time systems and their application
and finally their digital representations. The second part aims to give a basic un-
derstanding of oscillators and their synchronisation and will further introduce time
distribution systems.

2.1.1 Terminology

When talking about time, clocks, oscillators and the synchronisation of systems,
there are specialised terms which will be introduced here. Some of these terms also
have widely used colloquial meanings and require clarification.

Accuracy and Precision While “accuracy” is colloquially synonymous with “pre-
cision”, scientifically there is a strong distinction between the two. The common
scientific definition is “accuracy” being the systematic and “precision” the random
contribution to error, with error being the difference between the measured value
and the expected value. The expected value is either a theoretical or a reference
value. An extended terminology for accuracy and precision is given in the ISO 5725
standard [10]. According to the standard, “trueness” describes the systematic error,
often expressed as a bias. “Precision” describes only the random error, this is usu-
ally expressed as standard deviation. “Accuracy” is defined as the resulting overall
quality, the closeness between the observed value and the true or reference value.
In the context of this thesis, the definition will adhere to the ISO 5725 standard .

Clock The term “clock” has two meanings in the present context. The common
definition of a clock “A mechanical or electrical device for measuring time . . . ”, whereas
in computing, a clock is “An electronic device used to initiate and synchronise internal

12 Chapter 2. Timekeeping

operations” [11]. In order to clarify this, the former will be called a “clock”, the latter
will be called an “oscillator” when referring to the physical device and a “clock
signal” or “sample clock” in the context of device synchronisation in a computer.

Skew Skew is usually defined as the offset between the edge of a clock signal
and its corresponding data. This deviation varies for different points in the same
synchronous digital system due to propagation delay.

Jitter When talking about oscillators and especially clock signals, the terms “jitter”
and “skew” are often used. There are actually multiple definitions of jitter which are
commonly used [12]. The most important ones are:

• Period Jitter, the deviation of cycle length to the ideal period

• Cycle to Cycle Jitter, the deviation of cycle length to the adjacent cycle’s length

• Long Term Jitter, the deviation of a clock signal from its ideal position over
several cycles

• Phase Jitter, the integration of phase noise over a given spectral interval

• Time Interval Error, the deviation of the actual position of edge from the ideal
position of said edge

In the context of timekeeping, cycle-to-cycle jitter is the most important property
for short term stability. The Time Interval Error can be an important parameter for
synchronous digital systems, as it determines the maximum amount of skew before
data is sampled at the wrong clock cycle.

Synchronisation This term is ambiguous and can either refer to the more general
process of achieving a common notion of time or the phase and frequency align-
ment of two metronome-like oscillators. In this context, the general process will be
called “time synchronisation” and oscillator synchronisation will be called “clock
synchronisation” or “syntonisation”.

2.1.2 What it takes to measure time

A clock, or chronometer, is a measurement device, counting the occurrence of an
event with a known length of time. A more general definition would be a chronome-
ter consisting of:

(a) A time “reckoner”, which is a repeatable phenomenon whose motion or change
of state is observable and obeys a definite law

(b) A time reference, with respect to which the position or state of the time reck-
oner can be determined

2.2. Timekeeping History 13

These elements correspond to the two properties of time measurement: interval and
epoch [13]. Or put briefly, a clock consists of an oscillator and a counter.

The accuracy of a clock is a complex interplay of a variety of factors. The reso-
lution is determined by the frequency of the oscillator, because any measured time
period cannot be smaller than the time between two events. When talking about
clocks, there is a distinction between accuracy and stability [14]. The accuracy of
a clock describes the closeness to a known time reference while stability only de-
scribes how reproducible its output is. Stability is usually described as a deviation
from the mean, accuracy as closeness to the reference. The most common variant for
expressing stability is the Allan deviation (ADEV).

2.2 Timekeeping History

The following is a short excursion on the history of timekeeping from the year 1700
onward. It covers the origin, the application, conversion between systems and the
impact of legacies on modern timekeeping.

2.2.1 Navigation - the Driving Force for Clocks

A strong demand for accurate timekeeping came up in marine navigation. When
navigating by celestial bodies like stars or planets, the observed angle between the
horizon and such a body depends on time and the position on earth. The latter is
given in polar coordinates, two angles and a distance: latitude (angle on the po-
lar plane), longitude (angle on the rotational plane) and height. Barring accidents
or freakish weather, ships are normally found at sea level, so height can safely be
ignored in a marine context.

Earth’s rotational axis is tilted about 23.5 degrees in relation to its orbital plane.
When measuring from the same position on earth, the observed culmination angle
of a star changes over the course of a year. Latitude can then be determined from
angular tables, the time of year and the observation angle. For finding longitude,
the time of day is required. Since earth does a full rotation once per day, the time of
day at which the culmination of a celestial body can be observed strongly depends
on the longitudinal position. In reverse, longitude can be determined from angular
tables and knowing the current time at the location the tabular values were taken.

The Longitude Problem Finding longitude was an impossible navigation prob-
lem for centuries, because a very accurate time reference is needed. The following
conversions shall illustrate the scale of the time influence for latitude and longitude
calculation. For the sake of brevity in the following explanation, a simplified ap-
proach is used, ignoring the fact that earth is an ellipsoid.

As rough calculation for latitude based on almanac data [15] can quickly show
that even without the time of day, just knowing the date, the maximum latitude er-
ror is ≈ 23 km. However, earth rotates 360° in a day, making longitude calculation
far more sensitive to time than latitude. Dividing the number of arc minutes per
day by the number of seconds per day (eq. 2.1), we get an error per second of 0.25

14 Chapter 2. Timekeeping

arc minutes or 463 m. As eq. 2.1 shows, this means a clock being off by 1 min al-
ready produces a longitude error greater than the maximum possible latitude time
error. Hence, historically, longitudinal navigation errors were more prominent. The
probably most famous example of such an error is the Scilly naval disaster of 1707,
which had an even higher death toll than the sinking of the Titanic in 1912.

360 · 60

24 · 3600

′

s
=

1

4

′

s
= 463

m
s

= 27.8
km
min

(2.1)

At the time, it was possible to deduce the time of day from celestial bodies if the lon-
gitudinal position was known, or vice versa, but not both. While Galileo Galilei did
discover an accurate astronomical method of getting time when observing Jupiter’s
moons [16], it required a very good telescope and steady ground to put it on, an
impossibility on a ship. An accurate time reference suitable for a moving vessel was
desperately needed, “accurate” meaning accurate to less than a minute. A similar
astronomical method (Lunar-Distance-Method) to find the time in Greenwich, us-
able on a vessel, would eventually be discovered [17]. However, it was introduced
only after the first high quality marine chronometers became available. The advan-
tage lies in the minute cost, the maximum achievable accuracy lies between 1 and 2
minutes.

Marine Chronometers The available clocks, from sand clocks to early clockwork,
had an appalling accuracy; useless for navigation. The British Royal navy was show-
ing a strong interest in research of more accurate mechanical clocks. In 1714, the
first Longitude Act was announced, promising a series of rewards for a solution to
the longitude problem. The top prize of £20000 (approx. £2.6m today) was offered
to anyone who could determine longitude with an error less than 0.5° (30 nautical
miles or 55 km). Today, it is agreed that the British clock maker John Harrison fi-
nally solved the problem. In 1775, his fourth marine chronometer prototype (H4)
was finally officially tested and acknowledged to being 5 s adrift over a journey of
81 days [18]. However, the cost of the early chronometers were comparable to the
building cost of a flagship.

2.2.2 From Springs to Crystals

The very first quartz clocks were built in 1927 by Marrison and Horton for Bell lab-
oratories. Instead of the oscillation of a spring, a quartz clock uses the period of the
electromagnetic resonance in a cut quartz crystal as the event to count (see 2.4.1 for
more details). Good quartz watches today offer a stability in the order of 0.5× 10−7 s
and are accurate to about 0.1 s per day [19]. Interestingly, these offer about the same
accuracy as Harrison’s H4, but with a vast difference in effort and build cost. These
are wrist watches though. In a static, controlled setup, much better results are possi-
ble with quartz crystals. If the crystal is kept at a constant temperature (crystal oven)
and a few other optimisations are used, a stability of 1× 10−11 s is possible [20], mak-
ing such a clock accurate to about 1 ms per day.

2.2. Timekeeping History 15

2.2.3 Clocks and the Quantum Tick

In 1946, the first atomic clocks became available. Atomic clocks use the period of
a radio frequency emitted by electron transition in excited isotopes, usually cae-
sium or rubidium, as their oscillator. These quantum ticks are extremely accurate
and stable, making atomic clocks the most accurate clocks known today. They have
been used ever since as remote time references around the world. In 1967, the In-
ternational System of Units (SI) redefined the second as the duration of 9192631770
cycles of radiation corresponding to the transition between two energy levels of the
caesium-133 atom [21]. This ended the era of a celestially defined unit of time and
replaced it with a standard defined by quantum physics.

Types of Atomic Clocks Clocks using an atomic change as the frequency base for
their oscillator come in a variety of different technologies and shapes. The most
important ones for practical timekeeping today are caesium and rubidium foun-
tain clocks and hydrogen masers, more information about their build can be found
in [21]. The most well known example of a caesium clock is the NIST-F2 caesium
clock, it being the standard for civilian timekeeping and primary source for radio
controlled clocks. It offers a stability of 0.44× 10−15 s [22] and an accuracy of about
1 second per 300 million years. Considering the much simpler build of a maser in
comparison with an atomic fountain, a hydrogen maser offers impressive perfor-
mance of 1× 10−15 s [21]. However, continuous running is difficult, as the hydrogen
cavity tends to degrade over only a few days. In the last couple of years, rubidium
clocks managed to draw even with caesium clocks while being easier to handle and
less costly [23]. There exist even more accurate clocks today, using different elements
like strontium or ytterbium and higher frequencies. These are still experimental and
not acknowledged as official time references yet.

A direct comparison of implementations is somewhat difficult, because the sta-
bility hinges on the basic technology, the element used and the improvements avail-
able at the time. Table 2.1 gives a broad overview of clock stability as of 2016, usually
measuring the stability over a day. The best results possible today come from opti-
cal ytterbium or strontium clocks [24], which show a stability of 1× 10−18 s, with an
estimated accuracy of better than a second over a course of several billion years.

Type Instability

Hydrogen maser 1× 10−15 s
Rubidium fountain 2× 10−16 s
Caesium fountain 1× 10−16 s
Ytterbium optical lattice 1× 10−18 s

TABLE 2.1: Performance of Atomic Clocks

16 Chapter 2. Timekeeping

2.3 Time Systems

Greenwich Mean Time (GMT) The end of the local solar time era in civilian use
across the western world came with the railways in Great Britain. While mechanical
clocks did keep time, they were mostly only roughly synchronised to noon. A major
weakness was the different observation angle depending on the geographical loca-
tion and the varying accuracy of available equipment. The differences in local times
became highly noticeable when travelling by train, chronometers needed adjusting
across a trip. In 1884, Greenwich Mean Time, GMT, was introduced to address this
issue. It is based on 12:00:00 being defined as the moment of the solar meridian
crossing (the upper culmination of the sun) over the city of Greenwich, UK. GMT
was then synchronised via telegraph or travelling mechanical chronometers to re-
mote clocks. GMT follows a virtual “mean sun”, moving along the equator instead
of along the ecliptic, as it does in reality. The variation of about 16 minutes evens
out over the course of a year.

The solar second was defined as 1/86400 of a mean solar day, which is defined
as the mean time of two meridian crossings of the sun. But because the earth’s
rotational velocity is not constant, a more reliable reference frame was later sought
to define a second. In 1952, the definition of the solar second was replaced by the
ephemeris second. It is defined as the fraction 1/31,556,925.9747 of the tropical year
on January 1st in 1900, at 12 hours ephemeris time. This became the standard for
the SI system.

Universal Time (UT) UT is the modern name for GMT stemming from 1928, but is
still based on the GMT system of measuring the mean solar day. The first main dif-
ference to GMT was the addition of time zones over the world as proposed in 1879
as Standard Time (ST), with the 0 hour mark on 0 longitude. The second change
is the object of measurement. The observation of the sun’s upper culmination does
not lead to a very accurate result in terms of modern timekeeping. Our sun is too
close and bright to get a good reading. Therefore the meridian crossing of other,
more distant, celestial bodies like stars and quasars are observed in order to mea-
sure the earth’s rotation more accurately. The Earth’s current rotational velocity and
the mean solar day is then computed from those findings. Today, there are several
variants of UT in use for civil timekeeping [25]. These are, in ascending accuracy:

• UT0 - derived from measured rotation angle of the earth, corrected by the ge-
ographic longitude difference to Greenwich

• UT1 - refinement to UT0, correction of moving earth poles and wobbling of
the earth’s rotational axis

• UT1R - smoothed version of UT1, all terms with a period less than 35 days
have been removed

• UT1D - refinement to UT1, correction for tidal effects

• UT2 - refinement to UT1D, correction for yearly fluctuations of earth’s angular
velocity

2.4. Oscillators and Clock Signals 17

In the 1960s, radio time distribution signals were based on UT2. With the intro-
duction of the Coordinated Universal Time (UTC) in 1972, UT2 started to become
less and less important.

International Atomic Time (TAI) Based on the work by Essen et al. in 1955 [26], a
relationship between ephemeris time and atomic time was established. The Temps
Atomique International (TAI) was defined to start at 1. January 1958, 0:00 so that
TAI time approximately equals the same timestamp in UT1. The atomic second
is not exactly equal to the ephemeris second, leading to a difference in atomic and
celestial time. For this legacy reason, TAI is not usually used in civilian timekeeping.
TAI, as we know it today, is maintained by taking into account about 400 atomic
clocks worldwide [27].

Coordinated Universal Time (UTC) UTC was first introduced as a close approx-
imation of UT2, while taking advantage of the accuracy of an atomic clock. The
earth’s angular velocity is not constant due to tidal interaction with the Moon and
Earth’s rotation is slowing down over time. This loss of momentum is also not con-
stant, as it is partly countered by shifts in mass of the earth core in the direction
of the poles and is further influenced by smaller shifts, like changes in vegetation,
snow and even strong earthquakes. On average, each day has elongated between 1
and 3 ms over the last 50 years. This makes UTC and TAI time drift apart. At the
introduction of UTC in 1972, the difference was 10 seconds, today as of 2016, the
difference has increased to slightly over 36 seconds [25].

In order to get both the benefit of stable atomic time and keeping in step with
the sidereal day, UTC has a correction offset, the so called “leap seconds”. UTC is
locked to TAI but a one second offset is added or subtracted whenever the difference
between UT and UTC approaches a full second. So far, all leap seconds have been
positive. The update interval varies with the slope of the difference. Until 1998, UTC
was updated about once a year, currently it is about every three years. While this
is somewhat convenient for human life, it is a troublesome arrangement for certain
technologies. This is discussed in detail in subsection 2.5.1.

Global Positioning System (GPS) Time GPS consists of a number of satellites in
earth orbit. They carry caesium and/or rubidium atomic clocks and continually
broadcast their current position and time for civilian use. When GPS time started
in January 5th 1980, it was identical to UTC. As mentioned, it is locked to TAI by a
fixed offset, but the difference to UTC will increase with every added leap second.
GPS time is always 19 seconds behind TAI and, in 2016, 17 seconds ahead of UTC
(July 2015). The broadcasted time reference signal will always stay true to atomic
GPS system time within 40 ns or less [28].

2.4 Oscillators and Clock Signals

In this section, a general introduction to oscillators will be given and details on
the relevance of their properties for timekeeping, communications and synchronous

18 Chapter 2. Timekeeping

digital systems are provided. As mentioned in the introduction to this chapter, time-
keeping requires a measurable periodic event and a counter for the occurrence of the
said event. The phrasing “measurable periodic event” describes any system that de-
terministically traverses a phase-space and provides a measurable indication to the
current state. This is called an oscillator.

An oscillator’s frequency is the first derivative of phase over time. The ideal
linear oscillator has a constant phase change, any deviation from the constant phase
rate is called phase noise. The quality of a real oscillator is therefore determined by
the amount of phase noise it introduces, as phase noise governs the spectral purity
of the output. The ideal linear oscillator produces a constant fundamental frequency
without harmonics or overtones, i.e. a perfect sine wave.

Clock signals are used in all synchronous digital systems, or loosely speaking,
computers in general. They keep the state changes in the system in step. For this
purpose, a very clear indication of the transition time is desired. Square waveforms
serve this requirement better than sine waves and are preferred as clock signals.
More details on are provided in subsection 2.4.1 under “Non-linear oscillators”.

2.4.1 Electronic Oscillators

In physical terms, an oscillator is a device able to deterministically store and re-
lease energy, like a spring. The simplest example would be a mechanical pendulum,
which, once excited, constantly exchanges potential energy for kinetic energy. Since
energy is lost to friction, it must be excited again with a 180° phase-shift to the os-
cillation, i.e. adding kinetic energy at the maximum potential energy. An example
would be a swing, where bending and straightening legs at the appropriate time
excites the pendulum. In an electronic oscillator, this is substituted for the exchange
of energy between a magnetic- and an electric field.

Linear Oscillators There are many different known oscillator circuits. The imple-
mentation always consists of two parts. First, a resonator (the “pendulum” from the
mechanical analogue), which is providing resistance (R), an inductance (L) and a
capacitance (C). Second a supply, able to excite the resonator and replenish the lost
energy. The supply requires an active component, like a transistor or amplifier. The
oscillator then transforms the constant supply voltage at its input into a sinusoidal
voltage at its output. For the frequency ranges typical in communications, linear
oscillators usually employ a tuned circuit- or crystal resonators. The first type uses
a coil and capacitor, the second a quartz crystal as a resonator.

For convenience, the angular frequency ω will be used in this context. The output
waveform of a linear oscillator is a sine wave as described in eq. 2.2, depending on
the frequency ω and a constant phase offset φ.

ω = 2πf

f(t) = sin(ωt) + φ (2.2)

Oscillators have a natural or resonant frequency, at which they produce the highest
amplitude in relation to their energy intake. There are more “sweet spots” at the

2.4. Oscillators and Clock Signals 19

multiples of the resonance frequency. While these are not the only frequencies oscil-
lators can be operated at, it is often practical to stay close to them. Simply speaking,
the resonance frequency of an oscillator [29, p. 107] is determined by eq. 2.3:

ωr =
1√
LC

(2.3)

This relation becomes important in the introduction to Tunable Oscillators, because
using a variable capacitance in parallel is a common way of dynamically changing
an oscillator’s output frequency.

Non-linear Oscillators Non-linear oscillators can produce non-sinusoidal wave-
forms, such as saw tooth, triangle or square waves. Most interesting in our context
are square waves, as they are useful for synchronous digital systems. These systems
require a clock signal, a periodic source of events that sharply mark the transition
of one system state to the next. A clock signal would therefore ideally be a per-
fect square wave, its infinitely steep edges marking precisely when a state transition
should occur. In practice, this is not the case, the slope is neither infinite nor con-
stant. This makes finding the exact moment of transition more difficult.

This behaviour of a real oscillator is easily explained if one considers the fre-
quency spectrum of the clock signal. As described by Fourier, all waveforms can be
described as a sum of a series of sine waves. The Fourier series of a square wave [29,
p. 237] of fundamental frequency ω is defined as eq. 2.4:

f(x) =
4

π

∞∑

k=1

sin
(
(2k − 1) · ωt

)

(2k − 1)
(2.4)

It is easy to see that since the frequency multiplier (2k− 1) will be 1, 3, 5 . . .∞, a per-
fect square wave has an infinite bandwidth. Since electrical impedance is frequency
dependent, there must exist a cut-off frequency fc for all materials after which they
show a low-pass characteristic [29, p. 96]. This means the waveform loses its high
frequencies, distorting the shape toward a sine wave. The more f approaches fc, the
less steep the edges get as they are smeared out. Since an electronic circuit would
find the transition time by comparing the voltage level to a threshold, this com-
parison is influenced by a known measurement error. The lower the slope of the
clock signal, the bigger the time interval the voltage stays within the error range.
This translates directly to jitter, because the transition can happen anytime in this
interval.

Therefore, fast clock signals are a compromise between sharp edges, a high fun-
damental frequency and the impedance they are connected to. Fanning out a clock
to multiple destinations or trying to send it over a wire drastically increases the
load impedance. This explains why long distance communication never features
dedicated clock lines and why clock distribution in synchronous digital systems is
non-trivial.

20 Chapter 2. Timekeeping

Tunable Oscillators The most important type of non-linear oscillators are tunable
or variable oscillators. These are devices able to dynamically adjust phase and there-
fore output frequency. The two classes of interest for communication applications
are the voltage controlled crystal oscillator (VCXO) and the numerically controlled
oscillators (NCO). Both allow the output phase and frequency to be changed via a
control parameter. The relation between this parameter and the output frequency
is linear within a certain bandwidth. If the parameter is constant, the output fre-
quency of the oscillator in turn is constant. The mechanism by which this control is
achieved differs.

In a VCXO, this is achieved by adding a voltage dependent capacitance CV , in
parallel with the crystal resonator. CV is usually a varactor diode. If the voltage
to the diode is changed, its capacitance changes, and in turn does the resonance
frequency of the oscillator (eq. 2.5):

fr =
1

2π
√
L CS ·CV

CS+CV

(2.5)

NCOs are complex devices, but they are extremely flexible. Their frequency range
surpasses all other oscillator types. NCOs use a synchronous digital system to gen-
erate the numerical values for the amplitude of their output. A common setup uses a
phase accumulator as an index to a table, which contains amplitude values for a sine
wave. The amplitude values are transformed into a voltage by feeding them through
a digital-to-analogue converter (DAC). The clocked transition from one amplitude
value to another creates very steep slopes similar to the square wave in eq. 2.4. The
DAC’s output must therefore be low-pass filtered to suppress the undesired higher
harmonic frequencies.

2.4.2 Phase-Locked Loops

Phase-Locked Loops (PLL) are electronic circuits, which can produce frequencies
with a given relation to an input frequency. As shown in figure 2.1, a PLL has a
phase detector in a control loop with a tunable oscillator [30, p. 955-959]. The phase
detector is measuring the phase angle of the input frequency and increasing or de-
creasing the output phase accordingly. Their purpose is to phase match their output
frequency to their input frequency. As the name suggests, a PLL locks the phase
angles of both input and output. This means that once locked, the two waveforms
do not shift in relation to each other.

Frequency Synthesis PLL also allow manipulation of the output frequency by
means of several control parameters. Most PLL feature a frequency divider at their
input, as well as a multiplier in the control loop. The divider allows production
of integer fractions of the input frequency and decreases jitter at the output, the
multiplier allows for integer multiples of the input frequency and increases output
jitter [30, p. 974]. Both can be used at the same time in order to generate arbitrary

2.4. Oscillators and Clock Signals 21

◦
◦

1
R

Divider

KΦ

Phase
Detector

Z(s)

Low-pass
filter

1
N

Multiplier

K
s

VCO
fin

fout

FIGURE 2.1: Block diagram of a Phase-Locked Loop [31]

fractions of the input frequency. Most PLLs also allow a constant phase offset be-
tween input and output to be added. PLL designs deriving multiple, individually
controllable outputs from the same input, are also quite common.

Application There is a vast variety of uses for PLL, especially in communications.
The most important ones that should be mentioned in this context are clock signal
generation and clock recovery. Clock generation is important in synchronous digital
systems, as there are usually numerous clock signals necessary that all share a fixed
relation to their phase angles.

A simple but very common example would be a computer whose Central Pro-
cessing Unit (CPU) runs at n-times the clock frequency of its bus system. Both clock
signals are provided by a PLL circuit, using a crystal oscillator with a lower fre-
quency as its input. Not only is the PLL necessary to generate the two higher clock
frequencies, it is also important that the phases of the CPU clock signal and the bus
clock signal match. Otherwise one or the other might sample data too early or too
late. This would lead to frequent faulty data exchanges, making the whole computer
useless.

The second very important application in the context of this thesis is clock re-
covery. This means a receiver recovering the sender’s clock signal from the received
data, in order to process it synchronously. A more detailed explanation follows
in 2.4.3 as a precursor to the workings of the White Rabbit timing protocol in (see
chapter 2.7.1).

2.4.3 Clock Recovery

When two remote, synchronous digital systems exchange data, there is a difference
in how this data is handled internally. Inside the system, all data is usually latched,
processed and transferred using the same sampling clock or clocks, which are phase
locked and multiples of each other. If data needs to be transferred to a remote sys-
tem, these clock signals are not available. For reasons explained in 2.4.1, it is imprac-
tical to have a dedicated clock line in the connection. The receiver system has its own

22 Chapter 2. Timekeeping

oscillators, which do not run in phase with the sender and can even have a consid-
erable difference in actual frequency, even if they should be nominally equivalent.
The latter can stem from a variety of factors, the most significant certainly being the
supply voltage and the ambient temperature. This means that a synchronous han-
dling of the transferred data would be erratic if not impossible. In order to remedy
this, the receiver’s sample clock must be synchronised to the sender’s. The receiver
has to extract the sender’s clock signal from the data stream. This is called clock
recovery [32, p. 2].

The recovery is usually done by feeding the data stream into a PLL [32, p. 33-
36] or similar architecture. The transitions of the incoming stream drive the phase
detector controlling the VCO. If the majority of these transitions coincide with the
transitions of the sender’s clock signal, it can be recovered. The PLL VCO will then
generate a sample clock for the receiver, which will be of the same frequency as,
and phase locked to, the sender’s clock signal. For this to work, the data must be
encoded in a way that contains sufficient sender clock edges to enable the receiver
to reconstitute the clock, because raw data does not necessarily have this property.

For example, it’s easy to see that the binary sequence 11101010 still makes it
possible to guess at the sender’s clock. If the data word was 11111111 instead, the
receiver would see a continuous 1 state without the possibility to tell how many 1
bits there actually were. To avoid this, encoding schemes are employed that balance
the number of 1’s and 0’s in the data stream and break streaks of the same symbol.
The most widely known, simplistic code for this purpose is the so called Manch-
ester encoding. It encodes a logic 1 as the transition from 0 to 1 and a logic 0 as 1
to 0. The data word from the previous example would then be 0101010101100110
and 0101010101010101 respectively. This encoded version offers more than enough
transitions for the PLL to stay locked and the data is still easy to decode on the re-
ceiving side. There are of course more sophisticated codes available today, such as
16B/18B [33], which are more economical in terms of bandwidth use than Manch-
ester encoding.

2.5 Digital Representations of Timestamps

ISO 8601 Posix Time Format This standard comes from the Unix world, and clas-
sically used to be a signed 32 bit integer, with 0 representing January 1st 1970, 00:00.
It has been heavily debated whether to make the time format signed or unsigned.
In the end, the necessity to represent dates pre-Posix time, i.e. before 1970, out-
weighed doubling the covered time range from 2038 to 2242. The Posix time format
was eventually extended to a 64 bit signed value. The standard use-case is to en-
code UTC. However, today most Unix/Linux systems also come with the option to
encode TAI instead, using a completely leap-second-free notation. This is useful for
CSs, because standard timekeeping of the OS can be used without risk of confusion
or having to continuously translate timestamps back and forth between UTC and
TAI.

These formats have in common that their binary representations use seconds as
the base unit. They do not have a fractional part. If timestamp accuracy below a
second is needed, a composite data type is available. This means adding another 32

2.5. Digital Representations of Timestamps 23

or 64 bit word as sub-second part, which is a decimal value. This makes it easy to
convert and retain accuracy over different resolutions. The number of sub-second
digits can vary over format and use. The predominant standard, especially in the
Unix world, is the use of UTC as the system time. UTC is closely coupled with GPS
and TAI time, with one major difference, the leap seconds.

2.5.1 Problematic Nature of Leap Seconds

While conveniently linking the two time standards of UTC and TAI, the non-linear
leap second offsets cause problems in time-critical programs, as UTC time is not
strictly increasing. Leap seconds are a social, not a technical instrument - human
lives revolve around the day night cycles and timekeeping is organised accordingly.
This has also influenced the computer world. Leap seconds have been controver-
sially discussed many times now, while being convenient for everyday life, they can
be dangerous.

Peculiarities Since leap seconds are introduced whenever necessary, there is no
way to convert UTC to TAI arithmetically. Instead, a table must be used. There are
further complications, an added leap second is inserted at midnight, and expressed
as 23:59:60. It is doubtful that the majority of computer systems feature a correct im-
plementation of handling these time values. Many systems instead stay on 23:59:59
for two seconds, a search in a database for the timestamp 23:59:60 would therefore
fail. This is of course not important for everyday life, but for all systems relying on a
continuous time, such as CSs, navigation, distributed databases, computer clusters,
etc., this can be problematic [13].

Effects on Schedules All schedules ultimately organise the relative times between
events, and the time differences cannot be shortened or extended to match a varying
time-base without consequences. In electro-mechanical systems, the range of times
are in milliseconds and very rarely in microseconds, while in communications and
navigation, desired system accuracy goes down to the nanosecond level. Control-
systems rely on a strictly increasing and linear flow of time, as they are oriented
toward a high degree of determinism. It is easy to imagine how such a time shift
could cause disastrous effects. When instructions to machines suddenly lie in the
past or overlap, the effects can range from loss of communication, through damage
to produce and machines, all the way up to loss of life.

Persistence The main problem is not a technical issue, but a problem of culture. In
machine timing, TAI, GPS or TT time would be the obvious safe choice. However,
the whole computer world, including the Internet, is using UTC. Sooner or later,
all complex systems involve off-the-shelf computers with standard OSs to evaluate
data or handle user interaction. The simple solution to the problem would be to
just use TAI, but then a carefully planned and maintained system architecture is re-
quired. Practically no fast realtime system operates completely stand-alone, at some

24 Chapter 2. Timekeeping

point, computers using UTC will be encountered. This translation is computation-
ally costly and any software not handling this correctly can lead to a succession of
wrong time stamps, making the whole process error prone.

Possible end of leap seconds So far, tradition has taken precedence over utility,
although the voices against leap seconds are growing louder, especially from the
navigation community. In the GPS timing subcommittee report from 2014, a ces-
sation of the leap second practice was again demanded. The report [34] stated in-
creasing failures of navigation systems like GPS, LORAN and commercial air travel
attributed to leap seconds. Further reasons for concern were the observation that
approximately 10% of all NTP timing servers worldwide failed to handle the leap
second in 2012 correctly, and that there is not a single documented case of all NTP
servers worldwide correctly inserting their leap seconds.

Influence on the case study The discussion in regard to the FAIR case study (chap-
ter 4) is still ongoing. The currently favoured solution to the problem is using TAI for
machine timing and UTC everywhere else, converting at database-client level. Leap
second updates are announced weeks in advance. The plan is therefore to perform a
scheduled shut-down of the accelerator shortly before the leap second change, so no
running operations can be affected. After the update, all systems shall be restarted,
tested and put back into operation.

2.5.2 Timekeeping in Computers

Computers, that is, PCs without special hardware, are notoriously bad timekeep-
ers. This stems from the fact that their primary CPU oscillators can drift as much
as several minutes per day. It depends on the power settings (in modern CPUs)
and does of course require the computer to be powered. Because of this, comput-
ers usually feature Realtime Clock (RTC) modules, a small crystal clock operating
at 32 kHz. Using it to readjust the primary oscillator increases short term stability,
but the RTC is at best accurate to 1 s per day and usually drifts by as much as 15 s
or more per day [35]. The way of dealing with this problem is periodically syn-
chronising the computer’s local time to a more stable time reference via a network
connection. This ultimately takes the distributed time from an atomic clock, which
has an excellent long term stability. There are several network services available
today to synchronise PC RTCs to UTC, the most popular being Network Timing
Protocol (NTP).

2.6 Time Distribution

2.6.1 Overview

A time distribution system, or chronopher, is an electric or electronic device that
makes its value of time available as a reference to remote clocks. Receivers usually
have an oscillator of lower quality, which is less stable over time. It is disciplined

2.6. Time Distribution 25

(periodically readjusted) to the reference. Depending on requirements, the readjust-
ment can be achieved in a single step or adiabatically. There are different concepts
for the distribution. An applied method of time synchronisation at the CERN LHC
was in fact transporting a caesium clock to various key sites in the facility and syn-
chronising local clocks to it. While being very effective, the efficiency of this method
is open to debate.

The most important distinction is the direction of communication either uni- or
bidirectional. Most available systems are unidirectional, a client device is listening
to the broadcast of the chronopher. A broadcasting station or satellite sends out a
coded message with the current time to which clients readjust their clocks. There is
a large number of these services available, with varying orders of accuracy. These
range from the time announcement on the phone line, terrestrial radio stations and
navigation beacons like the LORAN system all the way up to navigation satellites
and internet based time services. Table 2.2 shows a brief overview of the possible
accuracy with a variety of timing receivers [14], [36]–[40].

Receiver Accuracy

Home radio-controlled clock 1× 10−1 s
Industrial Radio-controlled clock 30× 10−3 s
Network Timing Protocol > 1× 10−3 s
LORAN 1× 10−6 s
GPS 1× 10−7 s
Precision Time Protocol 1× 10−7 s
White Rabbit Protocol 1× 10−9 s

TABLE 2.2: Timing Receivers and possible accuracy

2.6.2 Disciplined Oscillators

Crystal oscillators, and thus the local time driven by them, drift over time. Because it
is neither technically nor economically feasible to replace all timekeeping by atomic
clocks, it is common practice to use one of the described time distribution services to
periodically re-adjust lower quality clocks to more accurate time references. The best
known implementations are satellite disciplined oscillators, which are high quality
local oscillators disciplined to the atomic time of navigation satellites. This used
to be just GPS, but multi-receivers able to combine GPS, GLONASS, Beidou and
Galileo satellites are available today. This provides time and frequency normals
with excellent short and long term stability at a fraction of the cost and maintenance
effort of using an atomic clock each.

26 Chapter 2. Timekeeping

2.7 Network Timing Services

Timely availability of services, goods and storage are the most central aspect of to-
day’s life. The bigger, global and faster these processes became, the more impor-
tance the accuracy of time synchronisation became. Since computers are involved
at all levels and most often connected to the Internet, be it directly or via gateways,
there is a big demand for network service able to accurately synchronise local times.
Strictly speaking, GPS is also a time distribution protocol over packet based net-
works.

Evolution The choice of protocols available today is surprisingly small. The ear-
liest standard was (IRIG) from 1956, using proprietary connections and systems to
distribute one timestamp per second without correction for propagation delay. The
implementation with the largest impact is NTP by Mills, which remained the de
facto standard for most of the world’s computers until the present day. It is a bidi-
rectional protocol, which considers message propagation and was later extended to
discipline the client computer’s oscillator as well.

This was followed by the Precision Time Protocol (PTP) 1588, developed by the
Institute of Electrical and Electronics Engineers (IEEE) and published in 2002. PTP
adds support for more accurate hardware timestamping and PLLs and does not
stipulate a specific technique for oscillator discipline. It was developed for filling the
niche between GPS disciplined systems and NTP, that is, increased accuracy without
satellite receivers. There are several other clock synchronisation protocols, which do
not distribute absolute time. These are Synchronous Optical Networking (SONET)
from 1984, Synchronous Digital Hierarchy (SDH) from 1988, and Synchronous Eth-
ernet (SyncE) from 2010.

In 2008, Moreira et al. published their work on the White Rabbit Protocol [40].
WR is combining methods from several standards and was developed with the ex-
plicit aim of further increasing the possible accuracy of PTP.

2.7.1 White Rabbit Timing Protocol

WR is a time synchronisation protocol, similar to PTP. More precisely, WR is an ad-
dendum of PTP, using its built in hardware support for hardware timestamping and
employing special hardware for phase detection and offset compensation. The aim
in WR development was going toward the creation of “a particularly accurate and pre-
cise implementation of the IEEE 1588 standard” [42]. WR combines several techniques
that address time synchronisation issues at different levels. These are:

Time This refers to the exchange of local times between a server and a client. The
server is connected to a high quality time source. This is either an atomic clock,
or, more often, a satellite receiver linked to an atomic clock. The server’s time an-
nouncement is compensated for transmission delay which is calculated by times-
tamping packet exchanges between client and server [41], [43].

2.7. Network Timing Services 27

Link External influences on measured link delay must be reduced to a minimum.
To exclude wait times from cross-traffic from the measurement, PTP packets are
timestamped directly at the physical interface (PHY). For highest accuracy, link
asymmetry, that is, the difference of delays per direction, also has to be considered
in time synchronisation.

Frequency Asynchronous oscillators cause a deviation in local time between syn-
chronisation updates. A control loop at the client side has to adjust its frequency
to match the server’s, so their timers run at the same rate [42], [44]. The server
is connected to a frequency normal (high quality oscillator disciplined by satellite
receiver).

Phase To synchronise local time to better than one transmission clock period, it is
necessary to get more accurate measurements of the clients phase offset to the server
and compensate for the offset.

2.7.2 IEEE 1588 Precision Time Protocol

There are numerous PTP implementations available today, their accuracy largely
depends on the level at which the message handshake is timestamped. The closer
to the PHY, the higher the accuracy. PTP utilises many different types of clocks, but
in this context, only some of them are of interest.

Master and Grandmaster Any PTP clock correcting another is a master clock, a
PTP clock receiving no corrections but correcting all others is referred to as a grand-
master clock.

Slave A PTP clock being corrected by another clock is a slave clock; if it does not
correct others, it is called a slave-only clock.

Boundary and Transparent The interesting cases are boundary and transparent
clocks, as they are both master and slave at the same time. Both require timestamp-
ing to happen outside their own control loop, right at the PHYs. A transparent clock
forwards the sync messages it received at its slave port on its master port. It com-
pensates its own delay by either updating a correction field on the fly or sending a
follow-up message afterwards. A boundary clock acts as sink at its slave port and
generates fresh, already corrected, sync messages at its master port. Transparent
and boundary clocks both correct for link delay and packet residence time at their
own node, and thus the layout of a node’s control loop has no influence on time
synchronisation [40].

PTP nodes are able to auto negotiate for the most accurate clock as the preferred
grandmaster clock. WR does not use this feature though, and uses a fixed preferred
grandmaster clock instead. In the intended tree or star topology for a CS, the root
clock has no master and must therefore be a grandmaster clock.

28 Chapter 2. Timekeeping

Master
time

Slave
time

Announce

Sync

Delay_Req

Follow_Up

Delay_Resp

Management

t1

t2

t3

t4

FIGURE 2.2: Simplified PTP Synchronisation Handshake [42]

Figure 2.2 shows a simplified version of the PTP exchange. All message arrivals and
departures are timestamped, the link delay between server and client is calculated
by latency of packet exchanges.

The calculation of the link delay between master and slave (not considering link
asymmetry), following the exchange from figure 2.2, can be written as

δ =
(t4 − t1)− (t3 − t2)

2
(2.6)

Pure hardware PTP solutions can reach a mean difference to the reference of sev-
eral hundred picoseconds, but have a relative jitter (standard deviation) of several
nanoseconds [43]. The reason for the high jitter is the plesiosynchronous relation of
server and client clocks, which start to deviate between updates. Contrary to NTP,
PTP does not feature a native way of correcting frequency drift in nodes. Thus, be-
tween PTP handshake updates, the local oscillators run free. The possible quality of
PTP synchronisation therefore depends on the following factors: Oscillator quality,
which determines the drift rate, PTP update interval, which determines the maxi-
mum accumulated drift, timestamp granularity, which determines the accuracy of
drift correction [39], and, as mentioned in the beginning of this subsection, the level
at which timestamping takes place.

2.7.3 Synchronous Ethernet

WR makes use of part of the Synchronous Ethernet International Telecommunica-
tion Union (ITU) recommendation of phase locking carriers [45], also called Layer-1
syntonisation. The term “layer” refers to the Open Systems Interconnection Model

2.7. Network Timing Services 29

(OSI), in which layer 1 defines the physical (bit transmission) layer of network com-
munication. Layer-1 syntonisation describes the process of keeping the transmis-
sion clocks of different nodes in phase at all times. Their clocks tick with the same
frequency and phase, the drift of local time between PTP updates is reduced to a
minimum defined by the clock recovery and oscillator accuracy.

Origin Standard IEEE 802.3 Ethernet is by definition asynchronous. In the begin-
ning of Ethernet, a network was a group of computer nodes on a shared physical
medium and there is no separation between RX and TX directions. Nodes sending
at the same time cause collisions resulting in unintelligible traffic, and therefore have
to remain silent between transmissions. During an incoming transmission, a node’s
sample clock is synchronised by a packet preamble of alternating bits (see clock re-
covery, 2.4.3) to which the receiving PLL can lock, but its oscillator is running freely
otherwise.

Properties In several implementations including Gigabit Ethernet (GbE), a net-
work is no longer sharing a physical medium. All connections are point-to-point
and RX and TX are separated. This removes the possibility of collisions and thus the
necessity for a node to stay silent between transmissions.

The line coding used in 1 Gbit/s Ethernet (8b/10b) [46] provides a set of alter-
nating codes for data, which allows clock recovery. A subset of the line codes are
the so called comma codes, which are employed when the line would otherwise
be idle. They are recognised as not being valid data, but also form an alternating
pattern containing enough signal changes for the receiving clock recovery circuit to
stay locked [42], [45].

Clock recovery alone does not provide information to which clock edge and
therefore which bit position in a data word the receiver is locked, though. If it
did not lock to the first bit in a word, data is split incorrectly into words and thus
wrongly interpreted. This is called bit slip. 8b/10b coding allows the correct syn-
chronisation to word boundaries by the recognition of valid code words within the
stream.

2.7.4 Phase Detection Hardware

GbE sends at 1 Gbit/s (1.25 Gbit/s with 8b/10b coding), but the programmable
hardware containing the WR core cannot manage the same frequency. Unlike the
physical interfaces, it is limited to≤ 200 MHz; the data rate of the network is achieved
by dedicated high speed circuitry in the transceiver (see 7.6.3).

WR thus needs to derive a 125 MHz frequency (nearest sustainable integer re-
lation to 1.25 GHz) from the recovered 1.25 GHz RX clock and lock the phase of
it’s own 125 MHz core oscillator to it. The receiving node can then derive its own
1.25 GHz TX clock from the core clock. Because WR’s core frequency is 125 MHz,
the time resolution is limited to the core period of 8 ns [39].

30 Chapter 2. Timekeeping

The accuracy of WR PTP synchronisation is ultimately determined by the accu-
racy with which the phase offset between the local and remote oscillator can be mea-
sured. This causes a problem, as the phaseshift is smaller than a WR clock period
and can therefore not be directly sampled by the hosting programmable hardware.

FIGURE 2.3: White Rabbit Phase Measurement Hardware [42]

Undersampling Because clock signals are periodic, determining the phase offset
with high accuracy does not necessarily require a higher sampling rate. The tech-
nique employed in WR is making use of a beat frequency approach. As figure 2.3
shows, the special hardware consists of a numerically controlled oscillator, produc-
ing a frequency at a slight offset to the received clock signal. If the clock signal is
sampled with it, a slow beat frequency is created. Despite being noisier and having
some jitter, it is directly related to the phase offset of the clocks. After cleaning the
signal, it can thus be used to find the clock phase offset. Because it is much slower
than the clocks themselves, it can be easily sampled by the programmable hardware.
The effect is a virtual increase in sampling rate, “magnifying” the view on the phase
offset [42].

2.7.5 Link Delay Model

In eq. 2.6, PTP link delay was simplified by the assumption of symmetry. This is
of course not the case for a real link, and the yet unknown quantity is therefore
the delay distribution between link directions as well as between transceivers and
receivers.

WR’s current implementation solely employs fibre-optic links. While it is theo-
retically also possible to synchronise copper links, it is more difficult. The electronics
in copper PHYs has to serve multiple twisted pair leads and proved to be not de-
terministic in the desired time range. In addition, the multiple differential pairs can
have slightly different lengths, leading to different propagation delay and adding
to the jitter of the PHYs’ electronics. For the same reason, WR uses fibre-optic links
with wavelength multiplexing, meaning TX and RX direction are going through the
same fibre, but on different wavelengths. For separate fibres for both directions, the
difference in latency caused by different fibre lengths and temperature expansion
is hard to calculate. The link asymmetry resulting from the wavelength dependent
propagation through fibre and the different types of PHY can be obtained from a

2.7. Network Timing Services 31

measurement setup. These asymmetry calibration values are then valid for all se-
tups using the same combination of fibre and PHY types.

Matching Core Clocks To make core clocks on both sides match (and thus points
at which their time counters increase), the client’s 125 MHz core clock is shifted by
the measured phase offset, taking into account link asymmetry calibration and bit
slip. It then aligns with the word boundary of the sender’s core clock. The mea-
sured residual phase offset at any node is included into the PTP correction field to
the next client downstream. This way, phase offsets do not accumulate between
clock layers. After the PTP exchange, local time in both nodes is synchronised to
less than half a transmission clock period (≤ 400 ps), and stays this way due to the
oscillator lock. Theoretically, a single PTP handshake would be sufficient to ensure
synchronous time in the system. It is nevertheless periodically refreshed for reasons
of robustness [42].

2.7.6 White Rabbit Performance

In order to show the degree of synchronisation accuracy, the 10 MHz clock outputs
of cascaded WR switches were compared in terms of mean skew and standard de-
viation against the frequency reference connected to the top switch. The results are
presented in table 2.3. All switches showed a mean skew to the reference of ±200 ps
and a standard deviation of ≤ 7 ps, experimentally proving WR accuracy to be su-
perior to PTP.

Switch Integrated jitter [ps] Offset [ps]
10Hz-40MHz mean sdev

1 1.6637 161.86 5.45
2 2.4887 24.67 5.30
3 2.3025 -135.25 6.14

TABLE 2.3: WR Performance Evaluation [47]

2.7.7 Summary

After establishing the basic context and presenting examples of modern time syn-
chronisation technology, the properties of the WR concept could be evaluated and
discussed. The WR time distribution system was proven to provide absolute time
and clock signals at hitherto unknown accuracy while maintaining a scalable hard-
ware effort. Considering the large scale of the FAIR project and other large acceler-
ators like the CERN LHC, both geographically and in the number of required end-
points, this is of particular importance. The good long term stability of an atomic
clock as an ultimate reference is an added bonus of the satellite disciplined timing
source suggested for WR. The performance evaluation therefore confirmed WR be-
ing a suitable choice for the infrastructure of a high accuracy CS for large physics
experiments.

33

Chapter 3

Particle Accelerators

3.1 Overview

This chapter covers two main topics. The first is an introduction to the basic physical
principles of particle accelerators, as far as they are relevant for functional under-
standing. Further details about relativistic effects and particle physics can be found
in the relevant literature [48]–[50]. The second topic contains functional explana-
tions for common accelerator designs and their sub-components. All of these aim
to give an insight into the reasoning behind the adoption of the kind of control and
timing these machines need. More details on the accuracy of the necessary coordi-
nation are found in the introduction to timing in chapter 2, a detailed quantitative
timing discussion of individual components can be found in the FAIR case study in
chapter 4.

3.2 Physics

3.2.1 Charge and charged particles

According to today’s scientific view as of 2016, all matter is composed of subatomic
particles. For the purpose of accelerator fundamentals, we will limit this view to
electrons, protons and neutrons. As measured by Faraday and later demonstrated
by the Millikan experiment, the charge of a free standing particle is always an inte-
ger multiple of the elementary charge e. By convention, electrons are said to have
a charge of −1 e, protons 1 e, and neutrons are, as their name suggests, electrically
neutral. Atoms having the same number of protons, but differing in neutrons, are
called isotopes. Any atom that is not electrically neutral is called an ion. Ions can
either have positive or negative charge, determined by the amount of missing or sur-
plus electrons. There are accelerators for electrons, protons and heavy ions, which
differ in technology. Free electrons are easier to produce than protons or ions be-
cause of their low binding energy. They are also easier to accelerate because of their
very low mass.

Besides the common particles, some accelerators can also produce and handle
antimatter. These are particles of the same mass as their common counterparts, but
with an opposite charge. An anti electron is called a positron, the counterpart of a
proton is simply called antiproton. Whenever a particle and anti particle collide, both
are annihilated and their energy is emitted as photons (radiation). Their production

34 Chapter 3. Particle Accelerators

is effortful compared to ordinary particles and usually achieved by bombarding spe-
cial targets with protons or heavy ions.

3.2.2 Forces

Accelerators use a combination of electrical and magnetic forces to accelerate and
steer charged particles by means of electrodes and electromagnets.

Lorentz force - Electric Component Any charged particle is attracted to the elec-
trode with a charge of opposite sign as the particle and repelled by charges of the
same sign. This electrostatic force is applied whenever a charged particle is exposed
to an electric field. Voltage, that is, electric potential difference between electrodes,
is defined as the work that has to be applied to a charged particle in order to be
moved against a static electric field [51]. This can be understood roughly as equal to
a gravitational force: a charged particle inside such a field ~E has a potential energy
equal the voltage times its own charge (q). When the electrical force (~Fle) is applied,
this energy is transformed into kinetic energy, the particle “falls” toward the charge
with opposite sign 3.1. Typically, the kinetic energy of a particle is expressed in elec-
tron Volts(eV), meaning the energy an electron achieves after being moved over a
potential difference of 1 V. This is approximately equal to 1.6× 10−19 J.

~Fle = q ~E (3.1)

Lorentz force - Magnetic Component Whenever a moving, charged particle en-
ters a magnetic field (~B) with a vectorial element perpendicular to its own path at
a speed (~v), it is exposed to a force (~Flm) orthogonal to both it’s path and the field
lines:

~Flm = q~v × ~B (3.2)

Since the magnetic Lorentz force is equivalent to a centripetal force (~Fc in eq. 3.3)
on the moving particle, it will curve its path. The radius (r) of the resulting curve
depends on the mass (m) of the particle, its speed and the orthogonal magnetic
flux. Continuous exposure to an orthogonal magnetic flux will force the charged
particle into a closed orbit, a technique used in “ion traps” to immobilise ions for
observation.

Fc = m
v2

r
(3.3)

In order to simplify the equation, only the orthogonal magnetic flux component is
considered. The radius is then given by Eq. 3.4:

Flm = Fc

vB = m
v2

r

r = m
v

B
(3.4)

3.3. Types of Particle Accelerators 35

3.2.3 Why use Magnets at all?

Electromagnets are much more complex to build and costly than electrical deflection
plates, not to mention big and heavy. So, why use them at all if electrical force
can also change the path of charged particles? The reason comes with particles of
high kinetic energy. Electrically forcing these from their path requires very high
voltages. Wiedemann explains the necessity for magnets as “For relativistic particles
(v ≈ c) we find that the force from a magnetic field of 1 T is equivalent to that for an
electrical field of 300 MV/m. Since it is technically straightforward to generate magnetic
fields of the order of 1 T, but rather difficult to establish the equivalent electric fields . . . ,
. . . most beam guidance and focusing elements for relativistic particle beams are based on
magnetic fields.” [50]

3.3 Types of Particle Accelerators

3.3.1 Linear accelerators (LINAC)

Function This form of particle accelerator uses an electric field to accelerate charged
particles, i.e. electrons or ions, along a linear beam line. Like all accelerators, it must
be evacuated to prevent collisions of the accelerated electrons/ions with neutral gas
particles. LINACs consist of an “. . . array of metallic tubes with an applied potential cre-
ating an electric field between tubes, but not inside them. Charged particles launched along
the axis of the tubes were to be accelerated while traversing the gaps between adjacent tubes
but drifted at a constant velocity when inside a tube.” [49, p. 163-164].

FIGURE 3.1: Schematic of a drift tube linear accelerator based on the
Alvarez design [49]

C cavity, S struts, D tubes, G gaps, F RF input, B axis

36 Chapter 3. Particle Accelerators

Since the charge of the particles is fixed, the polarity of the electric field needs to
change with each gap traversed. This can either be achieved by applying accurately
synchronised voltage pulses (Ising 1924) or, as Wideroe proposed in 1928, more sim-
ply by “the application of radio frequency (RF) voltages to a succession of drift tubes . . . of
progressively increased length” [49, p. 163-164]. As particle speed increases with each
gap, the time of flight between gaps decreases. One way to cope would be to offset
the time to reverse polarity of the electric field ever increasingly earlier for each tube
along the path. This phase shift would then fit the original Ising proposal and a ma-
chine built in that way is called an induction LINAC. These machines are relatively
new because the required precise timing has only become widely achievable since
1980. The other possibility is to match the length of each drift tube to the particle
speed at this acceleration stage in order to even the time of flight. This would match
the Wideroe method.

Alvarez Design In 1947, Alvarez designed a linear accelerator for low energy pro-
tons, based on the above principles by Wideroe. The Alvarez tank is built in a way
that the acceleration is in phase over all gaps. “The field varies sinusoidally with time,
but the drift tube lengths are chosen so that the beam bunches are cumulatively accelerated
along the axis . . . ”.

FIGURE 3.2: Inside of an Alvarez tank at GSI. The drift tubes in the
centre are supplied with the RF voltage by the diagonal struts. [52]

3.3. Types of Particle Accelerators 37

It also “allows bigger drift tubes with enough space to put focusing elements”. This reduces
beam dispersion and therefore allows higher energies. Linear accelerators are often
used as an injector for synchrotrons, which often need a much higher particle energy
at injection than an ion source can deliver. GSI’s UNILAC is an RF voltage driven
linear accelerator machine which uses four Alvarez cavities (Figure 3.2) to accelerate
heavy ions to a final energy of 11.4 MeV. The absolute timing requirements of a
LINAC are relatively simple, as it uses an RF voltage of low frequency, e.g. 50 Hz
(mains) for UNILAC. It is important to distribute the RF signal with low jitter in
respect to each other both inside the LINAC and following RF cavities.

3.3.2 Cyclotrons

Cyclotrons are the simplest possible type of circular accelerators. Today they are
mostly used for electron beams for ionisation and X-ray light sources, but under-
standing the processes inside a cyclotron is helpful as an introduction to the more
complex synchrotron machines.

Function This type of circular accelerator makes use of an oscillating electric field
and a constant magnetic field. It consists of a flat cylinder, which has been split
along a plane parallel to the cylinder’s axis. The two halves are separated by a small
gap and are the positive and negative electrodes of an RF voltage source. When
charged particles are inserted at the centre of the cyclotron, each time they enter
the gap, they are accelerated into the opposing half, the direction depends on the
current phase of the alternating voltage. A constant coaxial magnetic field exerts a
Lorentz force on these moving particles. This centripetal force drives them on a half
circular path perpendicular to the cylinder’s axis with a radius depending on the
magnetic flux, particle charge/mass ratio and speed [48, p. 7-9]. With each crossing
of the acceleration gap, their speed increases in steps and they spiral outward until
they reach the tangential extraction tube. A special property of cyclotrons is the
constant orbit time for particles, no matter their current speed. This is because the
curve radius proportionally increases with each acceleration. This means that the
frequency used for acceleration must be the orbit frequency or one of its harmonics
in order for all particles to be in phase. GSI, and later FAIR, employ cyclotrons in a
certain type of ion sources. In an electron cyclotron resonance ion source, electrons
are accelerated in a cyclotron and shot at a heated chemical element to create ions.

3.3.3 Synchrotron Machines

The idea of a ring of magnets and drift tubes to accelerate particles first appeared
in 1943 in a proposal by M. Oliphant to the Department of Scientific and Industrial
Research: “Particles should be constrained to move in a circle of constant radius thus en-
abling the use of an annular ring of magnetic field . . . which would be varied in such a way
that the radius of curvature remains constant as the particles gain energy through successive
accelerations by an alternating electric field applied between coaxial hollow electrodes.” [53]

38 Chapter 3. Particle Accelerators

FIGURE 3.3: Schematic of the SIS18 Heavy Ion Synchrotron at GSI.
The SIS18 is built as a 12 sided polygon with an injection- (left), a re-

injection- (second on left) and an extraction-channel (right) [54]

3.3. Types of Particle Accelerators 39

Function A synchrotron is therefore a ring shaped conjunction of linear accelera-
tion sections, focusing elements and guiding magnets. It is vastly more space effi-
cient than a linear accelerator because the same acceleration stages are reused and
particles can also reach much higher energies.

Accelerating, Focusing and Bending While called a ring, a synchrotron is built
in the shape of a polygon (see figure 3.3). In its simplest form, it would consist of
straight sections of beam guides containing RF elements for acceleration joined by
dipole magnets at the corners (see figure 3.4). The dipole magnets emit a field per-
pendicular to plane of the ring. The ensuing Lorentz force curves the beam inward,
off its tangential trajectory and into the next beam guide. Thus, they maintain the
horizontal orbit of the beam inside the accelerator [48, p 12-17]. The magnetic flux
needed to maintain orbit changes varies with particle speed, only electro magnets
are suitable to provide the high flux needed to control relativistic beams.

There are basically two types of magnets: focusing and bending. Focusing mag-
nets come in two shapes, quadru- or sextupol. They effect course corrections on
the beam, concentrate it by reducing its diameter and counter beam spreading. The
corner magnets on the other hand send the beam around the corners of the poly-
gon. With current accelerators, this flux can be as high as 8 T in case of the CERN
LHC (for comparison: magnetic field of the earth < 65 µT). The top speed of parti-
cles achievable inside ring accelerators depends on the mass of the particles but can
reach high fractions of the speed of light. Light particles, such as hydrogen, reach as
much as 98 percent of light speed in GSI’s SIS18 synchrotron.

FIGURE 3.4: Synchrotron Components (SIS18)
Front to back: RF acceleration section, yellow quadrupole focusing

magnets, red dipole bending (corner) magnets [54]

40 Chapter 3. Particle Accelerators

Requirements of Synchrotron Machines Contrary to a cyclotron, the orbit fre-
quency of synchrotrons changes proportionally to particle energy while the desired
orbit stays constant. This has several implications. First and foremost is that RF
voltages and magnet current ramps must be synchronised in regard to the current
orbit frequency of the particles. This demands accurate time and clock distribution
throughout the machine.

A synchrotron is also not capable of accelerating particles below a certain kinetic
energy threshold, because the minimal magnetic flux the power supplies can gener-
ate is too strong. Slow moving particles are deviated too strongly to hit the follow-
ing beam-line within its acceptance angle. Instead, an injector stage, usually a linear
accelerator, must be used to acquire the minimum kinetic energy before injection.

As already described in the introduction to linear accelerators (3.3.1), the RF
voltage is a waveform “moving” around the ring with the accelerating particles.
The whole machine is oscillating and this means that at any given time, there are
positions on the ring where particles can be accelerated and where they would be
decelerated. It is obvious that that there cannot be “correctly” oriented fields at all
places along the ring at the same time, but there are travel zones. Particles therefore
bunch up into distinct clouds, each one in the stable part of the longitudinal phase
space, the so called bucket. If a particle falls behind, it is either accelerated again
into the bucket centre, or, if it became too slow, approach the following bucket. If a
particle is too fast, it will leave the bucket’s optimal acceleration zone, being slowed
down again. The possible number of buckets in a synchrotron depends on the ring
circumference and the RF harmonic used, the higher, the more buckets.

Particle acceleration is equal to an increase in orbit frequency, which in turn
means increasing radio frequency and magnet ramp speed. Acceleration changes
the position and size of the buckets, which has to be done adiabatically in order to
keep particles near the bucket centres. If the bucket is moved too quickly, particles
of the bunch fall outside the bucket’s acceptance zone, beam loss occurs as particles
are unable to follow the orbit and hit the beam-line surface. This limits the speed
of acceleration and is the reason why creation of highest energy particle beams can
take as long as several hours.

Beam Injection and Extraction Synchrotrons also need a mechanism to inject or
extract beams from the ring. They have (usually) planar, tangential injection- and
extraction tubes. Special dipole magnets with a fast reaction time called “kickers”
are employed in the flight path before such a junction to get a beam into or out of a
synchrotron. The Lorentz force a kicker generates is sufficient to deviate a particle
beam by several degrees, the SIS18’s for example uses 9°. This is enough to hit the
extraction tube or catch an injected beam and force it into the ring orbit. The mag-
netic flux increases proportionally to the number of windings on the coil, but more
windings also increase impedance to current changes and prolong the rise and fall
times of the magnet current. In order to ramp up the magnetic field fast enough to
influence only a single bunch of particles in the synchrotron, they consist of very
few windings. Kickers draw a high current that comes from very large electrical ca-
pacity charged in advance. The goal is to get a current pulse with short rise and fall

3.3. Types of Particle Accelerators 41

times and an even current in between. Because capacitors show an exponential dis-
charge current characteristic, large drums of thick (several centimetres) coaxial cable
are used. The cable’s equivalent circuit diagram is series of capacitors, which cre-
ates an almost constant discharge current during the pulse. The said current pulse
must be very accurately timed. The most demanding scenario is a so called “bunch-
to-bucket-transfer” (B2B) between synchrotron rings. As stated before, there are a
number of places in the phase space of the synchrotron where clouds of particles
can exist in an orbit. A B2B describes the movement of a particle bunch from one
accelerator ring into a bucket at the other. As an analogy, one could think of two
jugglers each juggling several balls who wish to pass a single ball from one to the
other. The ball (bunch) must be thrown so it arrives at the second juggler’s hand
exactly at the moment it is free (bucket). It is then easy to see that both must be
synchronised in order to do such a transfer.

This is achieved by shifting the phase of one ring in relation to the other, mean-
ing acceleration or deceleration for a short time before returning to constant orbit
speed. The amount of necessary phase shift is determined by measurements of the
bunch/bucket phases. The extraction, injection and the synchronisation between
RF cavities are the most demanding applications of a timing system in a particle
accelerator.

3.3.4 Colliders

The idea of a collider is to accelerate particles to very high energies and hit other,
either stationary particles or another particle beam head on. In the second case,
particle beams from two accelerators travel in opposite directions so the combined
speed is double that of a beam hitting a stationary target. Synchrotron colliders are
used to achieve the highest collision energies between particles possible today. They
consists of two synchrotron rings with equal or near equal diameter built in close
proximity. The rings accelerate particles in opposite directions and are joined by a
beam-guide. When both machines reach extraction energy, the beams are collided
and the resulting collision occurs at double the energy achievable with the hardware
of a single ring. The most prominent example of a collider ring is the LHC at CERN
with a circumference of 27 km which will be able to achieve centre of mass energies
of more than 1.1× 1012 eV for lead ions.

3.3.5 Storage Rings

Storage or collector rings, are synchrotron machines and are used, as their name
suggests, to accumulate particles and hold an existing beam for several hours or
even days. They are not meant to increase the energy of the beam they are holding,
but to keep it at a constant level, refine it and lose as few particles as possible over
time. While increasing particle density by collecting more particles from injector
accelerator, they focus and cool the beam. Cooling is in the context of a particle beam
understood as dampening all motion of the particles other than their intended, ideal
circular orbit. The more concentrated the beam and the less transversal motion, the
more effectively it can be used for experiments. Storage rings usually have the same

42 Chapter 3. Particle Accelerators

timing requirements as the accelerator rings, maybe slightly more relaxed because
the tend to run the same machine sequences for hours on end.

3.3.6 Ion Sources

The common factor of all particle accelerators is that they can only accelerate charged
particles, meaning either electrons or ions. Electrons can easily be extracted by heat-
ing a cathode and drawing them away from the cathode toward a ring-shaped an-
ode, thus creating an electron beam. Creating an ion beam however is usually more
difficult, the necessary effort depends on the chemical element. If the beam element
can be easily evaporated, electron bolt ionisation can be employed. This uses an
electron beam that is shot at free gas atoms of the beam element. If the particle en-
ergy of the electron beam is higher than the binding energy of the electrons at the hit
gas atom, the latter electron will be removed and the atom is ionised. The removed
electrons hit other atoms, creating an avalanche effect. For more durable materials
or rare elements, of which only small quantities are available, sputter ionisation can
be used. In this case an electron beam creates heavy ions from easily ionised mate-
rials, caesium is often used for this purpose. The caesium ions are then accelerated
and used to bombard the beam element, in turn sputtering particles from its sur-
face. After their ionisation, these can be separated from the caesium and directed to
the output of the source. GSI and the later FAIR facility feature several types of ion
sources and can create various types of heavy ions, such as carbon, copper, lead and
uranium for example.

3.4 Miscellaneous Components

3.4.1 Targets

Targets for proton, electron or ion beams literally come in all shapes, materials and
sizes. This ranges from solid, liquid or gaseous elemental targets for pure physics ex-
periments through organic tissue as a heavy ion target for cancer treatment research
right up to satellite components subject to bombardment with artificial solar wind.
Detector arrays vary widely in technology depending on the intended experiment.
They all have in common that they can detect the presence of particles and usually
their energy and trajectory. In any case, the sensor arrays used are usually large ma-
chines with hundreds or even thousands of parallel sensors, producing very high
data rates. In order to depict events correctly, these sensors must be carefully syn-
chronised in order to correlate their data correctly. This requires very accurate time
stamps and precisely timed signals to trigger sensor acquisition on a facility wide
level.

3.4.2 Particle Filters

Particle filters use a combination of an electric field followed by a magnetic field.
The direction of the beam, electric and magnetic field are at right angles to each
other. The whole arrangement acts as a band-pass for a particular particle energy

3.5. Control Systems for Particle Accelerators 43

and charge. Applying Eq. 3.1, the electric field is set to a strength that only parti-
cles above a certain energy are fast enough to pass through without being deflected
into a hollow grounded electrode. Since the previous electrostatic filter already re-
moved particles of undesired charge and below a certain kinetic energy, it can be
assumed that the sorting solely depends on the mass/charge ratio. The following
magnetic field curves the particle path, and is set so only particles with the desired
mass/charge ratio make it further without being deflected into another catcher elec-
trode. This is important for later acceleration stages, because particles outside the
accepted energy window will most likely be lost in beam lines after further accel-
eration, causing unnecessary radiation. Linear accelerators and ion sources usually
have a filter in their low energy stage.

Chopper If the filter is using a pulsed magnet, the whole arrangement is called a
chopper. It is used to chop pieces out of a continuous stream of particles or particle
bunches. The default behaviour is to deflect the beam into a dump, only when the
pulsed magnet is activated, particles leave the chopper through a small slit. This de-
fault can be used as a safety measure if beam supply must be stopped immediately.
In practice, the beam is often pre-bunched in an RF-cavity before the chopper, using
the chopper only to neatly crop the bunch edges, wasting less beam.

3.4.3 Beam Diagnostic Equipment

Many different qualities of a particle beam inside an accelerator are measurable.
There are transversal parameters, like the beam position relative to the centre of the
tube or the beam profile. For heavy ions, this is usually measured with profile grids.
These loom-like devices feature a grid of horizontal and vertical wires with a gas
layer. The passing heavy ions ionise the gas around a wire and create a measurable
electrical potential. By measuring the voltage on all wires, a two dimensional beam
profile can be constructed. Longitudinal parameters are information about particle
distribution along the ring orbit. This includes the number of particle bunches, the
position of a bunch in the ring relative to the RF phase and longitudinal particle
distribution inside a bunch. This is achieved by beam transformer coils placed at
regular intervals around the ring. A bunch of charged particles passing through the
middle of such a coil induce a measurable current, which signal strength and shape
depends on the bunch length, speed and amount of particles. When the signals of all
coils on the ring are correlated with the RF phase, an accurate picture of the bunch
phase and the particle distribution along the orbit and can be deduced [55].

3.5 Control Systems for Particle Accelerators

For CS design, accelerators are a somewhat special field. They combine big geo-
graphical distances with high density of machines in a small space and the accom-
panying complex connections. They are radiation zones and feature the matching
heavy, and often subterraneous architecture. Lastly, many components within a

44 Chapter 3. Particle Accelerators

particle accelerator must run synchronised in order to function, the timing require-
ments grow with geographical distance and complexity of the setup. Large physics
experiments like accelerators are, like telecommunication applications, among the
few cases that can truly benefit from sub-nanosecond accuracy.

The following subsection describes the timing requirements at each point in an
accelerator, starting from the source of a beam and work our way down to its target.

3.5.1 Timing

We shall regard a need for timing as a requirement for synchronisation or measure-
ment accurate to≤ 1 ms. All slower systems can record data and receive commands
with network time distribution over standard computers.

General For an accelerator to work, it needs a high quality vacuum within its
tubes. The vacuum system uses mechanical pumps, direct current (DC) ion get-
ters and heating elements, which are too slow for requiring high accuracy timing.
The same holds for the cryogenic system, as mechanical valves, pumps and heat
exchange are slow.

Source Ion sources can run stand-alone on an RF signal (which is usually mains),
they do not require timed commands or accurate timestamps. When the particles
leave the ion source towards a LINAC stage, they pass an arrangement of particle
filters. These basic filters run on DC and thus do not need timing. If particles are to
enter a ring accelerator after the LINAC, the next station is a pre-bunching cavity.
These RF cavities bunch up a continuous beam into a series of concentrated particle
clouds. To synchronise their RF to others in the system, timed commands can be
necessary.

LINAC Next in line is a chopper, a pulsed particle filter. It is used as a safety
measure (dumping the beam) and to clip bunches. Because it is pulsed, it needs
timed commands. The following LINAC stage interestingly does not need timed
commands, as it solely operates on one RF frequency, phase is given by the gaps
between electrodes. Conventionally mains is used, because a low frequency, high
amplitude RF voltage is needed. However, because other RF is required to stay in
phase, timestamps of mains’ zero crossing point can be necessary (mains frequency
changes over time). Beam diagnostic in this section can benefit from timestamps,
but will not require highest accuracy.

Ring Accelerators The entry and exit points of ring accelerators contain fast kicker
magnets, which need timed commands. For transfers between rings, they also need
accurately timestamped measurements from beam instrumentation and RF. Ring
RF must be phase synchronised and therefore requires timing. The corner dipole
magnets can run on DC if the energy level of the beam stays constant, but need
timing to synchronise their current ramps, the same holds for focusing magnets
(quadru- and sextupol).

3.5. Control Systems for Particle Accelerators 45

Detectors Detectors produce very high data volumes at high sample rates. They
usually are big and modular machines, which benefit from timed commands syn-
chronising sampling start in their modules as well as from accurate epoch times-
tamps for data buffers.

Table 3.1 summarises all device classes in accelerators, which includes the cor-
responding controllers. Their properties are listed in terms of their need for high
accuracy timed commands and/or need for timestamps.

Device Timed Commands Timestamps
Ion Sources no no

LINAC Tanks no yes
DC Particle Filter no no

Chopper yes no
RF Cavities yes no

Dipole Magnets yes no
Quadrupole Magnets yes no

Sextupol Magnet yes no
Kicker Magnets yes yes

Beam Current Transformer no yes
Beam Profile Grid no yes
Vacuum System no no

Cryo System no no
Detectors yes yes

TABLE 3.1: Particle Accelerator Devices and Timing Requirements

The corresponding timing constraints for the planned FAIR accelerator are discussed
in detail in the case study in chapter 4.

3.5.2 Radiation and Shielding

Sources High energy facilities contain areas with strong levels of radiation. Es-
pecially Synchrotron rings can emit strong levels of X-rays at all corner points and
most strongly at their exits when charged particles are kicked out. Heavy ion ac-
celerators like GSI and FAIR produce particle (neutron) radiation when beams are
misguided. Hit components become radioactive themselves, as part of their nuclei
are ripped off by the high energy ions, spreading more particles.

All ionising radiation, that is, radiation powerful enough to remove parts of an
atom, has a deleterious effect on electronics. In low dosage, it can flip bits in RAM
cells, corrupting memory content. On higher dosage, ICs can be permanently dam-
aged, both from induced eddy currents and direct hits on their silicon structures.
Furthermore, continuous exposure to strong radiation increases the attenuation of
fibreoptic cables until their signal to noise ratio eventually becomes unsuitable for
networks.

Countermeasures Depending on the radiation, the required shielding to counter
the effect ranges from thin metal foils all the way to several metres of heavy metal

46 Chapter 3. Particle Accelerators

infused concrete and earth or water tanks. Direct exposure of CS equipment to ra-
diation is to be avoided, which is usually achieved by placing most electronics else-
where. All connections are then routed through so called labyrinths in the shielding,
which means a winding path, blocking line of sight and thus radiation. If it cannot
be avoided, there are measures to detect/mitigate the effects, like error coding and
redundancy.

Implications for Timing and Control Both radiation and shielding prevent phys-
ical access, making deployment, connection and maintenance difficult. Further-
more, shielding denies signal reception, using satellite disciplined timing receivers
is therefore impossible in most parts of the facility. To still get the benefit of atomic
clocks’ long term stability, a feasible alternative is to have one or more satellite disci-
plined receivers in places with good reception, and distribute time from there over
wire or fibre. This makes it a good scenario for employing network based time dis-
tribution services.

3.5.3 Summary

The underlying principles of particle accelerators presented in this chapter implied,
together with the properties of individual sub-components as outlined in section 3.5,
that future proof CSs for particle accelerators are a highly demanding application.
Apart from the telecommunication industry, large physics experiments can truly
benefit from the synchronism of high end time distribution system like WR.

47

Part II

Problem Analysis

49

Chapter 4

FAIR Accelerator Case Study

4.1 Overview

This chapter contains the analysis of FAIR’s requirements of a CS. The chapter is
based in parts on the paper “The FAIR Timing Master: A Discussion of Performance
Requirements and Architectures for a High-precision Timing System” [56]. Timing
and CS requirements are collected from previous experience with particle accelera-
tors, mainly from GSI and CERN.

FIGURE 4.1: GSI accelerator and future FAIR extension [57]
Existing GSI facility in blue, planned FAIR machines in red

Founded in 1969, GSI runs a worldwide unique accelerator facility. The focus lies on
storage ring experiments with heavy ions and a wide diversity of experiments. GSI
distinguishes itself by the large variety of different elements and beam properties
it can offer at high energies and the additional capability to create exotic beams of

50 Chapter 4. FAIR Accelerator Case Study

radioactive isotopes. As a counterexample, CERN is focused on generating proton
beams at extreme particle energies while experiments with heavy elements are few.

The research program at GSI covers a broad range of topics: nuclear, particle and
plasma physics as well as biophysics, material and medical research. GSI is best
known for the development of a novel, state-of-the-art type of tumor therapy [58]
and the discovery of several new super-heavy elements.

The planned FAIR extension is a new particle accelerator complex, designed for
the research of antiprotons and heavy ions (see chapter 3). It has been under con-
struction since 2008 and it is to go into operation in 2018, reaching its final stage of
expansion in 2025. It is being built with the cooperation of an international commu-
nity of countries and scientists on, and next to, the premises of GSI and is to provide
a work environment for 3000 international scientists. FAIR will extend the existing
accelerators of GSI, using them as its pre-acceleration and injector stages. As fig-
ure 4.1 shows, FAIR (red) will expand the existing GSI facility (blue) by adding two
linear accelerators (p-LINAC, CRYRING injector) and four ring accelerators (clock-
wise, starting at 12 o’clock: SIS100, CR, HESR, CRYRING). A fifth ring, SIS300 (not
shown), is planned to be built congruently to SIS100, forming a collider.

The following is a short introduction to different CS philosophies and a summary
of GSI’s legacy CS is given. Afterwards, the concept and requirements for FAIR
experiments will be discussed.

4.2 Control Systems

Experiments on particle accelerators are the result of a highly complex interplay be-
tween various machines. Each action must be executed at a predefined time, as part
of an overall master plan. To conduct experiments with particle beams, magnets, RF
cavities, beam diagnostics and data acquisition need a close coordination. The as-
sociated production chains for a beam, from ion source to target(s), are an involved
scheduling problem, with many interdependences and multiple paths to consider.

The number of planned experiments at FAIR is much higher than at GSI, more
beams are produced in parallel and the number of machines needing coordination
strongly increases. The larger size of the FAIR facility leads to higher signal prop-
agation times but, more importantly, to a higher divergence between them. The
implication of these changes is that a simple reuse of existing GSI CS technology
will not suffice for FAIR.

4.2.1 GSI’s Control System History

The following paragraph summarises GSI’s CS design between 1987 and 2005. GSI’s
CS is a hybrid of VME based computers, connected via Ethernet, and special hard-
ware equipment controllers, dispatching synchronised commands over MIL bus
connections.

The MIL-1553 standard is a field bus system, which was developed by the US
military 1973. It is a robust protocol, designed for avionic and spacecraft CS ap-
plications. It focuses on determinism and separation of bus and terminal systems,

4.2. Control Systems 51

the clock is encoded in the data stream using Manchester encoding. A subset of
the standard was implemented for GSI’s control system at the specified maximum
rating of 1 Mbit/s.

GSI’s control system aimed to carry out actions accurate to 1 µs at hardware level
and accurate to 10 µs at realtime software level [59], [60]. It nevertheless does not
feature a universal time distribution system, all actions were synchronised to ac-
celerator cycles. Only the pulse centres (“Pulszentrale”) had an absolute time, re-
ceivers, in general, did not. If absolute time was required, pulse centres distributed
periodic timestamps over MIL and a static correction for propagation time was used.
Physics calculations were carried out on central servers, the resulting machine con-
trol data was delivered to the pulse centres as precompiled tables. Requests from
experiments and Interlock behaviour made the pulse centres switch between tables.

10BASE2 Ethernet, MIL and analogue lines limited the total possible distance
from the control to ≤ 200 m. The dimensions of the system were defined as “. . . 2750
devices are controlled by 256 ECs in 41 VME crates” [61]. In the post 2001 refurbish-
ment, hardware systems were left mostly as is, software systems were upgraded in
places.

An extremely stable optical RF clock distribution system, the Bunchphase Tim-
ing System (BuTis), was introduced in 2005. Further details are provided under
section 4.4.1.

4.2.2 Other Control Systems

Existing CS’s at other particle accelerators were of interest to this case study, because
their use-cases are similar to GSI. The following account lists the characteristics of
three particle accelerator facilities as well as the technology and properties of their
CS.

CERN, Switzerland The CERN accelerators provide the most important use-case
in the current context because the initiative for the WR time distribution system orig-
inated there. Over the past decades, a multitude of collaborative projects between
GSI and CERN were conducted, suggesting both common interests and use-cases.

As shown in figure 4.2, CERN features various ring and linear accelerators, the
most renowned being the LHC, which is worlds largest and most powerful syn-
chrotron with a circumference of 27 km. The control system consists of a variety of
UNIX based servers, industrial PCs and VME computers running real time Linux
variants and programmable logic controllers (PLC). Both RTOSs and PLCs can pro-
vide determinism in the high microsecond range [62], [63]. These systems are con-
nected over Ethernet, Profibus and WorldFIP field bus. While Profibus was chosen
for its simplicity and easy integration with PLCs, WorldFIP is used for deterministic
operation down to 10 µs and consisting of an infrastructure of more than 40000 el-
ements and 350 km cabling [64, p. 2]. CERN’s central timing system provides UTC
time with 25 ns resolution, which by application of a custom chip can be brought
down to 1 ns. However, this system uses manually calibrated delay compensation,
did not scale well and was an isolated application.

52 Chapter 4. FAIR Accelerator Case Study

FIGURE 4.2: Overview of CERN Accelerator Complex [65].
Rings are shown by labels with year of

commissioning and circumference

Diamond Light Source, UK Diamond is a modern synchrotron light source near
Didcot, UK. A light source generates extremely bright X-ray beams from synchrotron
radiation, usually produced with electron beams. The control system employs VME,
industrial computers and servers running the Experimental Physics and Industrial
Control System (EPICS) framework [66] for soft realtime control and PLCs to im-
plement deterministic control in the low millisecond range [62]. Local FPGA based
systems are able to monitor and correct beam parameters deterministically down to
≈ 100 µs [67].

DESY, Germany The Deutsches Elektronen Synchrotron (DESY) is located near
Hamburg, Germany. DESY is currently best known for its use of electron lasers
as light sources. Most CS properties are quite similar to Diamond, especially the
use of VME and industrial computers running the EPICS framework and the use
of PLCs for safety relevant control tasks. The level of achievable determinism is
also matching in the same range. On the lower levels, various field buses such as
CAN, Profibus and SEDAC, DESY’s proprietary field bus, are employed. Fast local
FPGA systems are also employed, a value of 90 µs was stated in [67]. Like GSI’s

4.2. Control Systems 53

BuTis system, DESY also needs an extremely accurate clock distribution system.
The linear collider requires a phase stability of 1 ps [68]. A more stable design was
proposed in 2006, offering a stability of 10 fs [69]. Like BuTis however, the system
does not provide absolute time and cannot be used for generic control applications,
its sole purpose is the synchronisation of RF cavities.

4.2.3 FAIR CS Use-Cases

The FAIR CS’s main purpose is to provide trigger signals to machines, which is the
same basic functionality the GSI CS supplied. These triggers serve to synchronise
magnet ramps and RF frequency generation, the transfer of beams between ma-
chines and the correlation of acquired data.

Secondly, the FAIR facility is too large to collect data centrally without the ability
to assign epochs to the sampling clocks. For this purpose, timestamps are assigned
to recorded data. These timestamps are required for later correlation. The prerequi-
site is a time distribution scheme that can provide a global, absolute time, synchro-
nised to a high quality reference. This not only enables global timestamps, but also
facilitates trigger generation.

The last goal to achieve is the synchronous generation of sine wave signals. If the
CS endpoints share both time and clock alignment, it is possible to synchronise local
NCOs, generating phase synchronous waves, independent of the endpoint location.
This is called a distributed Direct Digital Synthesis (DDS) and can be used for the
RF system and for other applications, such as the implementation of a distributed
oscilloscope [70].

4.2.4 Philosophy

GSI’s former CS and the concept for FAIR are very different in nature. While GSI
employed an event based system, the approach for FAIR is an alarm based design.
In both concepts, data supply (such as current ramps) can be separated from control.

Events In an event based CS, commands are contained in so called events, which
are messages in the system. Upon reception, receivers immediately execute the con-
tained command. This is simple to set up, but the concept is dominated by transmis-
sion and processing delay. Connections need to be length matched and/or receivers
need programmable delays to achieve synchronous execution of an event in multi-
ple receivers.

Changes to topology require recalibration. In the worst case, adding one new
receiver will require all other lines to be recalibrated to match the new receivers
latency. This imposes a limit to line length and fan out, the calibration is also only
valid within a small temperature range.

Alarms In an alarm based CS, all receivers share the same notion of absolute time.
Messages contain a command and the time when it is to be executed. Upon recep-
tion, an endpoint locally sets an alarm, which will trigger the corresponding action
exactly when due. Contrary to an event-based CS, arrival and execution time are

54 Chapter 4. FAIR Accelerator Case Study

decoupled, thus being conceptually independent of transmission delay. Provided
the dispatch time has a lead greater than the sum of transmission and processing
delay, commands will always be executed on time. This allows arbitrary connec-
tion lengths and almost unlimited fan out, which eliminates manual calibration per
receiver.

4.3 Beam Concept

This section aims to provide an overview of the beam production concept proposed
for the FAIR complex. FAIR is meant to run multiple experiments in parallel and
provide them with different particle beams. The path of a beam from its source to
its target is called a Beam Production Chain (BPC). It is a schedule that describes
the allocation of resources such as beam guides and accelerator stages to the beam,
details are described in its sub-components.

4.3.1 Parallel Operation

The “metro” plan in figure 4.3 gives a first insight into the many ways the FAIR
complex can be used to provide the required beams to experiments. The parallel
occurrence of several colours marks multiplexed paths, referring to beam lines and
accelerators time-shared between multiple experiments. Multiplexing maximises
available beam time, but is obviously an additional scheduling problem the CS must
solve. Multiple BPCs can be grouped into patterns, which describe the multiplexed
set of beams currently under production.

4.3. Beam Concept 55

FIGURE 4.3: FAIR beam-line schematic [71]

56 Chapter 4. FAIR Accelerator Case Study

4.3.2 Beam Production Chain vs Beam Process

FIGURE 4.4: Abstract view of BPCs, complete Pattern [71]
Vertical Flow shows BPCs, horizontal shows Sequences

The whole set of coloured blocks in figure 4.4 shows a pattern. It consist of BPCs
(vertical flow) corresponding to figure 4.3, using the same colour code. The hori-
zontal rows are sequences, which describe a schedule of actions within one resource
(linear accelerator, etc.). Sequences in themselves are a simple concept, merely a
timeline for control message dispatch. They in turn are composed of beam pro-
cesses (BP), the smallest indivisible unit (not shown in figure 4.4). They are simple
series of control messages that cannot be interrupted. Their succession and possible
alternatives can be quite complex however. It depends on external events, like inter-
locks and beam requests from experiments or other accelerators, as well as internal
synchronisation events.

While it seems intuitive that patterns should be completely predictable and all
required successions of machine commands can be computed beforehand, this is not
the case. The CS has to react to both interlocks, such as components not being ready
or failing, and beam requests. Both sources consist of multiple parallel inputs and
the resulting combinatorial space is too large to compute static solutions. Instead,
the CS must have partial alternatives prepared and dynamically choose between
them at runtime. Figure 4.5 shows an example of patterns down to the level of BPs.
Arrows show not only their succession, but also possible alternatives and loops.
The similarity to a flow chart is no coincidence, as this representation is meant to be
implemented as a control program.

4.4. Timing Constraints 57

B:11 B:12 B:13 B:31B:21 B:22 B:24B:23 B:32 B:33
B:01 (pre)

 A:01
A:11 A:12 A:13 A:31A:21 A:22 A:24A:23 A:32 A:33

C:02 (empty: wait only)C:01 (pre)

B:02 (post)

A:02 (post)

A:25 A:26

B:25

Accelerator A

Accelerator B

Storage Ring C

Pattern 1

chain y chain rchain b

C:11 C:12 C:14C:13 C:15

C:03 (post)

(pre)

Accelerator A

Accelerator B

Storage Ring C

B:11’ B:12’ B:13’
B:03 (pre)

A:03
A:11’ A:12’ A:13’

B:05 (post)

A:05 (post)
A:04 (empty: wait only)

B:04 (empty: wait only)

Pattern 2

chain y

B:31’ B:32’ B:33’

A:31’ A:32’ A:33’

chain r

C:04 (pre)
C:11’ C:12’ C:14’ C:13’ C:15’

C:05 (post)

(pre)

FIGURE 4.5: Machine Schedules for the Accelerator

4.4 Timing Constraints

4.4.1 Common Systems

The facility’s timing constraints are to be deduced from machine properties and
requirements from physical experiments.

Vacuum, Cryogenics and Mechanics As described in chapter 3 on page 33, the
sub-components of these systems, like pumps, heating and motors moving probes
or valves, are comparatively slow. They need timing only in the millisecond to sec-
ond range and thus do not tighten timing constraints, although they are of interest
as sources of system interlocks.

Magnets and Beam Diagnosis Most magnets are “slow” components. Except the
kickers, which are responsible for beam extraction and injection, magnets need a
timing accuracy of ≈ 1 µs, which is straightforward to achieve. The same holds for
beam diagnostic sensors, as they usually need several cycles of the beam to gather
data and additionally do not need to be more accurate than the large magnets. While
the kicker magnets need to be timed with an accuracy in the lower nanosecond
range, control is handled by a dedicated system (see subsection 4.4.2).

58 Chapter 4. FAIR Accelerator Case Study

RF Systems Local systems synthesising the cavities’ sine waves must be carefully
phase aligned. BuTis, an optical RF clock distribution system featuring very high
quality oscillators already exists at GSI. It provides a clock with 5 ns period and
allows a phase shift in the low pico second range [72]. The clock stability lies in the
range of 10 fs.

Most of GSI’s systems require the maximum clock uncertainty (jitter) to be less
than 200 ps [72] in order to maintain proper phase relation between RF cavities,
which can be dealt with by the CS. However, the CS must be coordinated with BuTis
to make use of its superior clock stability for the remaining systems. In many places
within the facility, the BuTis 200 MHz base clock must be available, but most ma-
chines do not require the actual accuracy of BuTis. Because of the high cost of BuTis
receivers, a distribution of this signal by the CS is desired for these cases. In ad-
dition, often a specific period of the 200 MHz clock must be marked for reference.
Both requires a 5 ns timing resolution [73].

Detectors Quite often, particle detectors need timestamps to assign epochs to their
sample clocks. The detector systems for FAIR come in two varieties, triggered and
free running. While a triggered system starts a measurement only at the time its
components receive the trigger signal, a free running detector measures every sin-
gle occurrence if its maximum sample rate is not exceeded. It is necessary for
many experiments to correlate data from triggered and free running systems. A
sub-nanosecond trueness and 8 ns resolution already allows correlation for mea-
surement rates in the 10 MHz range, but a resolution of 1 ns would be preferable for
future use-cases.

While BuTis is extremely stable in short and long term, it can show a measured
drift of up to 100 ps over the course of a day, a WR solution is preferred. To elim-
inate calibration efforts, a maximum standard deviation in the range of 10 ps is re-
quired [74], although it could originally not be met by WR. It has subsequently been
improved to meet the required precision [75].

4.4.2 Bunch To Bucket Transfers

FIGURE 4.6: Bunch-to-Bucket-Transfer [76].
Bunches are filled, Buckets are empty circles

A B2B is the transfer of particles from
one synchrotron ring to another and
one of the most involved operations
the CS has to coordinate. The the-
ory is already presented in some detail
in chapter 3.3.3 on page 37, “Require-
ments of Synchrotron Machines”. Fig-
ure 4.6 shows the schematic distribution
of buckets and bunches in SIS-18 and
SIS-100 synchrotrons, the goal being the
transfer of a bunch from one ring to the
other. This requires careful coordina-
tion between both ring RF systems, beam instrumentation, extraction and injection
kicker magnets. The actual transfer is autonomously controlled by the RF system,

4.4. Timing Constraints 59

but the CS must control all dependent devices. The required synchronous RF ref-
erence clocks are provided by the BuTis system, because the CS cannot provide the
needed low picosecond trueness and phase resolution.

To start a transfer, RF regulation loops are deactivated and the system will stay
sufficiently stable in this mode for more than 10 ms [77, p. 100]. During this time,
bunch and bucket positions must be measured, data exchanged, the transfer win-
dow calculated, ring phase shifted and finally the kickers must be commanded to
extract and inject the beam. This leaves≈ 1 ms total time for command distribution.
Because this is a round-trip time, the maximum allowable message generation and
transmission time is 500 µs.

4.4.3 External Requests

Interlocks Their handling is divided into two distinct layers. The first is the ma-
chine and personnel protection layer, which is placed close to the machines where
the error might occur. They are dedicated hardware, able to react in the low mi-
crosecond range, handling critical actions like beam dumps and emergency shut-
downs of power supplies. This is too fast for the CS to react, but it needs to handle
the consequential errors, e.g. a linear accelerator is not supposed to deliver still more
beam after a dump in the following synchrotron has occurred. The reaction time for
interlocks is in the range of ≤ 100 ms, but this involves all necessary processing.
Because many of these signals are safety relevant, their acquisition is handled by
Programmable Logic Controllers (PLC). While being highly reliable and determin-
istic, these systems are relatively slow and can take several tens of milliseconds to
process and forward an interlock signal [62, p. 28]. Afterwards, the signals need
to be aggregated and checked against dependencies provided by the physics frame-
work, e.g. which beam transfer is influenced by error signal X . This is processed in
software on computers running a realtime OS. According to current GSI planning,
all other processing times leave a window of 10 ms for the CS to react.

Beam Requests Target setups and downstream accelerators can request particle
beams from the CS. However, requests are not regarded as time critical. A best
effort service with a reaction time in the same range as the interlocks, i.e. 10 ms is
aimed for.

4.4.4 Determinism and Transmission time

Control systems are realtime systems, of which there are two basic types. Soft re-
altime means the value of results degrade if they are late. Hard realtime means
that late results are worthless, with possible dire consequences. Because FAIR’s CS
is hard realtime, the primary goal is to ensure commands (results) are never late.
The central attribute to achieve is therefore deterministic behaviour, providing up-
per bounds on how long any CS action can take. The delivery time of messages to
endpoints is one of the most important factors.

Table 4.1 contains preliminary estimates for message delay over a WR based net-
work. The data is based on the figures provided by Lipiński et al. [78, p. 15] and is

60 Chapter 4. FAIR Accelerator Case Study

calculated specifically for the FAIR scenario, assuming five layers of switches, 2 km
total link length and a maximum control message size of 1500 B. The example shows
the necessary time for the transport of command messages over a WR network, in-
cluding the time for FEC [78]–[80].

Name Value Value
Min Max

Eth Frame TX Delay 0 (13 + 3 · 9)µs
Switch Routing Delay 0µs 13µs
Link Delay 2km · 5µs/km 2km · 5µs/km
Eth Frame RX delay 3µs 9µs
FEC Encoding 2µs 2µs
FEC Decoding 2µs 2µs
Sum 17µs 128µs

TABLE 4.1: Delay estimation for control messages
Case for 5 Switches, 2km link length, Message Size 500 and 1500B

4.5 Reliability

4.5.1 Availability and Robustness

Availability At present, the CS for FAIR has been specified to have a “high avail-
ability”, though a specific figure for uptime was never postulated. A reverse ap-
proach, from an analysis of CS module prototypes for their mean time to failure
(MTTF) or availability figures was not feasible either. Figures are available for the
WR network, but the MTTF figures are not calculated for WR switches, but were in
fact taken from switches manufactured by Cisco [80]. While there is an extensive
analysis available for the hardware of the main FAIR timing receivers, none exists
for their firmware and software. This analysis would be a difficult prospect in any
case, because many components are still under development and subject to frequent
changes. No updated values for any of the above systems were available until the
submission of this thesis in the beginning of 2017.

Robustness The most important factor for flawless operation of the CS is the oc-
currence of transmission errors. The estimated bit error rates for fibre links showed
a probable occurrence of frame loss of 3.94× 10−7, which would, assuming FAIR’s
expected traffic, be roughly equal to 12.4× 104 lost frames per year [79]. When
gathering requirements for the FAIR CS’s robustness, there was only a semi-official
statement available, quoting a management decision for “less than one lost timing
message per year” [81]. Despite being elevated in subsequent publications to an ab-
solute requirement for a frame loss rate of 3.17× 10−12 at GSI [80], the value in the
quote was chosen arbitrarily should therefore not be treated as a hard requirement.

4.5. Reliability 61

Best Effort Because of the insufficient data, no numerical values for robustness
and availability were included in this analysis of the CS requirements. Further
analyses to obtain more accurate requirements have been postponed.

The CS is not responsible for preventing harm or damage caused by errors dur-
ing the operation of the facility. Machine and personnel protection is handled by
dedicated hardware systems at the controlled machines. In case of personnel pro-
tection, these systems also have to undergo an official certification process. For this
reason, the lack of specification for availability and robustness of the FAIR CS was
considered tolerable by the responsible executives. All measures taken for fault tol-
erance listed under 4.5.2 serve to increase beam time and ease maintenance (see
chapter 3.5.2), but the CS only has to provide a best effort service.

4.5.2 Fault Tolerance

Due to the stringent timing constraints of the CS, there is no time available for re-
transmission of corrupted or lost frames, yet the CS requires deterministic message
delivery for operation. This implies that packet loss must be avoided in the first
place.

Preventing Packet Loss Protecting an Ethernet based system against packet loss is
not trivial, because while the frame checksum will detect most errors, no corrections
are made. The standard behaviour according to IEEE 802.3 Ethernet [82] is to discard
a faulty packet, which is called a Packet Erasure Channel (PEC). To prevent packet
loss, a combination of two layered Forward Error Correction (FEC) algorithms has
been proposed [80], [78, p. 23].

Between Switches The concept preserves the compatibility to IEEE 802.3. Be-
tween WR switches, faulty frames will be dropped, forming a PEC. Codes suitable
for PEC encode k frames into n frames, with k < n. The reception of any subset of
k frames at a timing receiver allow the reconstruction of the original frames. Details
on concrete algorithms are presented in [78, p. 24]. Furthermore, redundant links
were suggested between WR switches to allow continuation of operation in case of
link loss and to mitigate packet loss.

Between Switch and Receiver However, between a WR switch and a timing re-
ceiver, there is no need to drop packets containing errors. The reason is that neither
compatibility with IEEE 802.3 has to be maintained, nor is the header information
required any more, as this is the last link in the chain. Only faulty bits pose a prob-
lem. This forms a Binary Erasure Channel (BEC). A variety of different encoding
schemes is suggested, the final choice depends on the number of expected bit errors
per frame [78, p. 25].

In the end of 2016, no implementation was available for the testbeds used in this
thesis. The FEC will therefore be treated as a black box, the bandwidth increase
caused by the FEC scheme is assumed to be at a factor of 3 to 4 [83], [78, p. 68].

62 Chapter 4. FAIR Accelerator Case Study

4.6 Summary of FAIR CS Requirements

The obtained requirements are not complete and in some cases quite loose. It has
to be taken into account though that the FAIR accelerator was to be designed for a
lifespan of 25 to 30 years. The CS requirements hinge on those of the experiments,
which are only loosely set for the whole lifespan. This is because each generation of
experiment setups changes with the obtained results of previous experiments and
progress in the field as a whole. Experimenters therefore tended to be very noncom-
mital when asked about their CS needs. Since research and development for the
FAIR CS had to proceed regardless, this meant a necessity for pessimistic extrap-
olation from known usecases and massive overengineering to make the resulting
system as future-proof as possible.

The gathered information was used as the design criteria for this thesis to outline
and investigate approaches for sub-modules of the FAIR CS. The sub-modules con-
sist of the CS master unit (Data Master) and a protocol for deterministic data trans-
mission between SoC systems. Choosing WR was a management decision made
before the start of this work, so was the choice to base the CS on GbE over optical fi-
bre. However, the case study’s results do not contradict the validity of this decision,
as all requirements of the FAIR accelerator can be fulfilled by a WR based CS.

The goals of the new CS design are:
• FAIR Concept

– Independence of the CS from geographic distance, fanout and temperature drift

– High parallelism i.e. supplying multiple experiments with different beams at
the same time

– Highly optimised utilisation of the facility

• CS Concept

– Separation of control and data supply

– Absolute Time

– Alarm based CS

– Provide Triggers, Clock Signals and Timestamps

– All Commands available to all Endpoints

• Scale

– Endpoints ≥ 2000

– High Robustness no value available

– High Availability no value available

– CS Reaction time ≤ 10ms

– Node Distance 1 to 2000m

– Net Command Bandwidth ≥ 100Mbit/s

4.6. Summary of FAIR CS Requirements 63

• WR Time Distribution

– Time Resolution 1 to 5ns

– Trueness to Ref. (Mean) < 1ns

– Precision (Std. Dev.) ≤ 10ps

– Satellite Disciplined Time Reference,
24h stability 1× 10−10 to 1× 10−12 ADEV

• Communication

– Standardised Field Bus

– Broadcast Command Stream

– Deterministic

– Protection against Packet Loss and Bit Errors (FEC)

– Link Length 1 to 2000m

– Maximum Latency ≤ 500µs

• Master Unit

– Synchronised to Time Reference

– Generate Command Stream from Beam Production Schedule

– Serve Interlocks and Requests at Runtime

– Guarantee timely Command Delivery

• Receiver Unit

– Synchronised to Time Reference

– Filter Command Stream

– Generate Triggers

– Issue Timestamps

– Distributed Frequency Synthesis

65

Chapter 5

Technology Survey

5.1 Overview

The evaluation of the case study in order to choose a hardware platform for the DM
produced mixed results. While it did become clear that some of the timing con-
straints are very tight, pointing in the direction of a hardware solution, the analysed
use-cases also require a high degree of flexibility from the system, which indicates a
software solution. In this chapter, the limits of hardware and software solutions are
discussed and evaluated in context of the case study’s result.

5.2 CPUs

With increasing complexity and number of processes, keeping code execution and
synchronisation deterministic becomes ever more challenging. Fast modern CPUs,
especially multi-core architectures, offer vast processing power. Their drawback is
that they require a managing OS to unlock most of their advanced features. These
have worst case service latencies in the low millisecond range and do not really
guarantee service at all, making them unusable for the DM architecture.

This issue can be mitigated by using a specialised RTOS. These are deterministic
and can offer reaction times in the low microseconds range. Most are made for
Micro-Controllers (MCU). The reason why very few RTOSs target modern, multi-
core, out-of-order-CPUs is that a delay bound is extremely difficult to obtain due
to all the optimisations they feature to speed up average processing time. While
there are general purpose RTOSs, they are dubious candidates for a CS like the FAIR
case study with a time resolution 1× 10−9 s. Deterministic just means having an
upper latency bound, it does not provide any information about the tightness of the
bound. General purpose RTOSs work by deactivating some hardware acceleration,
assigning quite loose bounds to the rest and implement strict scheduling policies in
order to give guarantees. Naturally, this does not lead to the best of reaction times.
We will therefore focus on RTOSs targeting MCUs.

Table 5.1 shows the latency measurements for a PowerPC 604 CPU (300MHz)
on a MVME2306 board [84]. The discussed timing constraints could possibly be
achieved with an MCU running an RTOS system, but as shown in table 5.1, jitter is
in the range of several microseconds. There are also strong peaks under load (which
would be common, since the RTOS has to handle all machines and IO sources in
the system) which go as high as 200µs. We must also bear in mind that a network

66 Chapter 5. Technology Survey

transmission time between 80 and 200µs must be added to the total reaction time, re-
stricting the use even further. This leads to the assumption that an MCU with RTOS
would probably be capable of running the required number of machine agents, but
as figures show, could hardly cope with timing requirements for IO service requests.

Interrupt Latency Context Switching
max avg ± max avg ±

Idle System
RTL 13.5 (1.7 ± 0.2) 33.1 (8.7 ± 0.5)
RTEMS1 14.9 (1.3 ± 0.1) 16.9 (2.3 ± 0.1)
RTEMS 15.1 (1.3 ± 0.1) 16.4 (2.2 ± 0.1)
vxWorks 13.1 (2.0 ± 0.2) 19.0 (3.1 ± 0.3)
Loaded System
RTL 196.8 (2.1 ± 3.3) 193.9 (11.2 ± 4.5)
RTEMS1 19.2 (2.4 ± 1.7) 213.0 (10.4 ± 12.7)
RTEMS 20.5 (2.9 ± 1.8) 51.3 (3.7 ± 2.0)
vxWorks 25.2 (2.9 ± 1.5) 38.8 (9.5 ± 3.2)

TABLE 5.1: RTOS latency measurement results [84]
Times in µs

The figures used in the discussion in [56] are from 2001 [84], so their absolute values
are not a criterion for exclusion today. However, they attest to a basic trend which
has not changed over the years, as newer studies from 2009 and 2011 show: RTOS
systems tend to behave very differently under high load, the bounds they provide,
are loose [63], [85, p. 308]. The IO bottleneck, resource arbitration and scheduling
overhead pose a severe hindrance to satisfying the performance requirements of the
FAIR case study. In view of the time available to react, there is a strong indication
that a pure software solution on an RTOS will not be able to satisfy all requirements.
The situation would be worse if a high end multi-core processor is involved. Stan-
dard OSs are completely out of the question, as their schedulers are not meant to
provide sub-millisecond reaction times or any kind of determinism.

5.3 Hardware

Since the CS is about timely generation and distribution of messages, a digital signal
processor (DSP) in combination with a network integrated controller (NIC) might do
the job. Pure chip solutions are very fast and deterministic. But as inquiries with sil-
icon manufacturers like Texas Instruments, Intel and several others confirmed, there
is no off-the-shelf that available which offers the majority, if not all of the requested
features. While this was to be expected, there are a lot of companies who offer ap-
plication specific integrated circuits (ASIC). These chips are bespoke, customised for
the job they were designed for and do it perfectly, with no workarounds necessary.
A pure custom hardware solution such as this would satisfy all of the given timing
constraints and provide all the requested functionality.

There is one major problem though, which has little to do with hardware ca-
pabilities and much with development flow of the FAIR project. Requirements are

5.4. Programmable Hardware 67

coming from a large number of different people from different specialist fields with
no coordination, but are drip fed into the specifications. This is not overly surpris-
ing for a system that is meant to operate for the next 25 years. People are careful
what they wish for and feature requests tend to be iterative. This is especially the
case in large physics experiments, where the boundaries of knowledge and there-
fore expectations from a new facility, are expanded by the continuous work of ones
own and other institutions in the meantime.

So while such ASICs would be perfect for the job, the design requires complete
feature lists and the final product offers no flexibility. Even within the first ten years,
it is inconceivable that one chip would be capable of meeting the evolving require-
ments. Instead several generations would be necessary, separated by long develop-
ment cycles and not inconsiderable amounts of money. The task of implementing
future changes and expansions would be hard at best and therefore discourages
such a solution if there is an alternative.

When thinking about the design process of ASICs, one element is prominent.
ASICs are made by describing the chips logic in a hardware description language
(HDL). These are in turn optimised and synthesised into gate logic plans, which can
be constructed in silicon. There is another technology which has a similar design
process, which would allow the length of development cycles to be reduced and cut
production cost to a bare minimum: Programmable Hardware.

5.4 Programmable Hardware

5.4.1 Introduction

Programmable hardware has existed for several generations now. They emerged
from standard, digital circuits with a fixed logic when people tried to generalise
circuit design in order to reduce fabrication effort. The basic concept was simple:
using Boolean canonical logic like disjunctive (DNF) or conjunctive (CNF) normal
forms [86][56-61]. Any logic table can be described in such a normal form. Table 5.2
shows an example, expressed as a DNF. Column elements are connected by logic
and, whole rows by logic or. The implemented logic function solely depends on
whether individual inputs are in positive or negative (inverted) logic. This means
that a large number of different logic applications could be implemented using the
same basic logic gate constructs.

A B
0 1
1 0

TABLE 5.2: Simple Example of a Logic table
In DNF: not(A) and B or A and not(B)

This was first postulated in the late 1970s as Programmable Array Logic (PAL)
or Programmable Logic Arrays (PLA) [86][161-165]. Both are implementing sums
(or) of product terms (and) in a configurable matrix [30][764-768]. The first versions

68 Chapter 5. Technology Survey

used one-time programmable input choices in the form of fuses. Using a higher
voltage for programming, such a fuse could be tripped, permanently severing the
connection to either the positive or negative signal input. In the next generations of
chips, the configuration could be set more than once. Chips could be erased, some
even by such exotic mechanisms like shining UV light directly on the chip’s silicon
structures.

Current implementations of programmable logic use a look-up table variant of
a DNF, with 8 or more inputs. Multiplexers are used to choose the inputs, RAM
cells store the bits to control the multiplexer selection. Apart from implementation
details like these, the basic principle of configurable logic stayed the same for more
than 35 years.

5.4.2 Advanced Capabilities

The two commonly used chip types today are Complex Programmable Logic De-
vices (CPLD) and Field Programmable Gate Arrays (FPGA). The main difference
lies in the complexity of employed silicon structures. CPLDs are made for fast, sim-
ple interconnection of many IOs and keep their programming internally. FPGAs are
slightly slower and additionally require an extra flash chip to contain their program.
In exchange, FPGAs feature far more complex silicon blocks, like full adders in each
macro cell, fast communication blocks (as used for Gbit Ethernet and above) and
even DSPs to speed up multiplication and division. In addition, modern FPGAs
contain not only logic cells, but RAM cells as well.

1
2
3
4
5
6
7
8

ALMCInputs

ALM

8-InputCFracturableCLUTC

Register

Register

Combinational
Logic

Adder

Adder

TwoCRegistersTwoCAdders

regout(0)

combout(0)

regout(1)

combout(1)

FIGURE 5.1: Block Diagram of an FPGA Macro Cell [87]

The lowest logic groups in FPGAs implement some form of product terms. To en-
hance performance, they are grouped with more specialised silicon. Figure 5.1 il-
lustrates how full adders are added to the LUTs, followed by optional registers.
Registers are necessary to form synchronous designs, as only the signal time be-
tween register stages needs to be bound, not between source and destination. The

5.4. Programmable Hardware 69

top and bottom of figure 5.1 also shows the carry lines leading in out of the logic
block. These can optionally be connected to neighbouring logic cells, forming wider
ripple-carry adders.

The omnipresence of registers in standard logic cells makes the development
of large synchronous designs possible, ,and, in the newest generations of FPGAs,
the trend goes to inserting even more optional registers directly into the intercon-
nect logic. Current FPGAs also tend to offer a large variety of specialised silicon
controllers, as illustrated in figure 5.2. The depicted FPGA contains, among other
peripherals, a pure hardware implementation of a PCI Express bus controller (“PCIe
Hard IP Blocks”). Most importantly among their specialised cores, FPGAs also
feature analogue circuits, digitally controlled, fractional PLLs (see Phase Locked
Loops, 2.4.2). These are used to generate almost any arbitrary fraction or multiple
of input clocks, they can add programmable phase offset and distribute the clock
signals inside the FPGA or to output pins.

The clock frequencies, at which designs are run, are scalable and largely depend
on the length of combinatorial logic paths between registers; the minimum clock
period is determined by the maximum signal propagation delay between registers.
If the system is to be synchronous, all data has to arrive at the next register stage,
poetically speaking, before the clock strikes. The shorter and balanced logic paths
are, the faster the circuit can be clocked.

Performance Today FPGAs are able to mimic almost every conceivable digital cir-
cuit, ranging from a simple counter to a full blown embedded CPU. Their major
advantage is their high degree of flexibility. State of the art FPGAs (2016) manage
clock frequencies of up to 1 GHz core performance. This is the maximum frequency
at which logic cells can be clocked and is not to be confused with design perfor-
mance, which is limited by parameters such as logic depth and always lower than
core performance. The number of logic cells varies for different models and are not
totally comparable, as their computational performance depends on the number of
inputs and whether they can be split to contain independent functions. For cutting
edge FPGAs, the number logic cells ranges around 5-6 million, RAM cells range up
to about 30 MB [88]. These figures might seem quite low from the PC perspective,
where systems with more than 16 GB memory are common. But the charm of FPGA
RAM cells lies in parallel control: it can be split to be assigned to dozens of different
logic cores and natively supports full parallel dual access with single cycle latency.
This provides excellent determinism and eliminates the need for caches on CPUs.
Current FPGAs also feature dedicated high speed transceivers, up to 30 Gbit/s per
connection. They are therefore well suited for network applications.

70 Chapter 5. Technology Survey

CoreSLogicSFabric
andSMLABs

M10KSInternal
MemorySBlocks

Variable-Precision
DSPSBlocksHardSMemorySController

I/O,SLVDS,SandSMemorySInterface

HardSMemorySController
I/O,SLVDS,SandSMemorySInterface

Transceiver
PMA

Transceiver
PMA

Transceiver
PMA

Transceiver
IndividualSChannels

C
lo

ck
SN

et
w

or
ks

Hard
PCS

Hard
PCS

Hard
PCS

T
ra

ns
ce

iv
er

SP
M

A
SB

lo
ck

T
ra

ns
ce

iv
er

SP
M

A
SB

lo
ck

H
ar

dS
P

C
S

SB
lo

ck
s

H
ar

dS
P

C
S

SB
lo

ck
s

P
C

Ie
SH

ar
dS

IP
SB

lo
ck

s

P
C

Ie
SH

ar
dS

IP
SB

lo
ck

s
F

ra
ct

io
n

al
SP

LL
s

F
ra

ct
io

n
al

SP
LL

s

FIGURE 5.2: Functional Layout of an FPGA (Altera Arria V GX) [89]

As a comparison to the actual platform chosen for the DM during the work
of this thesis in 2012, the employed Arria V GX chip has a core performance of
500 MHz. It features roughly 500k logic cells, and about 4 MB worth of RAM cells.
The high speed transceivers can manage 3.5 Gbit/s per connection [89]. For the
DM implementation described in chapter 7, the calculated maximum design perfor-
mance on an Arria V GX is 138 MHz, the implemented (and verified) performance
lies at 125 MHz.

Inside Informant One of the biggest benefits of current FPGAs, which has not
been addressed yet, is In-System-Debugging. All large hardware manufacturers
provide tools for their FPGAs, which allows logic to be configured as hardware
logic analysers. These can tap the design currently developed, employing neigh-
bouring, idle logic- and memory cells to do so. This allows complete examination
of the design under investigation and makes the results available at the developer’s
computer. In-System-Debugging is an invaluable asset for programmable hardware
development, considerably shortening development cycles.

5.4. Programmable Hardware 71

5.4.3 The Limits of State Machines

Specialised logic cores are perfect when determinism and high throughput are called
for, since they work in parallel, and do not need to share resources, there are no
bottlenecks by design either – parallel tasks is where they excel.

But this also gives a first hint to the drawback – long sequential tasks are hard
to implement. When using HDLs the assignment of hardware has a much higher
impact on design performance than the way software compilers choose processor
instructions. HDLs are therefore talkative languages, especially when it comes to
the description of complex finite state machines (FSM). The development process is
tedious and error prone when providing FSMs with a large degree of flexibility.

If there is a need for specialised logic cores, yet some tasks are highly complex
sequences, there comes a point when the capabilities of a CPU are definitely called
for. A processor that can synthesised for an FPGA and run a program with the
desired task would provide all the desired benefits without adding a physical CPU.
It costs less hardware resources than a comparable FSM, is easily maintainable and
increases flexibility to a new level.

5.4.4 Best of both Worlds

Building from Scratch Due to the given flexibility in an FPGA, building a com-
plete custom Soft-CPUs (SCPU) tailor-made for the given scenario is possible. Yet
the major drawback of a custom processing unit, wielding its own instruction set, is
the development in a total void: there are no existing tool chains. Virtually every-
thing in a tool chain that makes a productive work-flow possible must be created
from scratch, including assembler, linker, compiler, debugger etc.. There will most
likely be little community support, because the application is very narrow. Since the
scenario requires standard functionality like basic arithmetic, counters, loops and
realtime clock support, there will be a lot of redundant work. A better choice would
be the evaluation and possible adaptation of existing SCPUs.

Existing CPU Designs There are several open source SCPU as well as a couple of
commercial ones available today. Soft-CPUs in FPGAs are a fast, lightweight alter-
native to real hardware CPUs. An extensive investigation of existing open source
SCPUs has been conducted in the scope of the FAIR case study [90]. The proces-
sors have been evaluated in terms of processing capabilities, logic footprint, mem-
ory usage, periphery and documentation. There are several promising architectures
available, which could be instantiated multiple times in a high-end FPGA.

72 Chapter 5. Technology Survey

FIGURE 5.3: Block Diagram of Lattice Mico 32 Soft CPU [91]

A good approach would therefore be using tried and tested open source SCPUs
and enhance them with custom periphery, or, if need be, modify the processors.
This can range from adding new specialised registers, changing the way memory is
accessed or extending their instruction set. The best choice from the evaluation in all
categories was the Lattice Mico 32 (LM32). It is a powerful 32 bit RISC processor (yet
at around 2000 logic cells still lightweight enough to be instanced multiple times),
with excellent documentation and a large community. It is also fully configurable,
having individual build switches for caches, hardware multiplier, barrel-shifter and
JTAG debugging interface (see figure 5.3).

5.4. Programmable Hardware 73

5.4.5 The missing Link

The last open problem is then interfacing such an SCPU to the specialised hardware
cores needed to satisfy the tight timing requirements of the case study. The LM32
processor natively provides an interface for the open source WB Bus standard [92].
A bus system allows the creation of a System-on-Chip (SoC), a small scale computer
system inside the FPGA. If all specialised cores were to feature a bus interface, full
integration with the LM32 firmware is achievable, providing hardware acceleration
whenever problems could not be handled solely by the SCPU. It further allows easy
interfacing with external computers providing set values and operator control, if
there were a protocol able to extend the bus interface outside the FPGA (see chap-
ter 6, “Etherbone Protocol”).

5.4.6 Wishbone Bus Protocol

Wishbone (WB) is an open source bus standard created by the OpenCores Organi-
zation. The latest version as of 2016 is B4, which was released in 2010. WB is aimed
at programmable hardware such as FPGAs and ASICs. Its focus lies on providing a
robust and portable bus standard, thus enforcing compatibility between logic cores.
However, while WB is a cycle based bus with strict master/slave roles, it was de-
liberately designed not to unduly constrain bus configuration, such as address and
data widths, handshaking, topology and routing [92].

Choice In 2011, the decision was therefore made to employ the LM32 processor
on FPGAs as part of a WB based SoC system. These systems are the infrastructure
allowing timing endpoints to run the White Rabbit Timing protocol and the DM to
form an RTS running machine schedules and dispatching timing messages.

The chosen WB configuration uses 32 bit addresses with 32 bit wide data and
sub-word access, but is compatible to 8, 16 and 64 bit setups. It further supports
flow control and pipelined operation.

75

Part III

Approach and Implementation

77

Chapter 6

Etherbone Protocol

6.1 Overview

The choice was thus made to build the FAIR CS using SoC architecture based on
the WB Bus protocol (as described in 5.4.6) and using WR as the timing protocol.
This opened the question of the interface over which SoCs should exchange data
with each other and CS computers. A uniform interface for different hardware plat-
forms was necessary, ideally supporting common network technology, as it is well
tested and scalable. This led to an investigation into the possibility of transparently
extending the WB SoC bus to another device. A decision was made in favour of a
reusable approach, which should be able to model generic WB bus transactions, not
just information specific to the FAIR or CERN CSs.

After a discussion of existing low level network protocols, the need for a spe-
cialised protocol for CSs became apparent. The following steps are the design con-
siderations for the EB protocol. This chapter is based in large parts on the journal
article “Open borders for system-on-a-chip buses: A wire format for connecting
large physics controls” published in 2012 by the American Physics Society [93].

6.2 Purpose and Environment

There are several SoC bus systems available today. Typically, these buses are con-
fined on-chip and rely on higher level components to communicate with the outside
world. Taking these systems a step further, it is possible to extend the reach of the
SoC bus to remote Field-programmable gate arrays or processors. This lead to the
idea of the EB core, which connects a WB Ver. 4 Bus to remote devices. EB was
named after the underlying technologies of its first implementation, Ethernet and
WB, but is not bound to a specific hardware or transport protocol. It is today, as of
2016, available over Peripheral Component Interconnect Express (PCIe), Universal
Serial Bus (USB), User Datagram Protocol (UDP) and Versa Module Eurocard-bus
(VME).

EB was designed as a fast, low-level network protocol, intended for either soft-
ware to hardware or hardware to hardware communication. It was developed in
the scope of the WR Timing Project at CERN and GSI/FAIR and, due to the origin
in accelerator CSs, it focuses strongly on determinism.

EB acts as a transparent interconnect module towards attached WB Bus devices.
Address information and data from one or more WB bus cycles is preceded with a

78 Chapter 6. Etherbone Protocol

descriptive header and encapsulated in a network packet. Because of this standard
compliance, EB is also able to traverse Wide Area Networks and is therefore not
strictly bound to a geographic location, if the higher latency is acceptable for the
application. Due to the low level nature of the WB bus, EB provides a sound basis for
remote hardware tools like a Joint Test Action Group (JTAG) debugger, In-System-
Programmer, boundary scan interface or logic analyser modules.

The following considerations apply to the original Ethernet based version.

6.3 Requirements

Timing Challenge Control of the accelerator’s machines is time critical, but limits
vary from a few nanoseconds, over several microseconds up to hundreds of mil-
liseconds. When compared with a delivery time of ≤ 500 µs for an EB packet, this
leads to several conclusions:

• All actions need to be known in advance

• All actions must be precisely timed

• No time for acknowledgement or re-transmission

→ A deterministic, low latency command distribution system is necessary

For the efficient running of the accelerator it is clearly necessary that the CS must
produce signals that are deterministic, i.e., the time at which an action is carried out
must be precisely known and reproducible. To facilitate this, it is necessary that
there is minimum delay in the path from the generation of the signal to its use.

Deterministic command distribution EB was designed to have very low latency
and high determinism, giving secondary consideration to throughput. Because of
this specialisation, EB application focuses on commands rather than the transport of
raw data. Separation between the data and the commands working with this data
is possible in most cases. This means machines are fed with data via a standard
network infrastructure and also receive EB packets over the timing network, con-
taining a command to carry out a preset action and a time of execution. EB is also
able to address all specialised control blocks inside the WB HDL designs directly, a
fact that is very useful for this implementation. For example, consider remotely pro-
gramming a function generator with a parameter set for output level, gate length,
and a sequence of trigger pulses plus a time stamp to execute all this. The function
generator would be a WB memory mapped device, so EB will provide direct and
easy access to all its registers and functions.

Compatibility and expandability Particle accelerator facilities like GSI and CERN
host large heterogeneous pools of equipment, which have evolved for more than 40,
or in CERN’s case, almost 60 years. Most equipment at the LHC and on the FAIR
project is quite new, but there are still many legacy systems to cover. FPGA based
technology enables all sorts of adaptors and converter logic with little or no extra

6.4. Further Applications 79

hardware effort, while Ethernet based infrastructure easily covers the distances in
growing facilities. This shall also be reflected by the next generation CSs.

6.4 Further Applications

There are many places on site where well-known hardware tools like debug mod-
ules, in-system programming adaptors, logic analysers, and similar are needed to
deploy, maintain, and upgrade hardware. Because of the distances between nodes,
which are about 2 km at FAIR and 10 km at CERN, and the quantity of nodes in-
volved, routing was another requirement of EB. It will not only reduce the time it
takes engineers to travel on site, but also makes automated testing easier. Personnel
can also collaborate more easily, since access to the hardware tools can be shared
over the network. Last but not least, it is possible that the electronics are not accessi-
ble during beam time and for some time afterwards due to radiation concerns. This
feature will reduce time requirements for maintenance and deployment.

6.5 Related Work

There are many different examples of available protocols for direct data exchange.
Among the most commonly used low-level were Myrinet in the super-computing
sector (almost completely replaced now by Ethernet based equipment) and differ-
ent Remote Direct Memory Access (RDMA) [94], [95] implementations. While there
are pure software implementations of RDMA, their latencies cannot compete with
hardware implementations like Infiniband [96] or iWARP [97], which can achieve
latencies below 7 µs. However, these are mostly optimised for maximising through-
put, while short message latency is a secondary factor. PCI Express falls into the
same category and will be addressed later in more detail.

There are also high level protocols available like the Common Object Request
Broker Architecture (CORBA) [98] and the Simple Object Access Protocol (SOAP) [99],
which aim for abstract software to software communication in heterogeneous envi-
ronments. While being very versatile, due to their higher logistics overhead and
generic nature, they are not well suited for fast communication between software
to hardware or hardware to hardware implementations. The common factor of the
above is that they are not tied to a specific underlying bus protocol at their end
points. While they keep data content, they will not preserve syntax during trans-
port.

PCI Express A comparison of widely used field buses, such as USB, PCI, and
PCIe [100] showed PCIe as the best match to the niche EB is aiming for. As will
be shown in detail in section 10.3, PCIe does not quite achieve the required low
overhead though, mainly because of difficulties associated with routing and inter-
facing to other systems. PCIe has nevertheless many features that are desirable for
EB. Like the GbE Interface, EB uses a 125 MHz clock rate. While the network end
point uses an 8 bit interface, the WB interface connected to EB is 32 bit wide, giving
it 4 times the bandwidth. Regardless of delays for processing the packet structure,

80 Chapter 6. Etherbone Protocol

the difference in bandwidth ensures EB is fully capable of streaming. EB has several
design traits in common with PCIe. Both are serial field bus protocols, they feature
error detection in the form of a cyclic redundancy check (CRC) to ensure packet in-
tegrity, carry routing information, and provide quality of service (QoS). Also, both
protocols go all the way down to the physical layer. PCIe features auto-discovery of
bus devices, which is also present in WB and (and therefore EB) since March 2012
under the name self-describing bus (SDB) [101].

However, there are also differences. While PCIe is packet-based from the bot-
tom up, EB’s underlying WB bus is cycle based. PCIe was also designed for higher
throughput than WB, by bundling several lanes into one connection, and is meant
to run at higher frequencies. This said, there are also differences to EB on the upper
layer. The first lies in the routing capabilities. While PCIe can be switched much
like the MAC layer of Ethernet, it cannot do complex routing and most importantly
is not native to wide area networks. This makes long distance connections over
common network architectures impossible. PCIe could of course be encapsulated
in IP packets to do just that, but given the similarity between PCIe and Ethernet/IP
packet headers, this would be almost completely redundant and therefore double
the overhead. PCIe is more powerful than WB, but it also has its downsides. The
controllers are vastly more complex, most of this is due to backward compatibility
for PCI. It is much harder to implement in an FPGA than WB and therefore takes
up many times more resources. Also, while PCIe controller chips are readily avail-
able, high quality HDL cores providing similar functionality are all commercial and
closed source. Superior routing capabilities, easy connection to HDL blocks, the
possibilities for expansion, and the focus on latency over throughput make EB a
worthwhile project to investigate. To conclude the evaluation, all differences are
based on the trade-off between flexibility and extensibility on the one hand versus
latency and overhead requirements.

6.6 Architecture

6.6.1 General Consideration

FIGURE 6.1: Compatibility between EB node
types

Since bus protocols can differ greatly in
their operation and packet layout, con-
version between them can severely re-
duce fidelity. For EB, WB B4 there-
fore has been chosen as the bus imple-
mentation, while leaving the underly-
ing transport protocol open. There are
two categories of EB devices under de-
velopment: buffered, non-deterministic
software modules and low-latency, de-
terministic streaming hardware cores
(see figure 6.1). Software nodes are used
for all applications where determinism
and latency are not the main issue, but

6.7. Etherbone Design Choices 81

interoperability and fidelity of bus signals are. Examples would be a developer’s
remote computer, running a serial console on one of the timing end points or de-
bugging software via JTAG module on an embedded system elsewhere on the site.
Figure 6.3 shows an example block diagram of such a setup. The top box contains
the EB library running on a PC, while the lower is an FPGA board hosting an EB
slave. It is attached to multiple HDL blocks via a WB interconnect. The EB software
library provides a generic interface for the driver, and the method of connection to
the EB device is not visible to the application. Most packet-based protocol could be
applied to carry EB information, so an EB device locally connected via USB would
behave exactly the same as if it were connected remotely over Ethernet. Hardware
nodes operate in full streaming mode, they are fully deterministic and designed to
minimise latency. An application example for a hardware node would be an end
point of a timing system, receiving commands to generate a pulse at a specific ex-
ecution time. The deterministic characteristics of EB ensure that the available time
frame for delivery does not vary. Streaming provides low latencies, reducing the
reaction time the CS has to an event occurring elsewhere on the timing network.
Hardware implementations are of course not as flexible as software. The streaming
hardware slave implementation (Figure 6.5) uses an HDL block as a deterministic
EB node. On the network interface side, it features streaming WB channels to GbE
block, on the SoC side, it has a WB master that will usually be connected to an inter-
connect. The RX and TX cores are directly linked in order to already create the TX
reply header while the incoming header is processed.

6.7 Etherbone Design Choices

6.7.1 Underlying Transport Protocols
0 4 8 12 16 20 24 28 31

Source Port Destination Port

Length Checksum

Data
...

FIGURE 6.2: Simplistic structure of the UDP
Header

The EB protocol has been designed to
be deterministic with a focus on mini-
mal latency. It also needed to be able
to use standard transport layer archi-
tectures. So a widely supported proto-
col with very low overhead was needed
and the decision to use IPv4 at the net-
work layer and UDP at the transport
layer was made [102].

Ethernet Since WR utilises IEEE 802.3 Gigabit Ethernet technology, making EB
inter-operable with Gigabit Ethernet standard was an obvious choice in the devel-
opment. Raw Ethernet frames, however, were not an option, because they cannot
pass routers and firewalls without special configuration. Delays are reduced by the
use of QoS functionality for command messages to ensure that they are not held up
behind other frames. For lowest latencies, WR switches support cut-through mode.
This means a packet is not stored and forwarded but directly passed on, the first
outgoing bit leaves the switch before the last incoming bit was received.

82 Chapter 6. Etherbone Protocol

FIGURE 6.3: PC EB master and FPGA based EB slave

6.8. Methods and Test Implementation 83

0 4 8 12 16 20 24 28 31

Source Port Destination Port

Sequence No.

Acknowledgement No.

Offset
U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Window

Checksum Urgent Pointer

Options
...

Data
...

FIGURE 6.4: TCP Header. More powerful, but
more complicated

IP The choice for IP was based on
the simple fact that it is the most
widespread general purpose protocol.
In order to send EB datagrams over
WAN, there is no alternative supported
by an off-the-shelf network equipment.

UDP When comparing the structure
of UDP (Figure 6.2) to the more pow-
erful, the main difference lies in UDP
being a stateless protocol. It dispenses
with a handshake, sequence numbers,
and acknowledgements in favour of
simplicity and low overhead. Con-
trary to UDP, TCP is capable of re-
transmitting of lost packets [103]. Unfortunately, this is not an option for the CS
scenario, since there is not enough time for re-transmission. These properties make
UDP a better fit for the goals of EB than the TCP protocol.

6.7.2 EB Protocol

EB itself is designed for low overhead and latency as well. The packet header con-
sists of a flag block, containing information on master and slave WB bus type, pro-
tocol version and a mechanism for negotiating a common bus mode. It is followed
by records containing bus operations. Each record will add a header and one or two
base address fields to the overhead. In our implementation, this adds 8 or 12 Bytes
overhead per record. Packet header and record format have a smaller footprint than
those of RDMA, the records are similar to PCIe. The implementation also uses a
125 MHz bus clock for WB. At 32 bits per cycle, WB has 4 times the data rate of the
GbE interface. This makes packet processing without additional delay possible, the
only limit stems from the reply time of targeted WB devices.

6.8 Methods and Test Implementation

The current hardware/software test implementation utilises UDP/IP protocol. As a
requirement, EB needs duplicate free transmission, which UDP alone cannot guar-
antee. It will therefore be assisted by a forward error correction scheme on OSI
layer II. In order to be fully deterministic and to achieve lowest latency possible, EB
needed to be fully streaming capable, ideally introducing no additional delay to the
passing data. Waiting for replies would block the EB master and its network inter-
face for an unknown time, which is unacceptable. To ensure determinism, a hard
timeout is enforced at this point. If an EB slave has to wait too long for a connected
WB device to answer, a buffer underrun will occur, corrupting the streaming reply.
The main problem is that the IP and UDP packet headers contain length informa-
tion and checksums on the payload. However, the Ethernet CRC field is trailing, so

84 Chapter 6. Etherbone Protocol

EB Core

FIGURE 6.5: EB streaming hardware slave

it is possible to insert information and calculate a new CRC on the fly, solving the
problem. This is not the case with either the UDP or IP fields, where prior knowl-
edge about the payload is necessary. For low-latency streaming, it is necessary to
resolve the dependencies between packet header and payload. Like the underlying
WB bus [92], EB has master and slave nodes, which form complementary pairs. This
leads to a bridge architecture, where an EB master accepts bus operations from local
WB masters for transfer to a remote node. A sample hardware implementation is
shown in Figure 6.5. EB slaves therefore have a WB master interface and form the
remote representation of the local WB master.

6.8.1 Packet Length
0 4 8 12 16 20 24 28 31

Source Port Destination Port

Length Checksum

Data

...

FIGURE 6.6: UDP Header, fields causing de-
pendencies for the reply are marked in green

The UDP/IP header requires the packet
length fields before the payload [102],
[104]. To avoid waiting for the com-
plete packet to be received, streaming
EB replies are the same length as the
corresponding request, allowing the full
header to be determined in advance. EB
responds to every incoming read oper-
ation with an outgoing write operation,
while incoming writes are answered with zero padding. There are no exceptions
to the rules since these are treated as empty EB records. The result is similar to
a no-operation instruction in a CPU. Figures 6.6 and 6.8 show the structure of an
outgoing UDP/IP header. The outgoing header does not need prior knowledge of
the contents of the payload in the incoming packet. All header fields can either be

6.8. Methods and Test Implementation 85

taken from the header of the incoming request (reply address, port, length) or de-
duced from it (IP checksum) or use data already locally available (source address
and port). All processed fields are coloured in light green.

6.8.2 Checksums

Eth Header Payload Data
Eth

FCS

IP Header

IP Checksum

UDP Header

UDP Checksum

FIGURE 6.7: Checksum coverage in a UDP/IP packet

0 4 8 12 16 20 24 28 31

Version IHL Type of Service Total Length

Identification D
F

M
F Fragment Offset

Time To Live Protocol Header Checksum

Source IP

Destination IP

Options & Padding
...

Data
...

FIGURE 6.8: IP Header, fields causing depen-
dencies for the reply are marked in green

Coverage The Ethernet frame check-
sum field follows the frame’s payload,
so it can always be calculated on the
fly. This is not the case with either the
UDP or IP fields, where prior knowl-
edge about the payload is necessary.
Figure 6.7 gives a brief overview of the
areas protected by different checksums
in a UDP/IP packet. When replying
to a request, almost all information re-
quired can be taken from the incoming
packet header, except source IP address,
IP checksum, and source UDP port. The
IP checksum is only dependent on fields
of the IP header (see figure 6.8) This in-
cludes source and destination address, IP packet options, and the length field.
Source address and port are already known to the node, which leaves the payload
length, on which the checksum depends, and the checksum itself [105]. Because the
IP checksum algorithm is basically a sum, all known fields can already be added in
advance. This leads to a prefabricated checksum that can be kept for future refer-
ence. Since only the length and new destination information needs to be included,
this process is very fast (see figure 6.5, TX block).

Solving Dependencies Because of the introduced symmetry, the length is also
known in advance and so the IP checksum of the reply can be calculated in advance
directly after header reception. The UDP checksum is calculated from a pseudo-
header, which is not transmitted. It contains the source IP, destination IP, protocol
(see figure 6.8), the UDP length field, and the following data (see figure 6.2). The
UDP checksum therefore depends on the payload, but UDP protocol specifications
allow the checksum to be set to zero. This signals the recipient “not used” [102].
Since the more powerful forward error correction is used in addition to the CRC,

86 Chapter 6. Etherbone Protocol

the UDP checksum can be omitted without risking data integrity. With this, all re-
ply header information is available at the beginning of the incoming payload. This
eliminates all wait times for payload reception, trading bandwidth for latency. In
effect, the slave will already start sending the reply at the moment that the request
header is processed.

6.9 Etherbone Data Format

0 4 8 12 16 20 24 28 31

Magic (0x4E6F) Version P
R

P
F AddrSz PortSz

Probe ID / Potential padding to 64-bit alignment





E
B

H
d
r

B
C
A

R
C
A

R
F
F

C
Y
C

W
C
A

W
F
F

WCount RCount

Potential padding to 64-bit alignment





R
e
c
o
rd

H
d
r

BaseWriteAddr

WriteVal 1

...

WriteVal M





W
C
o
u
n
t
6=

0

BaseRetAddr

ReadAddr 1

...

ReadAddr N

E
B

R
e
c
o
rd

(R
e
p
e
a
ts
)









R
C
o
u
n
t
6=

0

FIGURE 6.9: EB packet structure. The 8B header is followed by EB
records containing WB bus operations.

Based on the previous discussion, a design for the protocol’s data structure was pro-
posed, the full EB datagram is shown in figure 6.9. The EB layer consists of a header
block and one or more record headers with matching write or read operations. There
is also the option to set a probe flag, which is used for negotiation of usable bus and
address widths between two devices. A probe packet is always padded to the maxi-
mum alignment, 64 bits in this application to ensure compatibility. A record header
contains a set of flag bits stating optional information about source and destination
like the use of FIFO mode. The flags are followed by the number of write and read
operations in the record, this can be a number between zero and 255 if no feedback
is necessary (assuming sufficient free space in the packet). If the bus is wider than

6.9. Etherbone Data Format 87

the record header, it will be padded. After the record header follow bus operations,
writes first, then reads. Bus operations are not mandatory, an EB record can there-
fore be empty, contain writes, reads, or both. Each of these blocks is preceded by an
address field. For a write, this field signifies the target start address on the slave; for
a read it is the address to which the read values should be written to on the master.

6.9.1 Communication

Negotiation The developer has a free choice in both bus width and address width
of a WB bus to best suit the requirements and can choose to also support smaller
configurations. This leads to the question of which mode is supported by both a
master and the targeted slave device. Initially, the master sends a probe packet to
the slave, consisting solely of an EB header without a payload. This header has a
set probe flag and shows all modes supported by the master, followed by the probe
ID. The ID is unique to the master and can either be derived from configuration
or random. This ID is necessary in case the destination IP of the sender does not
match the source IP of the recipient. The slave then sets the probe response flag and
answers with all modes it supports, followed by the received probe ID code. The EB
master then knows about all possible bus and address widths it can choose from for
communication with this particular slave device, completing the negotiation. The
next step is to send a normal EB packet containing one or more EB records. The
slave will reply with the bus width and address size chosen by the master in the
request header. In the FAIR and CERN CSs, the most common bus width will be 32
bits.

Atomics EB supports atomic WB bus operations. By holding the cycle line on the
WB interconnect, the connection to the target slave is kept, allowing the next record
to be transferred without another slave being able to use the bus. Each EB record
comes with the option of ending the current bus cycle on completion or keeping
it for the next record. With this mechanism, bus ownership can be held over as
many EB records as required, avoiding interference with the operation by other bus
devices.

Status Information To determine the success of any EB operation, the status regis-
ter in the EB configuration space can be read at the end of a stream of bus operations.
It shows the flags for all previous operations, either ACK or ERROR. This is a log of
all acknowledgements received at the ACK / ERR lines of the WB bus interface [92].

Symmetry Command messages mostly go from a master to a slave, but there are
also cases where the master urgently needs to read information from a slave device.
Equal packet length of incoming and outgoing traffic is essential for EB stream-
ing mode, because it significantly reduces round-trip time. In order to keep equal
length between request and reply, results from reads are converted to write oper-
ations while writes are turned into empty records, i.e., padding. This makes the
length field of UDP/IP headers known in advance and by that removes all wait
times stemming from header/payload dependencies.

88 Chapter 6. Etherbone Protocol

Addressing EB write operations are values to be written, while reads are addresses
to be read. Write addresses therefore need to be generated by incrementing the start
address, reads can be random access. The increment can either be zero, in which
case the target is treated as a FIFO, or sequential. An EB master must keep track of
read addresses it sent in order to correctly interpret the answering write. Addresses
that are out of bounds cause either an error, if the address is within the mask, but
not mapped, or wraps around if it is greater than the mask.

Management EB also supports the use of a configuration space, an address space
that is not associated with the local WB bus and only concerns the EB node itself. It
can both be accessed via EB and a local WB slave interface used for configuration
of the EB node. This configuration space has several purposes. For one, the EB
node’s own MAC and IP address are set via one of its interfaces and kept here.
The configuration space is also used to map incoming EB packets to the originating
queries. Last but not least, it contains a feedback register of operations on the bus.
If feedback for success of operations is required, this shift register can be read to
supply the ACK or ERR bit for the last 64 operations on the WB bus interface.

Security In the development of the EB protocol, the decision about the protocol
for OSI transport, Internet and link-layer has been intentionally left open to pro-
vide maximum flexibility. Likewise, EB does not contain any specific authentication
or encryption mechanism. If access control and cryptography are required, it can
be wrapped in any proven secure protocol of choice (e.g. L2TP, IPsec, TLS/SSL).
However, doing so would add several hundreds of micro seconds processing time,
depending on the performance of the FPGA based embedded processors, which
would be unsuitable in a high speed control system scenario. Dedicated cryptogra-
phy cores, on the other hand, could provide encryption at a very low latency cost
and full throughput. For symmetric ciphers like Advanced Encryption Standard
(AES), there are fast FPGA based open source implementations available today. The
work of Yadav and Rajawat [106] for example describes an 128 bit key AES core,
which can easily handle a bandwidth beyond 5 Gbit/s and provide a latency of as
little as 11 clock cycles (88 ns). Secure key exchange, as it is not time critical, could
then be handled in advance by a standard software protocol, such as a variant of the
Internet Key Exchange (IKE) protocol.

It needs to pointed out that control systems typically are not overly concerned
with eavesdropping attempts, but about unauthorised or manipulated commands.
In the FAIR case study in particular, all endpoints are allowed to listen, but very
few have the right to issue commands. This means that there is no actual need for
encrypted links, but for authentication, i.e. certificates for commands. A complete
implementation would require asymmetric encryption in all nodes, which is very
expensive in hardware and interferes with high precision timing.

One other alternative should therefore be considered for investigation. Because
the network is point-to-point, almost all endpoints are passive and eavesdropping is
not an attack scenario, the last mile, the connection between switches and endpoints,
could be in plain text. The switches should then use a fast symmetric encryption for
communication among themselves and to endpoints authorised to issue commands.

6.9. Etherbone Data Format 89

The distribution of the symmetric session keys is not time critical and can be handled
by a proven public key infrastructure. By dropping all content which does not form
valid packets after decryption, unauthorised sending can be prevented. Man-in-
the-middle-attacks can then only target the last mile, requiring physical access to an
endpoint’s fibre link.

Access to current trusted network Since deterministic communication in the mi-
crosecond range is not possible over WANs, all necessary connections from the out-
side world into the timing network can be assumed to have loose timing constraints.
They are therefore handled by gateway computers connected both to the campus
and the timing network. These computers will host a Secure Socket Layer (SSL)
connection to the campus network and will tunnel all the client’s EB traffic.

91

Chapter 7

Data Master Hardware

7.1 Overview

In this chapter, a design approach for an SoC system able to fulfil the requirements of
the case study (chapter 4) on the FPGA platform favoured in the technology survey
(chapter 5) is presented. It covers the architecture for the DM and provides solu-
tions for further improvements by the addition of bespoke hardware acceleration
modules.

7.2 System on Chip Architecture

7.2.1 Processing Unit

In order to generate timing messages from machine schedules, a deterministic pro-
cessing scheme needed to be devised. A pure hardware state machine approach
was considered and dropped, because as shown in figure 4.5, machine schedules
are graphs with multiple possible paths. Even for a simple BPC with only one alter-
native sequence, the necessary flow control features loops and branches. This would
require more than one state machine, and for more complex patterns, and a stack as
well. The resulting custom component would still lack the flexibility of a real mi-
croprocessor, but consume almost as many resources in the FPGA. A more sensible
approach therefore was to chose a processor that can be implemented in an FPGA
and is capable of deterministic operation. The choice fell in favour of the LM32 soft
CPU [90], [91]. An LM32 has around 2000 logic cells, but is still lightweight. Today’s
mid range to high end FPGA have more than 250000 logic cells and can therefore
easily create the functionality of multiple CPUs. According to early tests, the limit-
ing factor was more likely to be the amount of RAM present in an FPGA than the
number of logic units.

7.2.2 WB Bus and Crossbar Switches

The connections between the LM32s and its peripherals are provided by a collection
of Cross Bar switches (CB). Such a switch supports parallel connections ofmmasters
to n slaves, provided only one master tries to access the same slave at the same
time. In addition, the CB contains a parallel WB bus with the Message Signalled

92 Chapter 7. Data Master Hardware

Interrupt (MSI) subsystem, which is used to trigger interrupts or exchange short
synchronisation messages between modules (see chapter 8.5.9, 126).

7.2.3 Memory Access

Loading new schedules into a CPU’s memory without influencing current execu-
tion was the first problem to solve in such a design. Fortunately, programmable
hardware has a native solution to provide non-blocking access, which are dual port
memories. By placing one port under the control of the CPU and assigning the
other to the host bridge, both sides can access memory without causing delay. How-
ever, this does not prevent race conditions in the case of simultaneous read/write or
write/write accesses. A synchronisation scheme using semaphores is necessary to
avoid collisions. Since the host system is not a hard realtime system, it can be made
to wait until the embedded CPU marks a memory region safe to update. More on
this topic can be found in chapter 8.4 on page 117 onward.

7.2.4 Global Time

To execute machine schedules, it is important for the CPU to know the current global
time. While it is available at a register of the WR core, the latency for access to this
information must be deterministic. This is not possible if the resource is shared
between multiple CPUs. The approach taken was to duplicate the WR time register
and directly include each duplicate as a distinct WB device in the personal crossbar
of each CPU core. This means that the resource is not shared and access times are
guaranteed.

External Event Sources Remote hard realtime devices, such as endpoints involved
in a B2B, sometimes need to communicate their readiness to the DM. The endpoints
send EB packets to the DM, targeted at areas in the memories of individual CPUs
reserved as in-boxes. In order to know which DM bus address is their corresponding
in-box, endpoints must receive this information from the DM beforehand.

All other event sources, like beam requests or interlocks, communicate with the
host platform, which in turn sends messages to the DM. A detailed explanation of
the proposed messaging scheme is given in chapter 8.5 on page 122 onward.

7.3 Prototype Synthesis Analysis

A decision needed to be made on how many CPU instances shall be included into
the prototype. It was therefore required to find criteria for the number of possible
and the number of useful instances, i.e., the maximum number of CPUs able to be
gainfully employed in the CS. The following paragraphs contain the discussion on
theoretical and practical limits.

7.3. Prototype Synthesis Analysis 93

7.3.1 Necessary number of CPU Cores

A good criterion for finding the minimum number of CPUs is their combined output
bandwidth, since their sum should be sufficient to saturate the network interface.
Jumbo packets are not supported in the WR network design, all calculations there-
fore assume a maximum packet size of 1500 B. The size of a single timing message,
lm, is 32 B or 256 bit. The protocol overhead from Ethernet, IPV4, UDP and EB will lie
in the range 20 to 44 % of total GbE bandwidth, depending on the overhead to packet
ratio and therefore mean packet size. A detailed analysis can be found in chap-
ter 10.3.1. With the Forward Error Correction encoder from current development
considerations, the overhead rises to 80.72 to 88 % [78]. The number of CPUs must
therefore be sufficient to at least generate 1 Gbit/s · (100− 80.72)% = 192.8 Mbit/s of
net command traffic.

The maximum message traffic a single CPU can generate depends on the proces-
sor clock rate, the number of cycles an instruction takes to execute, bus behaviour
and access delay, and finally the firmware employed. An attempt at formally deter-
mining the execution time of a program does not necessarily yield a solution (see
also (chapter 8.6.3). However, the base cycle of the scheduler is quite easy to mea-
sure in the present case by loading one CPU with a current prototype firmware and
assigning it a machine schedulethat generates a timing message every clock cycle.
Some extra code inserted into the firmware is sufficient to perform the measure-
ment, adding the current WR time to a cumulative sum and recording the historic
maximum.

The result for the mid 2016 implementation was 7.75 µs, with a marginal devi-
ation between maximum and mean of 28 clock cycles. This leads to the following
requirement for the number of CPUs:

n ≥
⌈
bmax ·

T

lm

⌉

≥
⌈

192.8 Mbit/s · 7.75 µs
256 bit

⌉

≥ d5.84e

≥ 6

(7.1)

The minimal number of CPUs in the prototype should therefore be 6. This is
a not yet optimised version of hard and software, however. If optimisations were
added, fewer CPUs would be necessary, but the added processing power would
still be useful as a safety margin and for the implementation of new features into
the firmware.

7.3.2 Test Setup

Several experiments with the Quartus II 15.1 and Quartus Prime 16.0.2 hardware
design software [107] were conducted to test the upper limit of CPU instances on
the employed ARRIA V GX (5AGXMA3D4F27I3) chip [89]. The limiting factors

94 Chapter 7. Data Master Hardware

could be available memory, available logic cells, timing closure, routing cost and
distance between memory and logic.

Routing Whenever a value is processed in more than one logic term, it needs to be
physically copied, a “fan-out” must be created and routed to the destination. Logic
cores must be distributed over a two dimensional area, so routing between logic
costs more logic. Quite often, routing can reach similar costs as designs.

Timing Closure The other problem in FPGA designs is timing closure - the signal
propagation delay along dependent logic cells. It is a complex topic and shall only
briefly be addressed at this point. Timing closure deals with synchronously routing
signals (data and clock signals) in the chip. Clock signals must arrive at dependent
locations within the same period, data must arrive before the clock edge. In addi-
tion, all logic paths in a design must kept so short, that a signal can traverse it from
start to finish within one clock period. This means cutting long logic paths by in-
serting of registers, the complete operation taking as many clock cycles as register
stages.

7.3.3 Result

Visualisation Figure 7.1 shows the output of the “Chip Planner” tool, a visualiser
for resource utilisation on the FPGA chip, which is part of the synthesiser suite.
The memory cell areas can be recognised as vertical columns of olive colouring. In
all other areas, different grey shades indicate logic utilisation, from black (unused)
to white (full), logic designs of interest are highlighted in colour. Pure hardware
cores are shown in grey (PCIe communication and analogue PLLs, see 2.4.2). The
programmable logic cores are, starting from the top right:

• Event-Condition-Action unit (ECA) red, top right, see 7.6

• Timestamp Latch Unit (TLU) yellow, centre, see 7.6

• Priority Queue (PrioQ) orange, right, see 7.4

• Processors (CPUn) blue to green, lower half, see 5.3, 7.2.1

• PCIe host bridge cores (PCIe) yellow, lower left

• Etherbone Master core (EBM) dark green, left, see 7.5

• White Rabbit Core (WR) purple, top left, see 2.7.1

7.3. Prototype Synthesis Analysis 95

PCIe

WR

ECA

PrioQ

TLU

EBM

CPU0

CPU8

CPU3

CPU4 CPU5 CPU2

CPU6

CPU1

CPU7

P
C

Ie
H

a
rd

 P
C

Ie

P
LL

s
P
LL

s

FIGURE 7.1: Visualisation of Chip Usage with 9 CPU instances.
More details are provided in the text.

96 Chapter 7. Data Master Hardware

Implications The logic utilisation of CPUs is marked in colours from green to blue.
It is obvious from the coloured area that 9 CPUs is very close to the limit of available
logic. Not far behind as a limiting factor turned out to be memory availability, the
aim being to assign each CPU at least 64 kB of memory. While there is more memory
in the system, the organisation in 10 kbit blocks lead to small components in other
parts of the system wasting much of the memory they were assigned.

The intuitive assumption of routing distance to memory having an impact on de-
sign performance was proven to be wrong. Observed routing paths between proces-
sor and RAM cells quite often spanned more than half of the chip, the performance
of the interconnect fabric is far better than logic routing delays. Instead, most effort
is put into placing the CPUs into close vicinity to each other, seemingly in order to
minimise the WB bus routing effort. Timing closure turned out not be a limiting
factor in this prototype.

A maximum of 9 cores was successfully tested with 64 kB memory each at 125 MHz
design frequency.

7.4 Message Priority Queue

Timing messages must ultimately be dispatched via the timing network interface.
Since there are multiple CPUs producing timing messages at certain times, the net-
work interface is a shared resource. Figure 7.2 shows how individual CPUs act
as sequencers. When going through their schedules (entries), they are outputting
streams of due timing messages (green arrows) to the network interface (grey ar-
row). It is necessary that the CPU’s network access is deterministic, which requires
a fair arbitration.

FIGURE 7.2: Dispatch of Timing Messages in Soft-CPU Cluster [108]

7.4. Message Priority Queue 97

7.4.1 Basic Considerations

A simple round-robin scheduler, granting access in turn to each requester appears to
be a sufficiently fair arbitration scheme at first glance. The very first DM implemen-
tation used such a simplistic scheme for testing. However, it is insufficient. If the
different message streams were not reordered according to their deadline, urgent
messages could be unduly delayed. This is especially the case if the message lead
would be used for traffic shaping and is thus not the same for all messages. Further-
more, waiting for the network resource could block individual CPUs, making their
programs non-deterministic.

The problem can be solved by introducing an earliest-deadline-first scheduler
(EDF). The policy is to always grant access to the most urgent message. To avoid
starvation in case of large bursts of simultaneous deadlines, a round robin policy
shall be applied in case of a tie. Using this principle in a system with n CPUs,
the maximum latency for any message is bounded to the processing time for n − 1
messages while simultaneously making the arbitration impervious to bursts of early
messages (messages with high remaining delay budget).

7.4.2 RAM-based Heap

FIGURE 7.3: Heap-based priority queue with
Dual Port RAMs

There are several ways to implement
priority queues, depending on the fo-
cus. In the present case, the goal is min-
imal execution time of the get-Min and
extract-Min operations, which returns
the minimum key element. In order to
get better performance than sequential
reordering in software, parallel accesses
to memory are necessary. For the sec-
ond test implementation, hardware as-
sisted sorting algorithms were investi-
gated.

For a heap based solution, at least
two independent read ports are re-
quired on the RAM holding the sorting
keys, so both left and right child node
can be read at the same time. With the
moving element in a register, it is pos-
sible to compare parent and both chil-
dren in a single cycle. For reordering, an
independent write port is required, so
the minimum is a 3 port RAM (2 read,
1 write). Many manufacturers provide
macro cores which emulate a multi-port RAM with 2 read and 2 write ports. How-
ever, the synthesizer can only achieve this by replication. So instead, it is more
efficient to exploit the fact that the two read ports never access the same child node
and keep left and right children in two separate dual port memories (DPRAM)s.

98 Chapter 7. Data Master Hardware

As figure 7.3 shows, no redundant copy of the keys is necessary, and the arbi-
tration logic is mostly Multiplexers and Write enable signals controlled by the Least
Significant Bit (LSB) of the node index. The path taken through the heap is a se-
quence of indices. Placed in shift register, it can be used as addresses to order the
message payload with constant delay to the key sorting. This simple design can
implement INSERT and REMOVE Operations in O(log(n)) time, with one compar-
ison/move per clock cycle per heap level plus two cycles delay and minimal mem-
ory cost. However, there is still room for improvement.

Optimising the Solution The second implementation was based on the approach
of simultaneous access to all heap levels Because REMOVE and INSERT normally
work in different directions, pipelining of mixed operations is prevented. REMOVE
operations can, however, be pipelined if all heap levels are accessible at the same
time [109]. At the cost of fan-out and additional arbitration logic, one could refor-
mulate the INSERT operation to work from top to bottom as well. In addition, two
DPRAMs, one for left children, one for right, are necessary per level so each level
is a pipeline stage that can move one element and all operations must work from
top to bottom. This is likely to be the implementation with the best performance of
this design, managing one INSERT or REMOVE per two or three clock cycles, de-
pending on desired design frequency. It would, however, be overpowered for the
present scenario and still suffers from an input bottleneck due to the shared inter-
face inserting into the heap. In most situations this will not matter, if the lead for
message dispatch is sufficient, but it prevents determinism at high load. A viable al-
ternative, which would enable complete load calculation so no CPU is unforseeably
stalled, would require individual queues and an arbitration scheme between them.
If the policy was round robin, this would mitigate the problem, but not remove it, as
early messages could delay more urgent ones. If the policy was EDF, the problem is
resolved, but it would also make the heap obsolete. A heap is therefore not the best
solution to the problem. A different approach supporting a scenario with multiple
input ports was necessary and could possibly even provide a more efficient solution
than a heap implementation.

7.4.3 Sorting Networks & Sorting Trees

The third approach investigated the properties of sorting networks and trees. Sort-
ing networks, like a bitonic sorter, are proven to be an optimal solution for sorting
a list in hardware. However, there are arguments against their use in the present
case. They would come at a high hardware cost, because the 64 bit wide WR times-
tamps are very wide sorting keys in an FPGA context, making the necessary mul-
tiplexers highly expensive. Furthermore, timing messages do not solely consist of
timestamps, but also payload. A link to this payload would also need to be moved
through the network, making the multiplexers even wider, and yet another logic
core would be needed to regroup the sorted keys with their payload before sending
them onward.

But while sorting a list is a viable way to find the minimum, it is not manda-
tory. Only the next due item is of interest, which reduces the sorting problem to a

7.4. Message Priority Queue 99

minimum computation. A sorting tree can find the minimum as well as a sorting
network. The comparison effort is lower, yet it leaves room for optimisation, es-
pecially for pipelined hardware implementations. The only important criteria are
determinism and meeting line speed. Comparisons can be carried out completely
in parallel if dedicated comparators are instantiated.

There are two factors limiting performance in an FPGA. One is fan-out, which
is the number of places the content of register has to be distributed to. This has an
impact on the possible maximum frequency the design can be clocked with. The
other is the depth of logic networks, meaning the number of sequential logic gates,
which directly transfers to signal propagation delay. In order to curb both, a di-
vide and conquer strategy is in order. For fanout, this can be achieved by parallel
instantiation of the same logic core and/or register copies, while logic depth can
be controlled by pipelining operations. The number of function cores and pipeline
stages can then be scaled to fit more inputs.

FIGURE 7.4: Overview of Priority Queue v3 Hardware

The sorting tree approach shown in figure 7.4 turned out to be better suited for a
small number of elements than a hardware heap because of the minimum size of
RAM blocks. It provides multiple inputs and scales better than a sorting network,
as it does not try to deliver a sorted list. The lower bound for the number of com-
parisons necessary to sort a list shall be used as a guideline for the fitness of the
algorithm. Because of the pipelining, the number of necessary comparisons is lower
than the literature values [110]. Figure 7.5 shows the internal layout of a 3-1 mini-
mum solution.

100 Chapter 7. Data Master Hardware

FIGURE 7.5: 3-1 Minimum Function Hardware

As shown in figure 7.4, each LM32 CPU features a local CB with a dedicated bus
connection to a queue unit . The PQ arbitrates its output interface between the queue
units, the selection is determined by a hardware minimum function, working on the
timestamps provided by the queue units (see figure 7.6). While the multiplexed
output stream is ordered, a strictly increasing sequence of timestamps cannot be
guaranteed.

FIGURE 7.6: Hardware Queue Unit with tag-based sorting

Consider a new message arriving between selection and end of the current transfer.
If its timestamp is lower than the current one, the new arrival will precede all other
messages, yet the timestamp sequence decreases at this point.

The proposed solution resembles a merge sort and is designed to find the mini-
mum of 9 64 bit timestamps within 2 clock cycles (16 ns). The memory consumption
is less than half the memory resources necessary for a heap implementation of simi-
lar performance. The logic utilisation is at 1800 LUTs in an ArriaV chip significantly

7.5. Etherbone Master 101

higher than the heap with 750 though, but one has to consider that the heap imple-
mentation could also not provide a real solution to the input bottleneck problem the
sorting tree solves.

7.5 Etherbone Master

The last challenge to solve was a hardware protocol core to wrap timing messages
for transport. While EB provides all the necessary functionality, so far the solution
was only workable for software masters communicating with hardware slaves. The
very first implementation of an Etherbone Master (EBM) used in this project was in
fact a slimmed port of the EB software libraries to the LM32 CPU and first employed
in 2011. While it was functional, it was slow and still required a large amount of
memory (from the perspective of a 64 kB RAM embedded system). Deterministic
execution was also out of the question, making the implementation in firmware
more a proof of concept than a workable solution.

7.5.1 Challenges in Hardware Implementation

The need for more performance and determinism drove the investigation of hard-
ware EBM implementations. The main obstacle was again a basic property of WB,
which is being a cycle based bus. All operations have to be completed/acknowl-
edged before a cycle can be finished. Over the network, this leads to lag stalling
a local bus device, with the added risk of packet loss and therefore unacknowl-
edged operations holding onto the bus indefinitely. For write-operations, this can
be worked around, but a read operation expects the acknowledgement at the same
time as the read data is returned. The round-trip creates back pressure over the
whole chain. Such a behaviour can be handled easily in a software master, because
all that it needs is a callback function that will deliver the data once it arrives and
then the system is free to do other things. Hardware does not provide this kind of
freedom, a WB master cannot create new connections while the previous connection
is still open. So the problem the hardware implementation had to solve was mak-
ing a clean break at the interface, achieving independence from the remote devices’
response.

7.5.2 Design Decisions

The proposed solution was to design a core which presents a simple interface to
the user and fully conforms to the wishbone standard [92] while at the same time
having a pure feed-forward behaviour. While being aware that the DM requires
only a fixed message format, the design is aimed toward a generic solution. It was
not clear at the design stage if the DM might need to communicate more than tim-
ing messages, especially in the context of data exchange for calculations during the
Bunch-To-Bucket-Transfer (see chapter 4).

102 Chapter 7. Data Master Hardware

Configuration As figure 7.7 shows, the local EBM interface was split into two ar-
eas. The first is used for configuration, such as source address for the network layer
and additional meta information needed by EB [93]. Once this is set up, a WB mas-
ter establishing a connection to a remote slave only needs to provide the destination
IP, if it has changed.

Data The second area of the EBM interface acts as a FIFO Buffer for WB operations.
WB write operations can be acknowledged directly the moment they are received
by a WB slave (WBS). Our approach uses this property by requiring WB masters to
rephrase read-operations to a remote WBS as writes to the local EBM. This enables
the EBM to acknowledge all incoming requests immediately without waiting for the
remote device, breaking the back pressure loop at the WBM’s side. Internally, they
are converted back into read-operations once translated into the EB protocol. The
remote EB Slave (EBS) executes the read-request, gathering the replies. Once the
cycle is complete, it returns an EB packet over the network, containing the replies as
writes to the provided read back address. This creates no further dependencies and
the back pressure loop is cut.

0x0100 0000

0x017F FFFF

Control





Control Registers

0x0180 0000

0x0183 FFFF
Read

0x01C0 0000

0x01FF FFFF
Write





Data FIFO

FIGURE 7.7: Example Memory Map for EBM at 0x01000000

7.5.3 Implementation

While the basic concept is sound, it leads to the problem of implementing it with-
out breaking compatibility to the WB standard. There are three problems to solve:
atomicity, the address of incoming operations and how to mark a read-operation.

Atomicity While it would be a clean interface design to separate the configura-
tion registers from the data FIFO, there is a practical problem. Creating two distinct
WBSs for the purpose effectively prevents atomic access to the EBM. This is because
locking a WBS for a master requires the cycle line to be kept high during access [92].
Since it is not possible for a master to open cycles to two distinct WBSs at the same
time, there would be the risk of another using the configuration interface while a

7.5. Etherbone Master 103

WBM is using the data interface and vice versa. This would most likely lead to
a corrupt transmission. Configuration registers and the data FIFO were therefore
merged into one WBS, so the EBM can stay wholly locked during access. The EBM’s
most significant address bit is used to distinguish between control and data area.
The memory map in figure 7.7 illustrates this being very wasteful in terms of ad-
dress space, but the design decision fell in favour of safety. The responsibility could
in future be moved to the WBMs. The lock mechanism would be replaced by a
semaphore register, used to show assignment of the EBM to a certain WBM by a
unique ID.

Marking Read-Operations As stated before, all operations to be sent must be
writes. To mark read-operations without using the write-enable bit of the WB bus,
the bit is encoded into the second most significant address bit of the EBM. In the
case of a WB write operation, address and value have the normal meaning except
the high address bits. As already mentioned in Subsection 7.5.2, a read operation is
treated differently. While the address passed to the EBM for remote reading is used
as intended, the value is used as the read-back address.

When arriving at the destination’s EBS, the request makes it read information
from the targeted WBS. The results of remote reads are gathered and sent back as
EB write operations to the initiator, targeted at the read-back address provided in
the original read-request. Any WBM using the EBM thus has to provide a memory
area to which the requested data can be written. Since all implemented WBMs using
EBM are so far either host bridges or Soft-CPUs, this does not present a problem, as
they come with their own memory.

31 24 23 22 21 0

EBM Dev. Address C
D

R
W Remote WB Slave Address

FIGURE 7.8: Example Addr. Fields for EBM at 0x01000000
(10 high bits: 8b Dev. Addr., 1b Control/Data, 1b Read/Write)

High Address Offset Using the address of the targeted remote slave in WB oper-
ations sent over EB is not feasible, at least not directly. The EBM’s interface is itself a
WB slave, it occupies a certain address. Writing any operation to the EBM requires
using its bus address. The high address bits depend on EBM’s own position in the
bus hierarchy and is likely to be different to those of the remote slave. In addition,
the two bits already claimed for control/data and read/write selection are also not
available (see figure 7.8).

To give the EBM its full address range back, the control area contains a register
providing the unavailable high bits of the address. They are replaced in all incom-
ing operations by the content of this register, which the sending WB master has to
provide before starting to load operations. In practice, any address inside the re-
gion mapped to the target remote WB slave will suffice. The instantiation width
of the high address bit register is flexible, but always fits address space mapped to
the EBM. The wider the mapped range, the more efficiently remote slaves can be

104 Chapter 7. Data Master Hardware

addressed, because the high address register seldom needs to be updated. On the
downside, the mapped range is of course not available to other devices any more.

Background Activity and Initiating Transfer While operations are loaded, the
EBM is parsing them and assembles the EB content. As shown in [93], this means
inserting the EB packet header, EB record headers, target and read back addresses
as needed. The EBM follows this scheme for all incoming WB operations, turning
them into EB records. Once the packet is completely loaded, a write to the EBM’s
flush control register starts transmission over the network interface.

7.5.4 Fitness for the Data Master

31 0

EB Header
Packet
Metadata

{

...

EB Record Header

Base Write Addr. (Remote WBS)
Record
Metadata

{

8 Data Words
Timing
Message





...





N EB-wrapped
Timing Messages

FIGURE 7.9: EBM Output for Timing Messages

In the context of the DM, determinism is of paramount importance, directly fol-
lowed by speed and flexibility. The EBM’s parser inserts fitting headers into the
data stream depending on order, target, type and optional parameters of the WB
operations. This dependency does not look deterministic at first glance, yet this
impression is misleading. Figure 7.9 illustrates the context: Because incoming op-
erations will always follow the same 8-word-write scheme for timing messages, the
EBM always generates the same overhead structure. The packet generation is repli-
cable and therefore deterministic (compare to variable EB overhead in chapter 6.9
“Etherbone Protocol”, figure 6.9).

7.6. Fast Input/Output Module 105

The fixed format makes the presented implementation deterministic. It is true
that if meta data is known in advance, an even faster and much simpler EBM core
design would have sufficed for the DM. However, there is greater value in its flexi-
bility to also control a remote core to program settings or for diagnosis than in pure
speed.

A detailed analysis of the delay introduced by the EBM and its impact on maxi-
mum bandwidth can be found in chapter 9, “Theoretical Delay Model”.

7.6 Fast Input/Output Module

Control systems are meant to control machines outside their own hardware. It usu-
ally provides a generic interface that can be connected to the form factor specific
IOs. In the case of the FAIR CS, these IOs are intended to either output or sample
digital signals with the full WR timing accuracy.

7.6.1 Application

Input - Timestamp Latch Unit In beam diagnostics and particle detectors, it is
necessary to measure values at multiple locations simultaneously. These measure-
ments must be exactly correlated, though the amount of data is usually too big to
timestamp individually. The Analogue-To-Digital converters (ADC) have their own
sample clocks, continuously gathering and saving values to memory. Timestamps
are used to add an epoch to each block of memory data. The epochs in conjunction
with the sample clocks’ intervals are sufficient to correlate all acquired values. The
Timestamp Latch Unit (TLU) was developed in the context of this work to take the
time when an external or internal digital signal changes and make the timestamp
buffers available over EB. For this purpose, it features multiple parallel input chan-
nels with their own FIFO buffers. For use with external sources, the TLU’s trigger
level can be programmed to match different signal slopes and supports filtering of
input glitches.

An endpoint’s TLU is also employed for the verification of the CS. It samples the
Pulse per Second (PPS) outputs of timing receivers at different levels in the switch
hierarchy in order to trace timing accuracy.

Output - Event-Condition-Action Unit The main requirement of all timing re-
ceivers is the ability to produce digital signals on their output ports at precisely
defined times. For this purpose, the Event-Condition-Action Unit (ECA) was in-
troduced with the explicit requirement to be able to output signals at a rate equal
to one timing message per clock cycle. Contrary to TLU, ECA was not developed
in the scope of this thesis. However, it plays a vital role in verification of the CS
implementation, as it can detect and log late message arrivals.

The basic concept of the ECA is a calendar memory. Consider a hypothetical dual
port RAM with an address as wide as a WR timestamp. When a message arrives,
the deadline is used as the write address to insert a command. The current WR time
is constantly used as the read address of the second port. Such a calendar RAM

106 Chapter 7. Data Master Hardware

will sort incoming messages and all commands will be executed in order of their
deadline.

Sorting incoming messages might seem redundant at first, since the DM is sup-
posed to generate the stream in chronological order. There are circumstances how-
ever, when the order of messages cannot be guaranteed. One is packet reordering
in the network, the other the DM reacting to an external event.

Bridging the gap between the simple theoretical construct and a real hardware
implementation made ECA one of the largest and most complex hardware modules
in the CS (see red tinted area in figure 7.1, page 95). The memory must be sparse
(the theoretical RAM would otherwise have a size of 2.3× 1018 B) and mechanisms
for handling concurrency, early (arrival ≤ deadline − 4s) and late messages were
required, as well as multiple bespoke output channels, working fully parallel, to
mention just a few of the challenges. In addition, ECA provides logging capabilities.

ECA and TLU are both of paramount importance to the CS verification setup
described in chapter 10, “Evaluation”.

7.6.2 High Speed IO

The WR system in its current implementation is clocked with 125 MHz which equals
8 ns per clock cycle. All form factors would therefore natively count time with an
8 ns resolution, which would also be the IO resolution for ECA and TLU. However,
the requirements dictated a resolution better than 5 ns and WR provides a synchro-
nisation accuracy of ± 200 ps. The goal was therefore to make the IO resolution
match the next order of magnitude, i.e. 1 ns.

7.6.3 Increasing Sampling Rates

Increasing an FPGAs internal clocks to 1 GHz is not possible, the limit, even for
very fast designs on cutting edge FPGAs in 2016 is usually reached at 300 MHz to
400 MHz. The following are several approaches on how to increase IO sampling
rates without using faster chips.

Analogue Hardware - PLL In the input direction, there several are ways to in-
crease the timing resolution without the use of dedicated hardware. One way would
be to sample the same input signal multiple times in parallel, using multiple phase-
shifted sampling clocks. This would return one sample value per phase offset, in
effect multiplying the sampling rate.

Asynchronous Logic - Time-To-Digital Another way could be to create a Time-To-
Digital Converter (TDC) circuit in the FPGA. This makes use of signal propagation
delay to turn a time to be measured into a path length. Inside FPGAs, there are
ripple-carry-adder chains. Consider a very wide adder having both operands filled
with ones. The signal input is connected to the carry in of the least significant adder
block. If flip-flops are placed as taps at the carry outputs of the individual adders,
the bit pattern in the taps at a sampling edge shows how far the signal (overflow)
travelled. The result is equivalent to a phase offset to the sampling clock.

7.6. Fast Input/Output Module 107

Digital Hardware - SerDes While the previous approaches are certainly interest-
ing techniques, they are susceptible to ambient influences, scale very badly, and are
not usable for outputting signals. Fortunately, modern FPGAs come with dedicated
hardware for communication purposes. This can be split into two individual parts,
the electrical, and the Serialiser/Deserialiser (SERDES) part. The electrical part of
signalling is left to Low-Voltage-Differential-Signalling (LVDS) hardware. It outputs
a signal not as a voltage difference to ground, but as a voltage difference between
a pair of directly adjacent terminals. This approach is much less prone to cross talk
and noise, allowing higher frequencies. To make use of the high frequencies possi-
ble with an LVDS driver, an interface compatible to the slower logic matrix of the
FPGA is supplied. The output at the LVDS is a fast, serial stream of single bits, the
FPGA matrix can deliver many bits in parallel, but is comparatively slow. To use the
full bandwidth, a shift-register like circuit is introduced, which is loaded in parallel
and emptied serially for an output or vice versa for an input. SerDes circuits are
used for all high-speed IO applications network connections.

rx_ in

tx_ out

DPA CircuitryDPA-FIFO
Bit SlipDeserializer

rx_ inclock / tx_ inclock

LVDS Receiver

LVDS Transmitter

FPGA

Fabric

rx_ out

tx_ in

rx_ divfwdclk
rx_ coreclock

tx_ coreclock

Serializer

DPA Clock Domain
LVDS Clock Domain

Retimed

Data

DPA Clock

DINDOUT DIN
DOUT DINDOUT DIN

DIN DOUT

Clock Mux

I/O PLL

+
–

+
–

fa
st

_
cl

oc
k

dp
a_

fa
st

_
cl

oc
k

(load_ enable,

fast_ clock)

(dpa_ load_ enable,
dpa_ fast_ clock, rx_ divfwdclk)

2

3

3

10

10

10

(load_ enable, fast_ clock, tx_ coreclock)

3 (load_ enable,
fast_ clock, rx_ coreclock) 8 Serial LVDS

Clock Phases

fast_ clock

FIGURE 7.10: Altera LVDS SERDES Channel [111]

Figure 7.10 shows an implementation of such a circuit in a modern FPGA. As can
easily be seen in the diagram, deserialisation is the more complex process, because
it includes clock recovery (see chapter 2.4.3) and bitslip correction. This is not neces-
sary in TLU channels, because the sampling clock is provided by WR. SerDes circuits

108 Chapter 7. Data Master Hardware

have many advantages in implementation over trying to use logic cells. They are be-
spoke silicon and have short, length matched routes to the LVDS IO drivers. Within
the same block of transceivers, they are also connected to a fast compensated clock
distribution network. They are also shielded against crosstalk and are guaranteed
not to suffer from temperature drifts within the operating range of the FPGA.

As an example, consider the following: A 2 ns wide pulse is desired at time
. . . 12 ns. A 2 ns wide pulse becomes two adjacent bits being set to high. The time off-
set 12 is not divisible by eight, the modulo of 4 becomes the bit shift. This yields the
following bit pattern, put into the serialiser for use at time offset 8: 0706151403020100

SerDes transceivers in the ARRIA V GX FPGA can easily manage Gigabit Ethernet
over fibre, which runs at 1.25 GHz (10 bit/8 ns). For TLU and ECA, they are set to
1 GHz, 1 bit/1 ns). Every 8 bit word now describes the output behaviour within an
8 ns clock period. Using the network transceivers for digital signal IO is a scalable
solution, which provides the desired IO resolution of 1 ns.

109

Chapter 8

Data Master Firmware

8.1 Overview

This chapter presents an approach for the utilisation of LM32 CPUs as schedulers
and sequencers, generating timing messages from machine schedules. In addition,
schemes for the synchronisation between CPUs as well as between the host system
and CPUs are introduced, a lightweight memory management scheme is presented
and various optimisation techniques are discussed.

8.2 Scheduler

Figure 8.1 shows the concept for the DM’s scheduler. An EDF based system is em-
ployed to find the most urgent path trough machine schedule graphs, modified by
external events.

Threads The distribution of timing messages in accelerator schedules varies over
different beam configurations. Typically, control patterns are repeated, and the time
needed to process and dispatch messages is minute compared to the base period.
This means a lot of computing time would go unused if there is only one schedule
per CPU. Since the release time of a message is flexible in relation to the execution
time (deadline), multiple schedules could be processed side by side. This called for
the introduction of threads into the DM’s architecture. A thread in computing is
a series of tasks, running pseudo-parallel with other such threads. Execution only
seems parallel, but is in fact sequential. It is switching between threads, granting
each the use of the processor for a limited time-slice. For infinitely small time-slices,
their progress is parallel.

Prioritisation Since the DM is a hard RTS, results must never be late. The prob-
lem is already solved in hardware with the priority queue (see 7.4), which assigns
dynamic priorities to messages depending on their deadline. Preference is given to
the most urgent task, this is called Earliest-Deadline-First or EDF scheduling. To get
the maximum throughput from the system while being independent of processing
order, the EDF policy shall now be applied to thread selection. It is therefore neces-
sary for each task within a schedule to have a due time or deadline. The time when
a task’s processing starts is called its release time.

110 Chapter 8. Data Master Firmware

FIGURE 8.1: The Data Master’s EDF Scheduler

8.2. Scheduler 111

EDF is work conserving, if there is at least one task, the scheduler cannot be
idle. The environment of the DM calls for a change to policy there. All dispatched
messages are irrevocable and the DM is required to provide a fast reaction time to
external requests so the earliest possible release time of a task is bounded by the
deadline minus the maximum delay (500 µs). This means that the DM has to check
if a task is ready for release (Figure 8.1, “Thread Control Non Det.”).

8.2.1 Sorting Algorithms

Possible Candidates The DM is a hard RTS with limited resources. It needs a
space-efficient sorting algorithm with a fast performance. Since the DM is all about
guaranteeing timely message delivery, we do not care about average performance,
only worst case. It can be proven that comparison sorting algorithms have a lower
bound of O(n log n) [112, p. 191]. There are implementations among them requiring
only O(1) space, so the data structure is the original data array without additional
overhead. Non-comparison sorting algorithms like Radix Sort perform in O(nk

d
),

where k denotes the number of bits and d the number of digits. While this is fast,
the space requirement is exponential for the number of digits, O(2d). Sorting net-
works in hardware, like a bitonic sorter, perform better at O(log 2n), with a space
requirement of O(n log 2n). Newer findings by Anderson, Thorup, and most re-
cently Han [113], show that it is possible to sort deterministically in O(n log log n)
time while using only linear space O(n).

Requirements The DM is a non-standard case, because the number of integers to
sort is quite small, yet at 64 bit, they are wide (n = 8, k = 64, d = 64). The set of inte-
gers is also often changed and only the minimum is of interest. As a consequence, an
algorithm providing a fast extract-min and replace-operation is sought for, a fast insert
would be a bonus. Another hardware support module like the priority queue that
is aggregating message flows of multiple CPUs would be an option, since it is defi-
nitely fast and deterministic. The gain is only theoretical, though: in the DM’s case,
bus device access at three cycles per operation would cost almost as much as the
whole sorting for a small number of integers inside the CPU. The increased physical
hardware cost per CPU would be an another drawback. A solution in firmware is
therefore to be preferred.

Fitness Non-comparison algorithms tend to have a higher execution time than
heap sort for small integers in addition to a generally higher space requirement.
Han’s algorithm uses exponential trees of integers, hashing them before insertion to
reduce the number of bits. While being the fastest, there are problems when using
it for small numbers of integers when the set is often changed. The hash operation
is costly at O(n3) worst case. But even if we only consider the replace-operation, the
individual cost of the hash function ha(x) = (ax mod 2b)÷ 2b−s is high in our sce-
nario, since it requires multiplication > 32 b. This places the hashing, without any
sorting, close to the total cost of a replace in a min-heap. In conjunction with the
higher space requirement of O(n), we can conclude that the Han’s algorithm is not
the best match for our purpose.

112 Chapter 8. Data Master Firmware

Choice Binary min-heaps, being optimal among comparison sorts at O(n log n),
also provide excellent space efficiency at O(1). They provide the desired extract-in
in O(1) and also grant a fast replace at O(log n). These properties lead to the choice
of a balanced binary heap for the DM’s Scheduler.

8.2.2 Application in the DM

Using deadlines as keys, the top element of the min-heap is then always the thread
holding the task with the earliest deadline. Whenever a task is selected and pro-
cessed, its old deadline is replaced with a new value afterwards and the heap is
re-ordered. This is a standard case called a replace-operation. It means removing
the top element, inserting a new element in its place and pushing it downwards to
restore the min-heap property, which has a worst case ofO(log n). In the DM’s case,
this will be implemented to always take worst case in order to avoid execution jit-
ter. As will be explained in more detail in the following subsection 8.2.3, starting
new threads requires the same effort as initially turning an unsorted array into a
heap. A heap sort provides a guaranteed O(n log n) worst case performance, which
is optimal.

8.2.3 Additional Requirements to the Scheduler

The working of the control interface to the RTS system is not a standard way to
control a scheduler, as access is fully parallel. A synchronisation scheme had to
be developed for any command that interferes with the scheduler, especially the
addition or removal of a thread.

Starting and stopping threads Starting a new thread is not time critical, stopping
a running thread is. In the upper right box of figure 8.2, the thread loader module is
introduced. As the group in figure 8.1 “Thread Control Non-Det.” shows, it is only
called when the scheduler would otherwise be idle. This is because adding elements
does not happen the same way as replacing; new elements are pushed upwards, not
downwards. As a consequence, it cannot be done in tandem with replacing. Also
if more than one thread can be started simultaneously, there is no single element to
push any more. Instead, a complete heap sort is necessary.

Since adding/starting threads also does not happen often, re-sorting the heap
in every iteration of the scheduler would be a huge waste of processing time. The
sorting algorithm must be called on demand, but without delaying the scheduler. If
there is time available for a new thread to run (which can be calculated beforehand),
there must also be some window in the immediate future where there is time to run
the add-routine. On the contrary, a system running at P = 1 would not have time
for any additional operations. Wanting to remove a thread then leads to a chicken-
and-egg situation, because the routine to remove a thread needs resources, which
can only be freed by removing a thread.

8.2. Scheduler 113

FIGURE 8.2: Sub-Components of the Data Master’s EDF Scheduler

114 Chapter 8. Data Master Firmware

The proposed solution is to use the mandatory deadline update to remove a
thread. If a tasks deadline is set to infinity (in actual implementation, this is the
maximum of a 64 bit timestamp, uint64_MAX, year 2554), its earliest release time
is never reached, the scheduler never selects it. A simple, efficient and determinis-
tic implementation is the scheduler masking each timestamp bit with the thread’s
stopped bit when receiving the new deadline. If the thread is running, the key for
the replace-operation is the original deadline, if the thread was stopped, it becomes
uint64_MAX instead.

Task Length In order to judge priorities correctly, task length is considered in most
schedulers. The DM is not allowed to run at P > 1. This policy can only be kept
when the maximum workload, i.e., task length and task list, is known in advance.
This is called offline-scheduling and will be discussed in detail in chapter 9. If the
workload never supersedes a hundred percent, all sets can be scheduled. This im-
plies, that at identical deadlines, the order of release times assigned to tasks is not
relevant, provided a thread is prevented from monopolising the interface (com-
pare 7.4). The execution time of possible tasks is very similar within the DM and
can even be made identical for all cases.

External Events All interaction influencing the DM’s path through the schedule
graph will lead to a problem. Since this changes the sequence calculated in the
offline schedule, P ≤ 1 cannot be guaranteed. We will consider two possible ap-
proaches to this problem, each with its own merits and limits.

If the change is not time critical, as would an experiments request for beam be,
the offline scheduling can be recalculated following the intended new path. If a
change at the time of the request would create a load higher than one hundred per-
cent, there are two options. The request can be postponed and therefore shifted in
relation to all other schedules until a time where a dip in workload can encompass
the new tasks. If such a state is not foreseeable within the acceptable time-frame, the
request must be rejected.

If the change is time critical, like an interlock state, there is no option of post-
poning. This just means, however, that all time critical changes have to be part of
the offline-scheduling in the first place. It must always choose the worst case (in
terms of load and deadlines) of all alternative scenarios. Since the points of deci-
sion at which the path can be changed and all possible alternatives are available
to the calculation to begin with, the phase space of a schedule is bounded and the
worst case load over time is calculable. An approach to this problem is presented in
chapter 9.3.2.

8.2. Scheduler 115

8.2.4 Summary

• Scheduler

– All schedule elements must be tasks with a deadline

– Deadline = block start time + task offset - handling constant

– Tasks return their succeeding tasks’ deadline to scheduler

– Scheduler chooses thread with most urgent task by EDF

– Binary heap implementation with worst case execution

• Blocks are opaque

– Deadline of a succeeding task in a different block is block start time

– Deadline is adjusted to first working element’s after entering succeeding
block

• All tasks lengths are known in advance

• Offline-Scheduling with P ≤ 1 is mandatory

– Points of decision are static parts of schedule

– All alternatives are known at time of analysis

– Support for limited changes during runtime

* Uncritical changes need recalculation and possible delay

* worst case of possible time critical changes is part of offline-schedule

116 Chapter 8. Data Master Firmware

8.3 Payload Programs

Machine schedules have already been introduced in the case study in chapter 4. We
shall now describe the approach for a prototype implementation in the DM.

FIGURE 8.3: DM Payload Program Structure

Payload Internals The structure of a payload program 8.3 follows simple rules, it
can be divided into several sub-components. The meta information on the timing
block the program describes are used to determine the base time for all actions inside
the program. The payload programs are meant to act as state-machines: Whenever
they are entered, they carry out the next task, save a reference where they left of, and
return control, and their next due time, to the scheduler. When they are called again,
the reference is used for an unconditional jump to the next task. It is important that
this jump stays within the scope of the payload program, otherwise it would corrupt
stack and registers. As soon as the payload program is completed, the reference i.e.
its internal state, is reset to its beginning. This always leaves a clean slate, which is
easy to manage.

8.4. Memory Management 117

Absolute Addresses vs Position Independent Code Payload programs are live
machine code that is compiled on the fly by the host system. To successfully execute
them once placed in memory, there are two possible strategies. The first would be to
use the knowledge of the allocator where they will be placed as their section offset in
the linker. This creates an executable version with correct absolute addresses, yet it
is not possible or at least very difficult, to move them around in memory once they
are compiled.

The other alternative is to compile them as position independent code, where all
jumps are implemented as the addition of a relative offset to the program counter.
As long as the scope of the payload program is not left, this works well and is more
flexible, yet can be slightly less efficient.

Actions Actions within payload programs are actual function calls, to eliminate
redundant code. They take care of sending timing messages or synchronising with
other threads or processors. The execution time is known beforehand and a constant
in the DM’s delay model.

Optimising Actions Function calls are not very efficient, because all information
going in and out has to be placed on the stack, as have all registers which are going
to be reused inside the function. RISC processors like the LM32 have a large number
of General Purpose Registers, which can be a huge performance burden if a lot of
registers are reused (in case of an interrupt, all 32 registers need to be saved to stack
and read back later).

In the context of the payload programs, this can be turned into an advantage
though. The GCC compiler allows registers to be specified per source file which
shall not be touched or which ought to be used [114]. Using this in conjunction
with the LM32’s high register count, function calls from the scheduler can be made
cheap by using a carefully specified register layout which does not overlap with the
payload programs.

8.4 Memory Management

Memory management is an important field of computer science and comes in var-
ious forms. The DM will use its memory for several different purposes and it will
change large blocks of memory contents frequently. This section will cover the ba-
sics of the field and discuss several memory allocation schemes [115] with regard of
their fitness for the DM’s hardware platform and software concept.

8.4.1 Overview

The trivial case of having larger fixed areas of memory into which one consecutive
block of data can be loaded does not require discussion. While it has almost no
overhead, it is very limited and wasteful. The process of dynamically assigning
memory to a requester is called allocation. The allocator is the program responsible

118 Chapter 8. Data Master Firmware

to find an appropriate area of memory for each request. There are different types of
management schemes, their main attributes are outlined in the following list:

• Physical Addressing

– Arbitrary Size

– Pages

– Size Trees

• Virtual Addressing

– Arbitrary Size

– Pages

* Pure Software

* Hardware assisted

Memory Fragmentation Allocation of dynamic block sizes comes at the penalty of
memory fragmentation. Fragmentation arises when memory content changes from
the use as small blocks to the use as large blocks. When small blocks are freed,
they are not necessarily adjacent. If they are, their space can be coalesced into large
blocks. When a request for a large block comes in, but only small blocks are avail-
able, it does not matter if the sum of their space is sufficient. The memory is frag-
mented, and as the large request cannot be split, the space is inaccessible. There are
several techniques to combat fragmentation described in the following paragraphs.

Physical VS Virtual Memory The difference between both approaches is that in
virtual memory, there is no case where the continuity of the allocated memory is
important. All used addresses are virtual and remapped to physical addresses, the
virtual addresses creating the illusion of a continuous block of memory, regardless
of its physical location. Virtual memory reduces fragmentation to a minimum, but
the address redirection requires extra time and also space for overhead data. It is
therefore often hardware accelerated. Almost all modern processors feature a hard-
ware memory management unit (MMU).

8.4.2 Schemes in DM context

The DM is a hybrid system of host (fast Intel CPU with several GB of RAM) and
embedded System (“slow” Soft CPU cluster on FPGA (125 MHz, 64 kB RAM), ded-
icated hardware priority queue and network core. The detailed feature list is as
follows:

• Realtime System

– Hard Realtime / deterministic runtime

– Very small memory per CPU (64 kB)

– No free hardware MMU

8.4. Memory Management 119

– User data is position independent code (no easy software paging)

– Limited computation power

• Host System

– No realtime

– Computation is virtually free

– Memory is virtually endless

– Fully parallel access to RTS

– Access to the embedded system has high latency

It is clear that memory is precious on the RTS and should be managed as effi-
ciently as possible. On the other hand, it is also clear that the RTS is already very
busy, and complex management schemes cost time and memory themselves. But
does the RTS need to be involved in the actual management or can this be out-
sourced?

The following approach outlines a management scheme for the host system with
minimal impact on the RTS.

Fixed Block-size The simplest scheme possible would be the assignment of sev-
eral pages (continuous blocks) of memory with fixed sizes. Each page can store a
machine schedule and be activated and deactivated as needed. While being the solu-
tion with the lowest overhead, the drawback is the obvious lack of flexibility. Differ-
ing schedule sizes will lead to internal fragmentation, the total number of schedules
is limited and there is a hard limit to schedule size.

Dynamic Block-size Dynamic allocation of memory to different schedules is there-
fore a better use of resources. In its simplest form, overhead consists of a pointer to
the block and its size. If one assigns blocks of arbitrary sizes, lists keeping track of
all free and used blocks must be kept. A scheme to find fitting free space for all new
allocation requests is necessary. To regain fragmented memory, adjacent free blocks
must be coalesced again.

Allocation Algorithm Wilson et al. [115] provide a comprehensive overview of
schemes for dynamic block sizes. An approach using the “Best-Fit” algorithm can
deal with an arbitrary number of schedules of arbitrary sizes and produce rela-
tively low waste of space at reasonably low additional space requirement. The al-
gorithm showed slightly better results in simulation than “First-Fit”. The “Buddy”-
Algorithm has a better fragmentation behaviour than both previous algorithms, but
the overhead is higher. For this implementation, the actual research of allocation
algorithms was cut short in favour of easy implementation and performance over
fragmentation avoidance.

However, the actual management still has to be done, and in the present case,
the RTS is not the best place to do it. Memory can be accessed fully parallel from the
outside, which suggests that the host is in a position to manage the RTS’s memory.

120 Chapter 8. Data Master Firmware

If the management is outsourced to the host, the chosen management scheme can
be computationally costly without any side effects on the RTS. Memory overhead
on the user side (the RTS) must still be low for obvious performance reasons.

Another limit to complexity on the host was introduced for safety reasons. The
host, a high end computer with an OS, is more complex and therefore more prone
to error than the RTS. Because the RTS can run independently once it is set up, a
reboot of the host should not require a reboot of the RTS. Instead, the host should
to be able to determine the complete memory allocation from the RTS, instead of its
own persistent records. The scheme is therefore limited to overhead data which can
completely be deducted from the minimal overhead data on the RTS. In addition, a
commit mechanism is necessary so the hosts actions are synchronised to the RTS.

Countering Fragmentation The mandatory first step is combining adjacent free
blocks. The DM cannot conduct defragmentation, i.e., moving live blocks so more
free blocks can be combined. In a non-realtime system, this could be done if the
system is idle, but a hard RTS with external input cannot enter this state without
being at risk of needing to handle an urgent request from an external event. Half
finished cleaning work is not viable.

Defragmentation could be achieved by the host system though, under three con-
ditions:

• Inactive live blocks are moved first to create swap space

• Active live blocks are only moved as a whole, i.e., create copy, redirect RTS,
free original

• Swap space must suffice to create a copy of the largest active live block

Implementing and integrating a defragmentation algorithm for the host was outside
the time-frame of this thesis. The first implementation stage will deal with the prob-
lem by writing a compacted version of the fragmented live blocks to an idle CPU’s
memory. Operation is then synchronously passed from the fragmented to the fresh
core.

Virtualisation and Pages The last option to consider is virtualisation. Virtual
Pages combine the advantage of fixed page sizes, no fragmentation, with the advan-
tage of low memory space wasted. While it is not necessary to implement the con-
trolling logic in the RTS, the Virtual Address Table (VAT) would require extra hard-
ware. Address translation units are by definition content addressable memories.
While the generic implementation of such a module is not trivial in programmable
hardware, in the special case of address look-up, it is quite straightforward.

The contents are page addresses, all of which could be mapped, therefore the
VAT must provide space for all of them. The content set is then continuous and
bounded to the VAT’s own range. This means all content addressable memory logic
can be omitted and a normal RAM be used instead, using the virtual page addresses
as the RAM’s address lines. The VAT is directly inserted into the normal memory’s
address lines, from the address’ MSB down to the page alignment boundary. If only

8.4. Memory Management 121

a certain region of the RAM is to be virtualised, an additional multiplexer is re-
quired. If the VAT is programmed correctly by the host, all virtual page addresses
are translated into physical addresses, the RTS’ CPU never knowing about the redi-
rection. Figure 8.4 shows an example for a 32 bit aligned 64 kB RAM with 1024 pages
of 64 B each. The maximum wasted space at 63B per block would be marginal.
31 16 15 6 5 2 1 0

Reserved for Device Address Virtual Page
Address

Word Address Byte
Addr.

}
Virtual Address

↓ VAT ↓ ↓

“” Physical Page
Address

“” “”
}

Physical Address

FIGURE 8.4: Virtual Address Translation

While technically elegant and interesting, this solution also has its drawbacks. The
implementation introduces at least one more cycle delay to memory access, more if
the memory is connected via WB instead of directly to the CPU. The look-up tables
require extra memory resources per CPU. The extra development effort for building
and evaluating an MMU prototype was outside the time-frame of this thesis, yet a
future assessment should be considered.

8.4.3 Summary

A simple scheme of dynamic memory management was chosen for the prototype
implementation. The advantage mainly comes from the ability to cope with the
higher numbers of machines schedules, which all require their own block in mem-
ory. A Best-Fit-Algorithm for arbitrary sized blocks is employed, free blocks are co-
alesced if possible. To keep the RTS deterministic, scan, allocation and maintenance
of free lists have been moved to the host system, making use of its parallel access
to the RTS’ memory. To preserve the information for the host and give a synchro-
nised access, the overhead data on the RTS side consists of a single bitmap showing
live entries in a table, populated with pointers to blocks and their size. Changes to
existing blocks are to be communicated over a synchronised queue, so the RTS can
update the address to a block once it has finished processing it.

For standard operation, the RTS only ever needs to access the table of pointers to
live blocks assigned to threads. The chosen strategy is fast, flexible and has minimal
overhead. It is however susceptible to memory fragmentation. The host currently
does not feature a defragmentation scheme, yet this problem could be remedied
in future work by a suitable algorithm or switching to virtual paged memory. For
now, the problem can be worked around without stopping the RTS by copying a
compacted version to a different core and synchronously transferring operations to
the new core.

122 Chapter 8. Data Master Firmware

8.5 Considerations on RT Flow Control

As already outlined in chapter 4, the graph representing machine schedules is not
a simple list of timing messages. The individual blocks contain messages and are
not meant to change at runtime. Yet some part of the schedule must be able to be
changed as needed to react to new requests and interlocks. This was achieved by
treating the succession of blocks as a graph, in which the flow from one block to
another can be changed at runtime. The encountered problems in RT flow control
and detailed solutions are discussed in this section.

8.5.1 Points of Decision

The links between blocks are the core control mechanism of the system. The succes-
sion of blocks depends on requests i.e. “Give me a shot of uranium beam now!”) and
interlocks i.e. “Synchrotron not ready for extraction!”. If there is a pending request
and no interlocks are prohibiting it, the corresponding branch in the graph will be
followed, its blocks executed. The only information needed by the RTS is the cho-
sen path whenever the flow graph is branching out into two or more destinations.
The problem is to achieve non-blocking, concurrent, yet if necessary, synchronised
behaviour.

It is evident that a block’s successor must only be called after the complete block
is processed, no matter when the link to the successor is modified. Otherwise an
inconsistent mix of two blocks would be played out. The same holds true for an
updated version of a block. This is easy to arrange if the change is applied not by
the host, but the RTS. It is further evident that due to the parallel nature of the access,
the host system cannot have accurate knowledge about the progress in the graph.
It can tell which blocks lie in the “far” past, but cannot get reliable information
about the most recent, current, and future blocks. A command has to refer to the
right block with the right instruction at the right time (the latter being important in
repeated executions).

8.5.2 Queues

Analysis A link is defined by predecessor and successor. A command must there-
fore only be applied to a certain block and has to carry an identifier to ensure this
is the case, and the command must also carry an identifier naming the desired suc-
cessor. The right time is a more complex issue. The RTS can identify the end of
a certain block, but what if this block is processed more than once? This delibera-
tion, in conjunction with the problem of the host only having a vague notion of the
progress through the graph, implies that the host should be able to deliver a stack of
commands at once, the RTS applying them when due. This forms a consumer queue
at the RTS, which will consume a command each time it comes by the appropriate
recipient.

8.5. Considerations on RT Flow Control 123

Queue Size The number of required slots in a queue depends on the number of
changes necessary. We’ll consider several use-cases to narrow down the possible
choices, which are:

• Single Change A→ C

• Infinite Loop A→ A

• Repeat n times A→ A,A→ A, . . . A→ B

8.5.3 Order

A thread’s consumer queue consumes the top element only under the condition of
finding the right recipient. Consider a loop of n blocks. The task is to re-program a
block’s link, so the loop is broken as soon as possible and the thread moves onward
to a different successor. So we can chose a block J and change its successor from K
to the desired alternative, X . The command is entered into the queue, and after a
time 0 ≤ t ≤ nT , the RTS will come around to process J again. Once it passes J , the
command is consumed and applied, the loop is left towardsX . This worst case time
cannot be shortened by addressing multiple blocks. Because only the top element
will be matched, the queue will stay blocked until the element is consumed.

Now consider instead an infinitely long string of blocks. The task is again to
re-program a block’s link, so the graph leads to X . Which block should be chosen?
The host cannot know which blocks are not yet processed. Choosing an already
processed block would block the queue forever and have no effect on the path, so
the only truly safe choice would take infinite time to reach. Both examples show
that the possibilities offered by a single queue pre thread are not sufficient for the
present case.

There are at least two possible solutions to the problem. The first would be to in-
clude a conditional action in each block along the graph from the very beginning. If
all conditions monitor the same signal (memory location)A and change their block’s
successor to X once they see A, only the currently processed block would be re-
programmed, and the destination reached in minimal time. The second is to allow
for further parallelism. If there was not one queue per thread, but one per block, the
problem can be solved by writing the command to multiple blocks simultaneously,
the next time the RTS passes, the path towards X will be followed.

Another, tough minor drawback also comes into play: it is hard to allocate an
appropriate size to the queues without wasting memory.

8.5.4 Pre-emption

However, this approach so far only covers pre-planned changes of behaviour. What
isn’t covered yet is an expected, yet spontaneously occurring behaviour i.e. inter-
locks. If an interlock condition arises, the RTS has to react as fast as possible. This
would, however, mean that every block would need at least one conditional action
or must feature a queue. But even if it does feature a queue, what if there are already
other queued commands? Interlock commands must be executed first; they need to

124 Chapter 8. Data Master Firmware

bypass, pre-empt [85], all other commands. This could be achieved by flushing the
queue once an interlock command arrives, but this approach in turn causes multiple
problems: Firstly, the host is not synchronous, it cannot safely manipulate the read-
ing side of the queue to flush it. Secondly, the RTS will only inspect the queue every
so often, so the interlock command has to wait somewhere for processing. What
happens if there is more than one incoming interlock command? The answer “They
go into the queue” does not suffice, because it is unclear on how the queue flush
should operate if there is already another interlock command present. This leads
to the conclusion that there should be at least two queues of different priorities per
block. An arbiter must choose the highest priority queue that contains elements.

8.5.5 Flushing

Having implemented a pre-emption mechanism, the question remains if there is
another case that requires flushing a queue. Continuing the previous behaviour
directly after emergency handling might lead to unexpected results, so the answer
is probably yes.

The flush command must be of a higher priority than the commands to flush,
as waiting in line would defy the purpose. Flushing the whole queue, on the other
hand, could also be problematic, because the flush must be synchronous to the RTS.
If the host has lower priority commands to enter after the flush command, it is im-
possible to know if the flush command is already carried out or if the flush will also
remove the newly inserted elements. It is therefore necessary to control the scope of
the flush.

When taking a closer look at the low-level implementation, a concept presents
itself. A queue is likely to be implemented as some sort of ring buffer. It has a
read and a write pointer, which usually have the possibility to overflow once. If
the pointers are equal, the overflow shows if this means the buffer is full (overflow
differs) or empty (overflow equal). The read pointer, wielded by the RTS, can only
ever increase to the write pointer, wielded by the host. If the host memorises the
last writing position before the flush and includes it in the flush command, the RTS
can flush up to exactly that point by setting the read pointer to match. All following
commands will be treated normally.

8.5.6 Repetitions and Redundancy

As in the example given earlier, the case of repeating a command n times is quite
common. The problem is that this requires large queues, because there is no absolute
limit to n provided by use-cases of machine schedules. It is likely to be below 100,
but even this number could be problematic, as the total number of blocks requiring
queues is also not limited. Since the memory of the embedded system on the other
hand is severely limited, it is necessary to search for a more sophisticated solution.

A possible solution are generators [116], which are pre-configured functions with
a changing result. For example, consider a generator for the numbers from one to
ten. Each time it is called, it outputs a single number, in increasing sequence. Once
it hits ten, it returns nothing when called.

8.5. Considerations on RT Flow Control 125

If a command would not be an element, but a generator of elements, it would
output the same command until it reached its limit, and can be popped from the
queue once it is empty. This would greatly simplify the loop scenario 10 · A →
A,A → B, especially because this allows to severely limit queue sizes to a range
between 2 and 5 elements.

8.5.7 Synchronisation

Simultaneous Commit Sending a command means accessing a CPU’s memory
and writing this command to the queue of a specific block. When writing to multiple
destinations, atomicity cannot be guaranteed. While one could implement ways to
truly broadcast the operations in parallel to multiple bus devices (CPU memories),
there is no way to atomically write to multiple areas inside the same CPU’s memory.

Since the host does not have accurate information about the RTS’s current state,
there would be no way to anticipate the execution order of commands sent. What
is needed instead is a handshake or commit event, after which a command becomes
valid for execution. Unfortunately, distribution of such an event would suffer from
the same penalties as command distribution does.

The approach taken to avoid this introduces a commit date, attached to all sent
commands. WR Time is globally available to all CPU’s and their threads via ded-
icated hardware. If a queue’s arbiter would check if the commit date is valid be-
fore executing a command, a synchronised execution of multiple commands can
be achieved. When sending commands as a host, an educated guess is enough to
calculate a safe lead for a commit date.

Sequential Commit The proposed commit date as a synchronisation mechanism
also has a second important application. When controlling the accelerator facility,
a beam traverses multiple stages (Source, LINAC, Synchrontron1, Synchrontron2,
. . .), which are managed in parallel. While it would be possible to merge all timing
messages into a single chain of blocks, this would make pipelined operation of the
involved resources very rigid.

The use-cases are flow changes, exceptions to or cancellation of queued changes,
and emergency changes (interlocks), in increasing priority. This requires three indi-
vidual queues per command queue instance, always returning the element with the
highest priority available. Higher priority queues shall be able to receive commands
to clear a queue of lower or equal priority up to a certain point. On equal priority,
clearing cannot happen out of order, the command waits in line.

8.5.8 Summary and Command Queue Design

Drawing the conclusion from the previous deliberation leads to a design for a sys-
tem of software queues. Their purpose is to allow the host synchronous online con-
trol of the RTS’s path through the schedule graph. Since dual port RAMs are used,
non-blocking parallel memory access by host and RTS is possible. The command
queue system must also work for processors each with multiple threads. The mech-
anism shall be the same for host to CPU and CPU-to-CPU communication. The

126 Chapter 8. Data Master Firmware

execution order of commands at each point of decision in the graph is local only, it
is independent from all others. Therefore, each block containing a point of decision
(branching sequences in figure 4.5) must have a dedicated instance of a command
queue (CMD-Q).

FIGURE 8.5: CMD-Q Layout: Three prioritised generator queues,
time aware, partial/complete flush

The common denominator to coordinate more than one flow change is global WR
time. Because dedicated hardware is involved, time is a shared notion, but access is
not a shared resource. All commands therefore have a commit date indicating when
they become valid. In order to save on redundant commands, commands are in fact
command generators, issuing a command a given number of times before leaving
the queue.

• Command Content

– Priority – Priority level of this command (Top, High, Std.)

– Commit – The time when this command becomes valid

– Action – Action to be carried out:

* Flow – New Successor and Generator Quantity

* No-Op – Placeholder and Generator Quantity

* Flush – Target Queue(s) and Range(s) to be flushed

8.5.9 Detailed DM Command Specification

Commands will be distributed over the WB bus, which is in turn extended via EB
to the host platform. The communication must be completely non-blocking, so the

8.5. Considerations on RT Flow Control 127

external access to another CPUs memory may not be shared between host and CPU.
Instead, CPUs shall use the MSI bus instead of WB. Both buses use the same proto-
col, yet MSI is used solely for interrupts to master devices [117]. Both the address
and the data lines of WB are used. Figure 8.6 shows how the address is used to
chose CPU, CMD-Q, priority and write pointer of a command. Each factor adds a
distinct offset, leading to a unique memory address.
31 20 19 0

Memory Dev. Addr. Queue System Base-Address + Queue(Prio) + WR Ptr
}

WB-Address

31 0

Timestamp

Action





WB-Data

FIGURE 8.6: DM Command Message

The current MSI subsystem, which is a dedicated WB bus, is yet only meant to send
a single 32 bit word per message. This is a convention though, not a limitation. The
situation could either be remedied by changing this limit to 3 words per message,
as shown in figure 8.6 and 8.7 or use a more compact format (figure 8.8).
31 28 27 16 15 0

Type Field Successor Generator Quantity
}

Flow
31 28 27 0

Type Field Generator Quantity
}

No-Op
31 28 27 20 18 17 16 15 8 7 0

Type Field CTFHFS Flush HP Range End Flush SP Range End
}

Flush

FIGURE 8.7: Possible Actions for DM Command Messages

Since the commit dates signify a “not-before” boundary and focus on equality or
being inside a larger safe zone, using a dynamic representation with mantissa and
exponent is possible. Sacrificing accuracy for dynamic range, it is possible to fit all
necessary information into a single MSI message. Figure 8.8 shows the shorthand
form usable over the MSI system.

128 Chapter 8. Data Master Firmware

31 12 11 4 3 2 1 0

Reserved for Dev. Addr. Queue System Idx. Prio. TypeMSI-Addr.
{

31 28 27 16 15 8 7 0

Exp. Time Mantissa Successor Generator Qty.
}

Flow
31 0

Exp. Time Mantissa Generator Qty.
}

No-Op
31 28 27 16 15 14 13 12 11 6 5 0

Exp. Time Mantissa CTFHFS HP Range End SP Range End

MSI-Data



 }

Flush

FIGURE 8.8: Alternative Short-Hand for current MSI System

8.6 Deterministic Programming

Producing deterministic programs, that is, deterministic in terms of their execution
time, is not a trivial task. It can easily be observed using suitable measurement tools
like profilers or logic analysers, that most programs will jitter heavily. This is usually
a desired effect: the average case is faster than the worst case and far more likely,
therefore saving processing time.

In RTSs however, this makes it all the harder to give guarantees for execution.
Because algorithms are usually chosen to give optimal average performance, their
worst case performance is often so bad that it is useless as a guarantee in the time
frame available for the control loop. The DM’s hardware architecture showed how
shared resource bottlenecks were avoided in the design process, section 8.2 gave an
impression on how to chose algorithms by worst case performance. This section
deals with removing jitter from the firmware implementation and discusses various
techniques to achieve this.

8.6.1 External Sources of Non-Determinism

Shared Resources One of the most influential factors are external resources the
CPU tries to access over the bus. Any slow or busy resource will cause a delay. In
some cases, like RAM, this problem can be solved by outsourcing both the work
and the associated wait times to dedicated hardware. DMA controller and caches
are the answer to this problem in modern CPUs, the processor is free to do other
work. However, for a CS, this merely slightly down scales the problem of non-
determinism. What about hard deadlines? If data has to be retrieved at a certain
time and evaluated inside a close time-frame, access to external resources still is a
bottleneck.

This is exasperated if the resource is shared between several masters. If the re-
source is controlled by an arbiter or all accessors adhere to a strict policy, shared
use is possible in a realtime context. But whatever scheduling algorithm is used in
the arbitration, one problem still remains. If a CPU is to avoid jitter in its program
execution, then it always has to assume the worst case access time and wait until it
is over. This comes at a high cost in computing cycles.

8.6. Deterministic Programming 129

Atomicity All synchronisation with external processes, in the DM’s case the host
system, come with some sort of semaphore or handshake. Albeit a conclusion from
the preceding paragraph, it is important to note that the RTS’s behaviour on syn-
chronisation can never be blocking. Semaphores must be checked in a strictly pe-
riodic manner, always returning control to the scheduler. Read and write access to
a semaphore must of course also always be separate structures in order to be inde-
pendent.

Caches All modern CPUs have to fight one common problem. While system mem-
ory is vast, it is also slow, from the CPUs perspective. This is countered by several
layers of faster cache memory, holding content ready for faster access, prioritised by
frequency of use. When a CPU mispredicts a branch taken in its program flow, this
leads to a refill of the pipeline and is usually associated with the wrong content be-
ing in the cache. This takes time to refill, and leads to non-deterministic behaviour.
Since the DM’s CPUs reside within an FPGA, memory connection can be direct with
1 cycle access latency, which is equivalent to L1 cache. In the current implementa-
tion however, memory is implemented as WB bus devices. Bus access is slower, so
LM32’s do have an instruction cache enabled in order to speed up performance.

If the DM loads and unloads blocks of live code in its most recent incarnation,
this means a cache flush is necessary each time new code is loaded, because the CPU
would otherwise be blind to the change in memory. This would contribute a big
portion of non-deterministic behaviour and is not tolerable. The long-term solution
is to change the hardware implementation in the FPGA so that only one port of the
dual port memory is connected to the WB bus via a standard WB interface, the other
is connected directly to the CPU. Because this exceeds the time frame of this thesis,
the workaround is to disable the CPU’s instruction cache and accept the lowered
performance in exchange for deterministic behaviour.

8.6.2 Non-Determinism through Program Flow

The main source of non-determinism inside a CPU may sound trivial, but is an
important field of research in computer science. Whenever a branch is taken, the
following instructions are different from the ones if the branch had not been taken.
Since all modern CPUs pipeline instructions to maximise the utilisation of their ALU
and specialised math cores, sudden changes of plans are a problem. The CPUs in-
struction pipeline has to be flushed (at least partially), and refilling the pipeline takes
time before execution can proceed. For this reason, branches taken consume more
time than branches not taken. Since Branches usually evaluate the processed data,
it is impossible to tell at compile time how often a branch will be taken. This means
online branch prediction is an important aspect in all modern CPUs and usually
implemented in hardware. However, even good predictions are useless to an RTS
which needs a tightly bounded guarantee.

Loops Quite often, user data, e.g. the number of student records in a table, deter-
mines how often a loop is executed. All that can be said about the execution time
of the loop is that it will take n times the number of cycles it would take if it was

130 Chapter 8. Data Master Firmware

called only once, n being the number of students. Any deterministic implementa-
tion would need to assume the worst case, i.e. the maximum number of students
permitted in a year.

Branches Just as loops, branches introduce uncertainty. There are two possible
cases: equality and different length, there being a corner case of one part having a
length of zero. If both parts of the branch are equal in execution length, execution
time would not matter, but the chance of this occurrence, if not by design, are re-
mote. If both parts are of different length, the execution time of the chosen part will
be added. If the branch only has one part (if . . . then . . . , but no . . . else . . .), then the
branch is either taken, adding its execution time, or not.

Cases Cascaded branches, also called Case-statements, are implemented as a cas-
cade of If -statements. While it is possible to make simple branching take equal time
no matter if the branch is taken or not, this does not work if there is more than two
alternatives. Not only does it matter which of the scores of alternatives are taken,
the execution time also depends on the order of If s. When a branch on the first If
inside a Case is taken, it adds the time for it’s own execution. But if the same branch
condition would instead be the last to be tested in a series of If s, this would add the
execution time of all previous condition tests. It is only possible to evaluate multiple
conditions deterministically if the execution time is worst case for all possible paths,
which is a complex, and wasteful, construct.

8.6.3 Proposed Approach

When optimising code for deterministic execution, the abstract view on code is left
behind and the optimisation takes place in the machine language used by the CPU.
It is therefore platform specific, because the processor architecture (instruction set,
register layout, pipeline design, cache) determines the operations and the time per
operation. Optimisations on this level make use of arithmetic or logical properties
of the involved data structures.

Calculation of Program Execution Time The execution time of a program can
in theory be calculated, if its machine code and the time it takes the machine to
carry out each individual instruction is known. This only holds for trivial programs
though. Above a certain complexity, the question if and when a program termi-
nates can no longer be solved by a generic formal approach, as it can be reduced to
a variant of Turing’s Halting-problem [118]. In the DM’s case, the RTS firmware is
designed highly modular and has a simple flow with a short period. This allows
exact measurements of execution times. The results can be kept up to date with the
current version much more efficiently than a formal proof.

Profiling The term “Profiling” in computer science means measuring the execu-
tion time of programs. Profiling is useful for finding bottlenecks and the compar-
ison of different approaches in terms of performance. It is usually only applied to

8.6. Deterministic Programming 131

a single algorithm or section in a program at a time in order to isolate the possi-
ble sources for performance loss or gain. Most processors feature an internal cycle
counter, a special purpose register, which is increased with each clock cycle. The
LM32 has a 32 bit wide cycle counter and runs at 125 MHz.

The problematic aspect of profiling is that the act of observation changes the re-
sult. If profiling is done internally, then the code which times a program’s execution
adds its own execution time to the final measurement and must be subtracted later.
This implies that the execution time of the critical section of the profiler has to be
constant and known. Profilers in embedded systems have to conserve memory, so
they usually only offer minimum and maximum values in addition to mean values
created from a rolling buffer. The profiler code for the DM prototype follows this
simple design.

8.6.4 Applied Techniques

In this section, several of the techniques used are explained and their validity shown.
An excellent, if not the best available, source for clever bit manipulations proved to
be S. E. Anderson’s website on “Bit twiddling hacks” at Stanford University [119].
When using Boolean equations, the following symbols and notations will be used:

¬A Negation
A ∧B Logical AND
A ∨B Logical OR
A⊕B Logical XOR

¬A = A Shorthand Negation
A ∧B = AB Shorthand AND

A⊕B = (AB) ∨ (AB) XOR expansion (8.1)

Accessing Packed Bits When using smaller data types like bytes, the compiler will
usually pack them in memory. Most memory types have byte enable signals, being
able to manipulate a single byte in a data word. But if byte enables are not avail-
able or data groups smaller than 8 bits need to be modified, there are sequences of
logic operations that can be used to access the data. Using a single data word to
store multiple flag bits can save a significant amount of memory. The access, how-
ever is more complicated. In order to change a single bit in a vector, the following
techniques are used.

A� i = A · 2i Left Shift by i

A�a i = bA/2ic Arithmetic Right Shift by i
A�l i Logical Right Shift by i

(8.2)

Isolating a single bit at position i in arbitrary vector F containing multiple flags
in the form of Y is a simple task, as shown in Eq. 8.3. Logical right shifting (see 8.2)
moves the bit to the LSB, a logical AND with the literal 1 turns all other bits to zero.

132 Chapter 8. Data Master Firmware

Y = (F � i) ∧ 1 → Y0 = Fi, Yn−1 . . . Y1 = 0 Get bit i (8.3)

F = F ∨ (1� i) → F ′i = 1 Set bit i (8.4)

F = F ∧ (1� i) → F ′i = 0 Clear bit i (8.5)

F = F ⊕ (1� i) → F ′i = Fi Toggle bit i (8.6)

Efficient Mask Creation Conditionally changing content usually requires mask-
ing, that is, optionally clear a value by bitwise AND of the mask and content. Mask-
ing makes use of the 2nd Boolean law; a value’s logical AND conjunction with 0 is
0. To make it depend on the flag bit, all bits of the mask show the same value as the
flag bit. The most efficient way to achieve this is to exploit the binary representation
of negative numbers, in this case the Two’s Complement [86, pp 246].

−Y = 2n − Y
= Y + 1 Two’s complement (8.7)

−1 = 0b . . . 1111

Negative numbers are represented by subtracting their absolute value from 2n

These are in the Two’s Complement, which is obtained by inverting all bits in a
vector and adding 1. Let the flag Y and the mask M both be bit vectors n bits wide.
Y ’s least significant bit is the flag bit, Y0. All other bits, Yn−1 . . . Y1 are zero. Using
the Two’s Complement representation from 8.7, lemma 8.8 is valid; each bit of M
takes the value of Y0.

∀Y ∈ {0,+1} : M = −Y ⇒ Mi = Y0 (8.8)

Branch Avoidance I: Conditional Assignment If equal execution times are re-
quired regardless whether a branch is taken or not, a condition branch can also
be expressed in pointer arithmetic followed by a jump. For this case, when a flag
is true, an alternative target address is assigned to the pointer. To achieve the same
execution length whether a branch is taken or not, the pointer must always be up-
dated. Only the written content depends on the flag bit.

As shown in Eq. 8.9, this is can be done by using the mask and the negated
mask in the same assignment. It is already a minimal function, which can easily be
proven by applying a logic minimisation algorithm like Karnaugh Veitch or Quine-
McCluskey. The function is a trivial case, the claim that it assigns either A or B easy
to follow through. The inner AND functions mask A and B, using the mask and the

8.6. Deterministic Programming 133

inverted, one of the terms in the OR function must be 0. By applying 1st Boolean
law, a value’s logical OR conjunction with 0 is the value itself, the OR term resolves
to either the value of A or the value of B. In conclusion, A is either assigned the
value of A and therefore unchanged or assigned the value of B.

f(A) = AM ∨BM (8.9)

Conditional assignments are a very common and important operation, and it there-
fore makes sense to optimise this step. The trivial case requires 4 operations (NOT,
AND, OR, AND). Jeffery claims [119] that the assignment from eq. 8.9 can also be
expressed as eq. 8.10

f(A) = A⊕ ((A⊕B) ∧M) (8.10)

Depending on the processor architecture, this reduces the operation cost from 4
(NOT, AND, OR, AND) to 3 (XOR, XOR, AND). To verify Jeffery’s suggestion, ap-
plying the Boolean laws and theorems [86, p. 51] delivers the proof by algebraic
transformation that both equations are indeed equivalent:

Proof: AM ∨BM = A⊕ ((A⊕B) ∧M)

A⊕ ((A⊕B) ∧M) Subst. 8.1

= A ∧ ((AB ∨ AB) ∧M) ∨ A ∧ ((AB ∨ AB) ∧M)

= A ∧ (ABM ∧ ABM) ∨ ABM De Morgan

= A ∧ ((A ∨B ∨M) ∧ (A ∨B ∨M)) ∨ ABM

= A ∧ (AA ∨ AB ∨ AM ∨BA ∨BB
∨BM ∨MA ∨MB ∨MM) ∨ ABM Complement

= A ∧ (AB ∨ AB ∨M) ∨ ABM

= AAB ∨ AM ∨ AAB ∨ ABM

= AB ∨ AM ∨ ABM Simplification

= AB ∨ AM ∨BM Consensus

134 Chapter 8. Data Master Firmware

= AM ∨BM

Both algorithms are equivalent. To show that here is in fact an improvement, the
total execution time, which is platform dependent, has to be evaluated.

Instruction Issue Result

and 1 1

not 1 1

or 1 1

xor 1 1

add 1 1

branch 4 –

branch gr 1/4 –

TABLE 8.1: Execution Time per LM32-Instruction

An excerpt of the corresponding values from the processor documentation [91, pp. 60-
96], is shown in table 8.1, which can be used to calculate execution times for all ap-
proaches. The operations will be pipelined, the delay between start of issue and end
result in the present example is the time it takes to obtain the result plus the sum of
all issue times RN +

∑
Ti.

Approach Algorithm Issue + Result Cycles

Branching IF M X → A ELSE X → B (1/4 + 1)I + 1R 2/6

Standard Arith. AM ∨BM (1 + 1 + 1 + 1)I + 1R 5

Optimised Arith. A⊕ ((A⊕B) ∧M) (1 + 1 + 1)I + 1R 4

TABLE 8.2: Execution Time by Type of Conditional Assignment

Table 8.2 shows the resulting cost in CPU cycles for each approach. A slash signifies
alternatives, not division. It clearly shows that the optimised arithmetic conditional
assignment is at 4 cycles faster than the standard version with 5 cycles. It is also the
mean of best and worst case of the branch instruction, which is a satisfying outcome.

Calculating Absolute Calculating the absolute of a number is another common
case which is usually optimised by compilers. If the CPU does not have a native
ABS instruction, the compiler does not use it or if there are no standard libraries,
it can be sensible to write the operation explicitly. Eq. 8.11 shows a solution which
operates in constant time. Since A is in two’s complement, an arithmetic bit-shift by
integer size n will give two possible results for mask M . If A is positive, M = 0, if
it is negative, M = −1. It can then easily be seen in the following line that adding 0
and XORing with 0 does not change A. XORing with −1, however, logically inverts

8.6. Deterministic Programming 135

A. In combination with adding −1, this is A’s twos complement. Since it is only
applied if A is negative, it follows f(A) = |A|.

M = A� n

f(A) = (A+M)⊕M
(8.11)

Calculating Minimum/Maximum Getting the minimum or maximum of a set of
numbers is a common problem, even more common when the set consists of only of
two numbers. Eq. 8.12 shows a variation of the conditional assignment from eq. 8.10
and 8.8, the mask is obtained by expanding the logical result of X < Y .

fmin(X, Y) = Y ⊕ ((X ⊕ Y) ∧ −(X < Y))

fmax(X, Y) = X ⊕ ((X ⊕ Y) ∧ −(X < Y))

(8.12)

Branch Avoidance II: Conditional “unconditional” Maybe even more important
than branchless conditional assignment variables (as described earlier in this sub-
section), is conditional branching with a fixed execution time. This can be achieved
by the aforementioned assignment, using the register either as a direct target or an
immediate offset for an unconditional jump. The execution time for assignment fol-
lowed by an unconditional branch is high in comparison to a vanilla conditional
branch instruction (3 + 4 vs 1/4), but the purpose of the operation, deterministic
branch behaviour, is achieved.

8.6.5 Summary

Taking all of the discussed approaches into account, as well as the scheduler design
from section 8.2, it is possible to implement the DM’s firmware (see figure 8.1) in
a completely jitter free, deterministic fashion. This is a necessary prerequisite to
design an accurate delay model of the DM, to be used in the offline scheduling
analysis (see chapter 9).

Example The source code 8.1 in C99 shows an application of all the techniques
presented in this chapter as an unrolled, branchless heap sort algorithm which is
used in the DM scheduler

136 Chapter 8. Data Master Firmware

1 #define HEAP_DEPTH 4 // Heap size and therefore depth is constant
2 #define NUM_ELEMENTS 9 // Example, value actually only needs to be constant over one

execution
3

4 // heap element
5 struct he
6 {
7 void* pThr; // thread
8 uint64_t dl; // deadline
9 } he;

10

11 //the heap
12 struct he heap[HEAP_SIZE]; // array of ptrs to threads and their corresponding deadlines
13 struct he mov; // moving element
14

15 uint8_t src, dst; // Swap Operation Destination and Source, first destination is top of
heap

16 uint8_t lLEr; // left child is less or equal right child
17 uint8_t mGr, mGl; // moving element is greater right child / left child
18 uint8_t cl, cr; // right child / left child was chosen for swap
19 uint8_t mask; // mask to prevent further swapping if the moving element is sorted

in correctly
20 uint8_t l, r; // indices of child nodes
21 uint8_t lOK, rOK; // left child / right child exists. Only exists for better readability
22 uint8_t steps; // step counter for swapping operations
23

24 dst = 0;
25 src = 0;
26 steps = 0;
27

28 // Branchless Heapsort Replace operation (constant execution time, worst case)
29 // replace single element, sort always takes log n
30 while (steps < HEAP_DEPTH) {
31 l = (dst<<1)+1; // left child
32 r = l + 1; // right child
33 lOK = (l < NUM_ELEMENTS);
34 rOK = (r < NUM_ELEMENTS);
35 l &= ~(lOK-1); // mask to zero if out of bounds
36 r &= ~(rOK-1);
37 lLEr = (heap[l].dl <= heap[r].dl) | ~rOK; // (left child less or equal r c) or r c

non existent
38 mGr = (mov.dl > heap[r].dl) & rOK; // mover greater right child and r c exists
39 mGl = (mov.dl > heap[l].dl) & lOK; // mover greater left child and l c exists
40 cl = (mGl & lLEr); // choose left child
41 cr = (mGr & ~lLEr); // choose right child
42 mask = ~((cl | cr) -1); // all 0 when no chosen child, all 1

otherwise
43 src = dst + ((dst + 1) & mask) + cr; // parent = dst, left = dst+(dst+1),

rightC = dst+(dst+1)+1
44 heap[dst] = heap[src]; // swap
45 dst = src; // new destination is old source
46 steps++;
47 }
48 heap[dst] = mov; // copy moving element into final position

LISTING 8.1: Heap Sort with constant execution time

137

Chapter 9

Theoretical Model

9.1 Overview

9.1.1 Motivation

This chapter investigates one of the most important aspects of this CS – the condi-
tions under which it can be guaranteed to work deterministically. The DM is the
head of an alarm based CS. As pointed out during the case study in chapter 4, being
alarm based provides a certain degree of freedom when choosing a “safe” lead for
transmission. There are limiting factors though, as discussed in chapter 7.3:

• Target control loop speed

• Available computing power

• Available network bandwidth

It is therefore necessary to create a model of the CS, which verifies if a chosen
set of machine schedules can be scheduled within CPU utilisation ≤ 100%, does
not generate traffic > 1 Gbit/s (including overhead) and does not exceed the target
delay. This goal is made more difficult by the possible need to change machine
schedules during runtime. This will happen whenever interlocks and beam requests
from experiments need to be serviced.

The purpose of the model is to provide a guarantee that a given set of messages
can be delivered on time.

9.1.2 Choice of Implementation

After a period of research in classical queuing theory [120], [121] the conclusion was
reached that queuing theory is not well suited for the task at hand. Queuing theory
is very generic, requiring a lot of the mathematical elements to model this specific
problem to be developed first. Queuing theory is also more focused on throughput
and probabilities, rather than determinism and providing delay bounds. Attempts
in modelling the DM system using queuing theory turned out to lead into a lot of
dead ends, the model never quite matched the prototype. Without an expert level
knowledge in the field, there seemed to be little chance of accurately model a system
as complex as the DM in queuing theory.

138 Chapter 9. Theoretical Model

The author’s specialisation in electrical engineering is communications, which is
probably the main reason why Network Calculus (NC) had to be encountered at some
point in the search for a suitable tool to solve this particular problem. Parts of the
problem in modelling the DM were exhibiting a striking resemblance to problems
quite common in system theory. Modelling machine schedules, in a way that would
make their superposition and shifting in time manageable, showed a lot of the hall-
marks of signal processing. Expressing the burstiness of a schedule over time as a
function of frequency in a spectrogram seemed natural, just as the idea to smooth
bursty flows by a filter element did.

After deeper investigations of the work of [122] (1991), and later [123] (2001),
NC presented itself as an ideal tool for the problem at hand. NC is a mathematical
framework to model concepts from system theory in a networking context, with
focus on deterministic behaviour and bounds.

9.2 Introduction to Network Calculus

9.2.1 Overview

System Theory for Signal Processing Signal processing is a very important field
in electrical engineering and computer science. In most electronic devices signals
must be generated, shaped, filtered or distorted. Sheath current filters suppress low
frequency humming in a sound system, a blur effect removes the high frequencies
from an image, to just name a few examples.

Complex behaviour in system theory is modelled by the concatenation of basic
elements. These are small two-port networks, for which the signal transfer functions
can be calculated. System theory provides the necessary mathematical tools to put
these elements in series or parallel and so enables the calculation of complex signal
transformations.

Computer Networks Another application of system theory would be modelling
the traffic in computer networks. Similar to signals, network traffic can be shaped,
filtered, split or joined, but the application of classical system theory is rather te-
dious. Specialisation within queuing theory has evolved to deal with the flow in
computer networks, focusing on optimising throughput.

Network calculus NC is an approach that applies system theory to deterministic
queuing systems found in communications, such as computer networks. Contrary
to traditional system theory used for electronic circuits, NC employs a different set
of algebra, the Min-Plus Dioid (addition becomes computation of the minimum,
multiplication becomes addition). The approach is aimed at understanding and
modelling fundamental properties of networks, such as delay or buffer require-
ments, scheduling or window flow control. The focus of NC lies on worst case
analysis in order to provide guarantees for a communication system.

9.2. Introduction to Network Calculus 139

y(t) z(t)R C y(t) σ z(t)

FIGURE 9.1: Equivalency: System Theory Low-Pass
and NC Shaper [123]

As an example, the similarity between an RC low pass filter in system theory
and a rate-limiting shaper node (server) in NC is shown in figure 9.1. The two-port
filter network on the left transforms an incoming analogue signal by applying the
convolution with the circuit’s impulse response. In electrical engineering, a two-
port network has a transfer function, which defines the output voltage in relation to
the input voltage. In NC, input- and output-“signals” are cumulative flows. This
means the cumulative sum of units of data (bits, words, packets, etc.) over time.

The similarity between a signal filter and a shaping node becomes more apparent
when considering a constant rate of arriving packets is equivalent to a frequency
of packet arrivals. It therefore follows, that a shaper imposing a maximum rate
(frequency) is low pass filtering the packet flow (signal).

Example NC focuses on guarantees, it shows the bounds for maximum delay and
backlog that a flow can experience. A convenient property of NC is the minimal
effort necessary to obtain backlog and delay values. As figure 9.2 shows, any in-
put flow y(t) passing a node produces an output flow z(t) for which z(t) ≤ y(t)
holds true. At any point in time, the current backlog can be determined by the ver-
tical deviation of the flows. The current delay can be determined by calculating
the horizontal deviation. Finding the respective maximum values by applying the
supremum is then trivial.

t

D
a
ta

Input Flow y(t)

Output Flow z(t)

Shaper Curve σ = rt+ b

max. Delay

m
a
x
.
B

a
ck

lo
g

FIGURE 9.2: Flow passing through a Shaper

140 Chapter 9. Theoretical Model

9.2.2 Network Calculus Core Concepts

While flows are defined as the cumulative sum of data over time, NC defines sys-
tems in terms of arrival curves and service curves. Figure 9.3 shows two related
examples.

Arrival Curves Describe sets of constraints that govern the input flow’s behaviour
over time. These curves are usually piece-wise linear, concave functions. Their slope
describes the maximum allowed rates, their vertical offset the burst tolerance.

An arrival curve could state that an incoming flow is allowed a peak rate of
no more than 500 Mbit/s up to an input buffer size of 256 MB, afterwards it must
fall back to a sustainable rate of 100 Mbit/s until the buffer’s fill level is lower (fig-
ure 9.3a).

Service Curves These are the counterpart to arrival curves, they describe the ser-
vice a system offers to an input flow. Their horizontal offset is describing the amount
of time lag packets experience, their slope describes the minimum rates. To again
provide an example, a server’s minimum service curve could state that it will delay
packets for at least 2 ms and can handle traffic up to a rate of 1 Gbit/s. These curves
are usually piece-wise linear, convex functions (figure 9.3b).

One of the core constructs of NC is a node behaviour called the “leaky bucket
controller”. The analogy is simple: Consider a water bucket, able to hold an amount
of water b, leaking with a constant rate of C. It can handle one or more of gushes of
water of arbitrary volume, up to the capacity of the bucket. Once the bucket is full, it
is easy to see that there is a maximum rate at which one can add more water without
overflowing, which is r ≤ C – a system with buffer size b, input data rate r and
output data rate C. This is equivalent to featuring an arrival curve α = υb,r = rt + b
and a minimum/maximum service curve β = λC = Ct (figure 9.3c).

256
MB

r2

100 Mbit/s

r1

b

t

500 Mbit/s

(A) Arrival Curve
2ms

C

T

t

1 Gbit/s

(B) Service Curve

C

b

r

(C) “Leaky Bucket”

FIGURE 9.3: NC Examples

Output Arrival Curves Arrival and service curves put constrains on input and
system behaviour, but to give a guaranteed flow behaviour, the output of a system
also needs to be constrained. The matching instrument is called an output arrival
curve. It is similar to an arrival curve, but describes the flow after it has traversed a
node, having experiencing its service. It is used to define the input constraints for
the next downstream node. As an example, consider a periodic input flow, sending
with a rate of 1 Gbit/s for 20% of the time and idle otherwise. If the node provides a

9.2. Introduction to Network Calculus 141

service of 250 Mbit/s, the output arrival curve would also be a periodic flow, send-
ing at 250 Mbit/s for 80% of the time.

Shaping Curves are the application of service curves to form a flow. If a node
forces a flow to conform to a specific target arrival curve, it is called a shaper. More
details on shapers can be found in subsection 9.2.4.

Bounds The main goal of NC is to provide bounds on delay, backlog and output,
in order to give guarantees. Bounding the end-to-end delay a flow experience is
for example necessary when calculating if the lag for an individual VoIP connection
will always stay low enough not to impair a conversation. Bounding backlog, for
example, is important for calculating the size of memory a router will need. And
lastly, the necessity for bounding an output flow, which is explained under “output
arrival curves”.

9.2.3 Mathematical Background

Most of the theory on Network Calculus in this chapter stems from Thiran and Le
Boudec’s text book on the subject [123]. This introduction will focus on the applica-
tion of the presented theorems and limit the formal proof and mathematical back-
ground to the necessary minimum. After the work of Thiran and Le Boudec, NC has
forked into the direction of stochastic applications [124]. This is of no further inter-
est to this case study, as the CS must be deterministic. Some of the most interesting
advance in the field of deterministic NC, as well intriguing problems and tricks of
the trade, were gathered from the post-2006 publications of Schmitt, Zdarsky, and
Thiele, as well as Fidler and most recently, Bondorf [125]–[129].

Min-Plus Algebra NC uses a different algebraic Dioid (similar to e.g. Boolean al-
gebra, which replaces arithmetic operations by logic), which replaces addition with
computation of the minimum and multiplication with addition. The two most im-
portant equations describe the convolution operations, similar to standard system
theory. They are defined as

Min-Plus Convolution f(t)⊗ g(t) = inf
0≤s≤t

{f(t− s) + g(s)}

Min-Plus Deconvolution f(t)� g(t) = sup
s≥0
{f(t+ s)− g(s)}

(9.1)

Max-Plus Algebra The corresponding max-plus operations are also listed, not
only for the sake of completeness, but because max-plus deconvolution will become
useful when finding a curve providing a lower bound to a function. The concrete

142 Chapter 9. Theoretical Model

application will be shown in conjunction with scaling operators in section 9.2.4.

Max-Plus Convolution f(t) ⊗ g(t) = sup
0≤s≤t

{f(t− s) + g(s)}

Max-Plus Deconvolution f(t) � g(t) = inf
s≥0
{f(t+ s)− g(s)}

(9.2)

Curves We will follow the convention of marking output related curves and flows
by appending an asterisk. Arrival curves (if not otherwise stated, an upper bound)
are denoted by the letter α (and therefore, α∗ denotes an output arrival curve). For
service, there exists a maximum service denoted as γ, which is useful to calculate
buffer sizes, and minimum service denoted β, which is used to calculate delay.
Shapers are always denoted as σ. The definitions of all introduced curve types are
as follows:

Input-Output Relation R(t) ≥ R∗(t)

Max. Arrival Curve R(t)−R(s) ≤ α(t− s)

Max. Service Curve R∗ ≤ R⊗ γ

Min. Service Curve R∗ ≥ R⊗ β

Shaping Curve R∗ = R⊗ σ ≤ (R⊗ α)⊗ σ

(9.3)

Bounds The following equations concern the “three bounds”, as Thiran and Le
Boudec called them: backlog, delay and output flow. Backlog and delay can be di-
rectly calculated from the difference between input and output flows (see figure 9.2),
as well as from arrival and service curves. It is easy to see here, that a node with
an arrival curve, of a higher continuous rate than the service curve, cannot have
bounds.

Flow Backlog b(t) = R(t)−R∗(t)

Flow Delay d(t) = inf {τ ≥ 0 : R(t) ≤ R∗(t+ τ)}

Curve Backlog b(t) = α(t)− β(t)

Curve Delay d(t) = inf {τ ≥ 0 : α(t) ≤ β(t+ τ)}

(9.4)

For all systems, an output arrival curve (that is, the arrival curve for the following
node) can be calculated by deconvolution of the input arrival curve with the node’s
service curve. If no arrival curve is known for a node, a minimal arrival curve can
always be calculated by deconvolution of the input flow with itself. This leads to
the following expressions:

Output Arrival Curve α∗ = α� β

Minimal Arrival Curve αmin = R�R
(9.5)

9.2. Introduction to Network Calculus 143

Concatenation Whenever a flow passes through multiple nodes in sequence, it is
possible to concatenate service curves into a single equivalent node. This is similar
to concatenation of transfer functions in system theory. The service curve of the
equivalent node is the convolution of passed service curves:

Service Concatenation R∗ ≥ r1 ⊗ β2 ≥ (r1 ⊗ β1)⊗ β2 = R⊗ (β1 ⊗ β2) (9.6)

In NC, there is selection of basic curve functions that are frequently encountered
when modelling networks. More complex curves can be constructed from basic
functions by adopting a piecewise-linear approach (figure 9.4). A compilation of
common basic functions in the context of NC is found in figure 9.5.

r
2

t

f
1
(t)

T t

b
2 r

1b
1

r
3

b
3

f
2
(t)

2T 3T

RT
2RT

FIGURE 9.4: Examples of piecewise-linear Functions [123]

144 Chapter 9. Theoretical Model

γ
r,b

(t) = 0 for t = 0
 = rt + b for t > 0

r

t

Affine function

b

Rate-latency function

T

R

t

β
R,T

(t) = R[t-T]+

R

t

Peak rate function

λ
R

(t) = Rt

T

t

δ
T
(t) = 0

 = ∞ for t > T

Burst-delay function

for t ≤ T

t

u
T
(t) = 1

{t > T}
= 0 for t ≤ T
 1 for t > T

1

Step function

TT-τ t

v
T,τ

(t) = (t+τ)/T

1

2

3

Staircase function

2T-τ

4

3T-τ
FIGURE 9.5: Catalogue of commonly used Curve Functions in NC [123]

9.2. Introduction to Network Calculus 145

9.2.4 Elementary Building Blocks

NC uses a number of basic elements to construct network models, similar to system
theory having different types of filter, mixer and splitter nodes as basic elements.
The behaviour of a complex, composite system is then derived from the behaviour
of these basic elements.

Shaper A shaper is an element offering its shaping curve as both a minimum and
maximum service. As figure 9.6 shows, the convolution applies the shaping curve
simultaneously at every point of the input flow, thus forcing the flow to have σ as its
arrival curve. Whenever it would exceed the curve, data is delayed in time (moved
to the right). There are two types of shapers defined in [123]. The first complies to
the above definition, although it is left unclear how the process is actually imple-
mented. Focusing on the second definition, elements called greedy shapers. A greedy
shaper “delays the input bits in a buffer, whenever sending a bit would violate the constraint
σ, but outputs them as soon as possible” [123, p. 42].

t

D
a
ta

Input Flow y(t)

Output Flow z(t)

Shaper Curve σ = rt+ b

FIGURE 9.6: Visualisation of the Effect of min-plus Convolution:
Shaping curve σ is enforced at every point of input flow y(t)

Packetiser A packetiser is a variable delay element with a service curve roughly
resembling a staircase (figure 9.7). It delays the output so it stays at step levelL(n−1)
until the input flow has reached L(n). Packet data is thus only forwarded once
the whole packet was received [123, pp. 218]. An element behaving in the way
described is the so called “L-Packetiser”. These are theoretical constructs, assum-
ing instantaneous packet arrival and departure. It employs the indicator function
1{<expr.>}, which is defined as

1{<expr.>} =

{
1 when expression is true
0 when expression is false

(9.7)

146 Chapter 9. Theoretical Model

L(1)
L(2)

L(3)
L(4)

L(5)

L(1)L(2) L(3)L(4) L(5)
x

PL(x)

FIGURE 9.7: Definition of Function PL [123]

The function for an L-Packetiser can be then written as eq. 9.8, x being the current
flow level (R(t)).

PL(x) = sup
n∈N

{
L(n)1{L(n)≤x}

}
(9.8)

We will now take a closer look at the step function L(n) which the packetiser em-
ploys to delay data until a packet is complete. L(n) is the cumulative function of
packet lengths, l(n) being the length of the n-th packet. L(n) is defined as

L(0) = 0

l(n) = L(n)− L(n− 1)

lmax = sup{l(n)}
(9.9)

For variable length packets, step values for L(n) are either delivered a-priori or cal-
culated iteratively from L(n − 1). If packet length is constant, cumulative packet
length can simply be written as

L(n) = n · l (9.10)

L-packetisers are a virtual construct, because no components can provide instanta-
neous arrival and departure (except wires if relative times are considered). A more
realistic application of the theory are Packetised Greedy Shapers (PGS), which, as
the name suggests, model buffer delay by prefixing the L-packetiser with a greedy
shaper:

R∗ = PL(R⊗ σ) (9.11)

An L-Packetiser buffers a packet, the first bit of any incoming packet is delayed
until the arrival of its last bit. Assuming a constant rate shaper λC as the bit-by-
bit system, the maximum delay experienced by a packet is the time it takes the
maximum size packet, lmax

C
. The equivalent minimum service of a packetiser can

therefore be written as the concatenation of a constant rate node and the buffering
delay, a rate-latency service of the form βC, lmax

C
.

9.2. Introduction to Network Calculus 147

Multiplexer Multiplexers are the most complex building elements in NC, because
their impact can vary widely depending on their inputs and policy. Aggregation of
flows is a common scenario for routers, switches or even endpoints, if they run mul-
tiple services in parallel. The multiplexer is a node offering a total service β, which
is usually a constant rate of λC , to all incoming flows

∑
Ri(t). Service allocation

to the individual flows is defined by a scheduling policy. The main distinction is
made between arbitrary multiplexing, which assumes no knowledge about policy,
and several other cases. The assumption of an arbitrary policy always provides cor-
rect, but usually most pessimistic bounds. The most important other case is FIFO
multiplexing, which assumes messages are served in order of their arrival. FIFO
and fixed priority policies (one input flow always preferred over another) are also
handling well in NC.

We shall give an example of a simple fixed priority setup with two flows. The ser-
vice available to the low priority (LP) flow is the residual service, after the preferred
flow has been served. The high priority (HP) flow’s arrival curve is subtracted from
the available service, which amounts to the residual service for the LP flow. Because
service curves are always wide-sense increasing [123, p. 19], so the supremum of
the difference must be used [125].

Whenever the slope of the arrival curve is greater than the slope of the service
curve, the difference would be a decreasing function. This is in effect service back-
log, but service curves cannot represent this directly. The delay this backlog causes
is added instead. This is achieved through the supremum, as it keeps the residual
service at constant level when it would be decreasing. Since no arrivals are serviced
during that period, it introduces an equivalent delay. The shorthand notation for
this residual service is defined as

βl.o.
2 = sup

0≤s≤t
{β(s)− α1(s)} = β 	 α1 (9.12)

More explicitly, consider a multiplexer offering a constant service rate C. The high
priority flow is constrained by an affine function of maximum rate r and a buffer size
b, with r < C. It is easy to see that the rate experienced by the LP flow will be the
difference between the HP rate and the available rate in the system. Furthermore,
if the HP flow has backlogged traffic, it can completely saturate the system. This
makes the LP flow wait until all HP backlog is serviced. Thus the residual service is
a rate latency curve

βl.o. = βC 	 αr,b = βC−r, b
C−r

(9.13)

If there is more than one flow to be multiplexed, the residual service experienced by
the flow of interest is calculated by summing up the arrival curves of all interfering
flows, such that

βl.o.
foi = β 	

∑

i

αi (9.14)

Depending on the system’s arbitration policy, a peculiarity can occur for HP service.
If the system operates under a FIFO policy, HP itself has a waiting condition, due

148 Chapter 9. Theoretical Model

to an ongoing LP transmission (because it cannot pre-empt the LP flow). In line
with FIFO, there must exist an upper bound for the size of such units of data, lmax.
Because the length is arbitrary, this holds for bits and whole packets alike. HP is
waiting for any ongoing LP transmissions to complete, so its minimum service is
defined as

βhi
1 = β 	 lmax (9.15)

Scaler In many networks, there are nodes that compress or decompress data (video-
encoder, etc.). This is a problem in NC, because the fundamental criterion, that
R(t) ≤ R∗(t), is violated in the case of compression. While it is kept in the case of
decompression, the relation between input and output flow is still distorted. In both
cases, horizontal and vertical deviation no longer correspond to delay and backlog
a flow is experiencing.

Data Scaling, first introduced by Fidler and Schmitt, is a concept for NC which
handles this problem by application of scaling curves [126]. The Scaler will assign
each bit of data a = R(t) a scaled image of S(a). S is a wide-sense increasing,
bijective function curve, thus an inverse function S−1 exists. From the perspective
of the system’s ingress, delay and backlog can then be calculated since perspective
is important because RS is scaled in relation to the ingress, but not in relation to a
downstream node.

R∗S(t) = S(R(t)⊗ β(t))

b(t) = R(t)− S−1(R∗S(t))

d(t) = inf
{
τ ≥ 0 : R(t) ≤ S−1(R∗S(t+ τ))

}
(9.16)

Scaling Functions and Curves Scaling functions can be directly applied to flows.
However, application to arrival and service curves is not directly possible. Scaling
curves must be derived from the function first. S is a minimum scaling curve of S
if it is less or equal to its max-plus deconvolution, likewise, S is a maximum scaling
curve of S if it is less or equal to its min-plus deconvolution:

S(b) ≤ inf
a∈[0,∞)

{S(b+ a)− S(a)} = S(b) � S(b)

S(b) ≤ sup
a∈[0,∞)

{S(b+ a)− S(a)} = S(b)� S(b)
(9.17)

Inverse Scaling Curves Obtaining inverse scaling curves follows directly from
eq. 9.17 by applying the process to the inverse scaling function S−1. It further holds
that the maximum scaling curve of the inverse scaling function, S−1, is equal to
the inverse of the minimum scaling curve of the scaling function, S−1. and vice
versa [126, p. 290 (4)].

Scaled Servers To apply the above statements to finding an end-to-end delay bound,
it is necessary to scale servers. This means applying scaling curves to service curves

9.2. Introduction to Network Calculus 149

to obtain a scaled service. This may seem trivial, but is important as a way to allow
concatenation of systems in the presence of scalers.

The core concept is the equivalency of the following systems: The minimum and
maximum service, β and γ, of a server with scaled output (a) and a server with
scaled input (b) lead to equivalent bounds, if S is bijective and:

βS(t) = S(β(t))

γS(t) = S(γ(t))

β(t) = S−1(βS(t))

γ(t) = S−1(γS(t))

(9.18)

9.2.5 Delay Analysis Methodology

There are many different approaches to obtain end-to-end delay bounds for a sys-
tem. The first three, Total Flow Analysis (TFA), Separate Flow Analysis (SFA) and Pay
Multiplexing Only Once Analysis (PMOO), are the “classical” approaches, solely re-
lying on network calculus. The different methods are demonstrated on a minimal
example of two nodes in tandem [125], through which two flows are multiplexed as
a FIFO aggregate.

β1 β2

Rif

α2

Rfoi
α1

FIGURE 9.8: Minimal Network Example: 2 Nodes, 2 Flows

Total Flow Analysis This form of an end-to-end analysis adds the delays encoun-
tered by the total flow, that is, the sum of all flows, along the path. This is calculated
per node, using the arrival curves transformed by the node. This means using the
original arrival curves α1 and α2 at the first node, their output arrival curves α′1 and
α′2 (see eq. 9.5, p. 142) at the second node and so on. Delay is defined as horizontal
deviation between input and output flow, so the delay for TFA is calculated as

dTFA = h(α1 + α2, β1) + h
(
(α1 + α2)� β1, β2

)
(9.19)

The obtained bound is valid for both the Flow Of Interest (FOI) and the interfering
flow(s), but does not provide information about which flow it belongs to. It is thus
overly pessimistic for all but one flow. TFA tends to produce the least tight bounds.

150 Chapter 9. Theoretical Model

Separate Flow Analysis SFA aims to obtain a tight bound for the FOI by removing
it from the system and inspecting the residual service available to it after servicing
the interfering flow(s). This is achieved by summing up all flows except the FOI
and subtracting the aggregate flow from the total service of the system (see eq. 9.12,
p. 147). The residual service is then computed over all nodes by convolution, which
equals the end-to-end service encountered by the FOI and thus provides its delay.
This can be written as

dSFA = h
(
α1,
(
β1 	 α2

)
⊗
(
β2 	 (α2 � β1)

))
(9.20)

Because SFA includes topology information when calculating residual service, it is
proven to deliver tight bounds for all multiplexing policies. Contrary to TFA, SFA
pays bursts only once (PBOO criterion), because residual services are concatenated
before calculating end-to-end delay.

Pay Multiplexing Only Once Analysis The downside of SFA is an overly pes-
simistic accumulation of multiplexing delay at every node, even if it is not occurring
there. Consider two FIFO multiplexed flows, which can both send at the same rate,
passing through several nodes all capable of this rate. While it is true that only one
flow can send at the same time, this only determines delay at the first node. Once
the order of sending is determined, additional nodes should not introduce more
multiplexing delay.

PMOO is a special case of SFA which tries to, as the name suggests, avoid paying
multiplexing multiple times by concatenation all encountered nodes into one equiv-
alent node before the residual service calculation. In the example from figure 9.8,
this means the convolution of β1 and β2 before subtracting α2:

dPMOO = h
(
α1,
(
(β1 ⊗ β2)	 α2

))
(9.21)

In most cases, PMOO delivers the tightest bounds. There are some special cases
when SFA can perform better than PMOO, when the service rates is higher at down-
stream nodes than at the ingress [127]. Contrary to SFA, PMOO analysis has only
been proven for arbitrary multiplexing policy.

Building on NC There are known problems with the described analysis meth-
ods when treating aggregated flows, because it can be proven [127] that even with
PMOO analysis, multiplexing over multiple hops does not always produce the tight
bounds. There were more recent advance in providing tight end-to-end delay bounds
from Lencini et al. [130] and Schmitt et al. [127](2008), employing optimisation al-
gorithms on top of network calculus. In order to obtain the minimum delay bound,
these approaches define the service curve of all traversed nodes and then solve a
linear optimisation problem for the distribution of backlog between these.

The most recent research by Bondorf, Nikolaus, and Schmitt from 2016 shows a
very interesting development back to pure algebraic solutions. In their publication,
they prove the existence of a completely algebraic technique, which requires much

9.3. Approach for modelling the Data Master 151

less computation than linear optimisation, but still closely matches experimental
results to within 1.16% [131].

9.3 Approach for modelling the Data Master

9.3.1 Overview

The following is the overview of the intended NC model to be used for an end-to-
end delay analysis of the DM and its environment. The first part of the model will
be the DM itself and its sub-components. The second part will be a black box model
of the WR switches, the third a model of timing receiver. While it would be feasible
to model the switches more accurately, a white box approach is outside the scope of
this work.

The purpose of this model (and indeed of NC as a whole) is to provide worst
case bounds on delay, backlog and output flows, it does not provide exact input-
output transformations. While it is technically possible to create accurate transfer
functions, the benefit of using “low-level” models would be limited to verifying the
formally proven abstract modelling techniques provided by Thiran and Le Boudec
and Schmitt.

Naming Conventions Within the timing system, server nodes are processing data
at four different (three distinct) rates rx. These are, in descending order:

r3 = 4 B · 8/ns = 4 Gbit/s
r2a = 4 B · 16/ns = 2 Gbit/s
r2b = 2 B · 8/ns = 2 Gbit/s
r1 = 1 B · 8/ns = 1 Gbit/s

9.3.2 Machine Schedules as Flows

Before constructing a detailed service model, we shall have a closer look at the
input flows, i.e. how they originate from a collection of machine schedules. All
flows entering from the CPU side are of potential interest for analysis, while the
injected headers from the EBM and WR traffic will always be treated as interfering
flows. Machine Schedules provide content for timing messages as well as informa-
tion about points of decision, i.e., which schedules can be played next and which is
the default selection. Each message within a schedule requires a dispatch time in
relation to its time offset. With these offsets and their arrival time, an EDF scheduler
can create the corresponding message flow, the cumulative sum of messages over
time.

152 Chapter 9. Theoretical Model

B:11 B:12 B:13 B:31B:21 B:22 B:24B:23 B:32 B:33
B:01 (pre)

 A:01
A:11 A:12 A:13 A:31A:21 A:22 A:24A:23 A:32 A:33

C:02 (empty: wait only)C:01 (pre)

B:02 (post)

A:02 (post)

A:25 A:26

B:25

Accelerator A

Accelerator B

Storage Ring C

Pattern 1

chain y chain rchain b

C:11 C:12 C:14C:13 C:15

C:03 (post)

(pre)

Accelerator A

Accelerator B

Storage Ring C

B:11’ B:12’ B:13’
B:03 (pre)

A:03
A:11’ A:12’ A:13’

B:05 (post)

A:05 (post)
A:04 (empty: wait only)

B:04 (empty: wait only)

Pattern 2

chain y

B:31’ B:32’ B:33’

A:31’ A:32’ A:33’

chain r

C:04 (pre)
C:11’ C:12’ C:14’ C:13’ C:15’

C:05 (post)

(pre)

FIGURE 4.5: Machine Schedules for the Accelerator (p. 57)

Assignment of Arrival Curves It is always possible to find a minimal arrival curve
for a flow. This is obtained by the min-plus deconvolution of the flow with itself,
thus α = R � R. These arrival curves tend to be very form-fitting to the actual flow
and are therefore tedious to describe formally. They are also often not concave, but
star-shaped. For convenience (and especially for the following worst case of several
schedules), it is advantages to find an approximated arrival curve from within a
certain family of functions. A piece-wise affine function as shown in figure 9.4 tends
to provide a good approximation [123, p.]. We will only briefly touch the subject
of a suitable approach for approximation of arrival curves, as a full investigation is
out of the scope of this work.

The solution to the problem is finding the minimax solution, that is, minimisa-
tion of the maximum error when choosing affine segments. Apart from least square
approximation, which does not necessarily converge [132], there are splitting algo-
rithms that search for segments within a certain error criterion [133] and also recur-
sive approaches, which try to find the location of the tangent pivots directly [132].
While [132] will find an optimal solution, the result is only proven to be optimal for
concave or convex functions. This is a problem for minimal arrival curves: While
concave functions are always sub-additive, sub-additivity does not imply concavity.
It would therefore be necessary to either construct the concave hull of the minimal

9.3. Approach for modelling the Data Master 153

arrival curve before applying [132], evaluate the quality of fits to sub-additive func-
tions or choose for example the algorithm of Vandewalle [133], which is applicable
to arbitrary functions.

It is important to note that assignment of arrival curves needs to consider the
whole flow, i.e. the concatenation of machine schedules. All successions of machine
schedules in the DM are either finite or periodic for the validity period of the anal-
ysis. Once a fitting arrival curve has been defined, it is possible to assign service to
this flow at every node it passes through. This will allow to obtain an end-to-end
delay bound for the corresponding flow.

As a proof of concept for this approach, an example for the generation of a piece-
wise affine arrival curve describing a periodic message flow is given in the following
paragraph.

0

200

400

600

800

1,000

1,200

1,400

D
at

a
/

B

Flow
Minimal Arrival Curve
Concave Hull
Flow Interval

0 100 200 300 400 500 600 700
0
1
2
3

Time / µs

M
sg

s

FIGURE 9.10: Generation of a piece-wise affine Arrival Curve from
Flow.

The corresponding Messages are shown in the stem plot below.

The example given in figure 9.10 constructs the affine arrival curve for a periodic
flow. The corresponding message flow is visualised as a stem plot at the bottom
of the figure. Each circle signifies as a timing message of 32 B, stacked circles show

154 Chapter 9. Theoretical Model

concurrent execution times. As a first step, the flow’s vector is cloned and concate-
nated to the original (black curve). Secondly, the minimal arrival curve is calculated
by min-plus deconvolution of the flow with itself (red curve). Because the flow was
cloned before, the minimal arrival curve (within the flow’s interval) matches a pe-
riodic repetition. As the third step, the concave hull of the minimal arrival curve
is constructed (blue dashed curve). All nodes not contributing to the outer shape
are removed. As the fourth step, the affine function is reduced to the length of the
flow’s period, keeping the slope it had at the end of the interval. The resulting func-
tion is piece-wise described by affine functions of the form m · x + b. It has a peak
rate of ≈ 5 Mbit/s and a sustainable rate of ≈ 1 Mbit/s, with an initial burst of 96 B.
Eq. 9.22 shows the description of this arrival curve (burst values in bytes, rates bytes
per second, time in micro seconds):

αri,bi =





γ96, 6.5·105 0 < x < 360
γ320,1.28·105 36 ≤ x < 116
γ448,1.25·105 116 ≤ x <∞+



 (9.22)

9.3.3 Outside Interference

Worst Case for Online Flow Control Outside intervention through interlocks will
change the path through the machine schedule graph (see figure 4.5) in realtime,
yet the delay analysis will be done offline. The reason is that even if the analysis is
carried out in realtime, detecting an imminent violation of the system’s delay bound
will not help containing the situation. Instead, the worst case combinatorial scenario
of all possible flows at this point must be considered by taking the supremum of all
minimal arrival curves. The supremum of sub-additive curves is also sub-additive,
preserving their property.

• Arrival curves of all involved Schedules

• Time of Points of decision

• Sets of alternative arrival curves for each Point of Decision

If this information is available, it is possible to create compound worst case arrival
curves from several individual ones by supremum of all alternatives. In the case of
the DM, the combinatorial arrangement can only be conducted after the first EDF
scheduler in the LM32’s firmware. The reason is finding the worst case combination
is only possibly with arrival curves of flows in which messages already occupy their
scheduled release times.

Relaxed case for optional Online Flow Control All requests from experiments are
not regarded as time-critical, they can thus be delayed without penalty. This creates
a degree of freedom in online flow control, as each requested change to the sched-
ule configuration, can instead be included by re-computation of the delay analysis.
If the delay bound is violated, the change will not be executed and there are sev-
eral possibilities to solve the problem. These range from telling the operator that

9.4. Scheduler Models 155

this change is not allowed to automatically shifting the desired schedule change in
time until the system can provide a suitable service. Arrival curves thus do not
need to cover all possible combinations of requests from experiments, only the ones
currently selected.

9.3.4 Recurring Analyses

At the time the very first analysis is undertaken, the model is representing a system
at time t = 0 and thus without history. When the analysis is repeated during runtime
on change of machine schedules, it is obvious that the system is not in this state.
There are three possible approaches to treating case study, the first being trivial:

Clean Slate The first possibility is to halt the system completely. Because all mes-
sages were scheduled to spend a maximum time ∆t in the system, ceasing the input
flows and waiting for ∆t will guarantee a system with empty buffers, hence the sys-
tem is equivalent to the state at t = 0. This will initially be the preferred mode of
operation for the case study.

Prepare for Everything The second possibility is accepting more loose arrival curves
for the input flows and cover all possible combinations of machine schedules per in-
put flow, thus never needing a second analysis. This would work for smaller sets of
schedules and can be complemented by rare resets as described in the first approach.

Time Stop The third option involves halting time at the point of change, calculat-
ing backlog at every node, update input flows according to the requested changes,
apply Thiran and Le Boudec’s theorem [123, p. 225] for shapers with non-empty
buffers and update service curves.

9.4 Scheduler Models

Type The DM requires two layers of schedulers to sort timing messages into chrono-
logical order by their deadlines. All schedulers are implemented as packetised ear-
liest deadline first based on delay values.

Lower Layer The lower level scheduler is implemented in hardware and aggre-
gates the flows from all instantiated processors. This module has been dubbed
Hardware Priority Queue (PQ) and has been described in detail in chapter 7.4.

Upper Layer The upper level of schedulers is implemented in firmware inside the
processors, as presented in chapter 8.2. The scheduler would not strictly be neces-
sary at this point, but does allow a better utilisation of available processing time.
Machine schedules must be distributed to individual CPUs depending on their cur-
rent utilisation, as it must always be ≤ 100%. While it is possible to aggregate all
these schedules into one big schedule per processor before running, this would be

156 Chapter 9. Theoretical Model

very inflexible. Every update would require a complete stop and exchange of the
whole aggregate. Instead, software EDFs can easily aggregate individual machine
schedules, each assigned to a worker thread, into a chronological flow. Such a sched-
uler is thus a prerequisite to enable online update of machine schedules and online
flow control as described in 8.5 and 9.3.3.

9.4.1 Scheduling under Network Calculus

Both schedulers are treated here within the DM as delay based schedulers, which
means the decision for the next packet to service is done by the remaining delay
budget per packet. A delay budget is spanning the time from a packe’s arrival to
its latest possible departure. The general schedulability criterion is derived from
the maximum horizontal deviation between the sum of all arrival curves and the
available service β = λC . If it is finite and not greater than the maximum allowed
delay budget, the set of arrival curves is schedulable.

∑

i

αi(t− di) ≤ β
(9.23)

In the case of the DM, this presents a problem, as each packet’s delay budget is
referring to its execution at the endpoint, not the departure time at that particular
DM node. Each local deadline is a part of the total delay budget, but it is unknown.
A rough estimate can be given once all static delays are known and subtracted. If all
delays from cross traffic are bounded as well, exact calculation is possible, but this
does not provide any additional information at this point. The scheduler equation
can be used, however, as a simple and fast instrument to detect overload by a set of
flows before attempting a full delay analysis.

9.4.2 Soft-CPU Scheduler

The input flows in CPUs are derived from timing messages in machine schedules. It
is the purpose of the CPU scheduler to chronologically sort and aggregate messages
from all threads and send them as early as possible within the time window of Dj −
∆t.

Joining Two Worlds The very first point to address is the existence of several dis-
tinct domains within the DM: CPU, WB bus and Network. The latter two relate and
are thus trivial to describe in NC, as they only differ in bandwidth and in the net-
work always being packetised while WB is a cycle based bus. The relation between
programs in a DM CPU and bus/network activity is not trivial though and we shall
start modelling the DM with an approach for a CPU/traffic relation.

CPU Activity vs Generated Traffic An LM32 CPU can be described as an NC
node, offering a constant rate service (operations executed over time), and a pro-
gram as a flow (cumulative operations over time). The output flow (of interest) is

9.4. Scheduler Models 157

all bus activity downstream towards the network interface. This means that a pro-
gram is already an aggregate of flows. They are flows that generate traffic down-
stream and flows that do not, i.e. message and overhead flows. The composition of
overhead and its impact on message service are discussed here.

Overhead Concept Consider the following: The processor arbitrates its comput-
ing power between a number of N threads and the scheduler itself. According to
chapter 8.6, it is assumed that all tasks have a deterministic execution time which
is previously known. The scheduler itself also has a deterministic execution time.
So there is not only a CPU rate, but also a message rate, the maximum rate the
firmware can send messages at. While formal investigation of program execution
time can be a highly complex and computationally intensive task, measuring the
maximum message rate using the CPU cycle counter or a logic analyser is trivial.

The scheduler further has a dispatch function f , which transforms a skeleton
message from RAM into a timing message on the bus. Let there be another function
g which sends synchronisation messages to CPUs. The function g does not produce
messages on the timing network, and since it uses the MSI WB bus, it has no impact
on the normal WB traffic neither. Because the effort of preparing and sending syn-
chronisation and timing messages is very similar, f and g can be assumed to have
equal execution times.

Sync messages are part of machine schedules, all message flows therefore have
an associated sync overhead flow. This produces the interfering flows in the CPU
node. Sync flows are of no further interest to the analysis, as they are extracted again
directly after the CPU node. Only their effect on the CPU’s residual service curve to
the messages is considered.

Overhead Flows Figure 9.11 shows the block diagram of the CPU service node,
a constant rate server used by the message flows and several interfering overhead
flows.

βcpu

∑
αi

∑
αoh
i

FIGURE 9.11: CPU Scheduler node

The leftover service available to all timing messages is the total service of the CPU
after per flow sync overhead αohi has been subtracted:

βcpu = λr3 	
∑

i

αoh
i (9.24)

Actual Implementation We know there exists a limit ∆t dictated by the control
loop speed, which is the end-to-end delay budget of a message. In the present case,
it signifies the minimum time before its deadline Dj a message shall be dispatched.

158 Chapter 9. Theoretical Model

The actual implementation determines the task with the minimum deadline at the
very moment its predecessor was serviced. Afterwards a separate check is run peri-
odically if this message is eligible for dispatch, that is, if t ≥ Dj −∆t. If it is positive,
the message is sent. The rate of this check is the same as the service rate offered to
messages by the CPU.

Simplification Representation in NC can be simplified by reordering these steps
and crafting slightly different input flows. Instead of letting new messages arrive
immediately after service, messages can be placed in accordance with their arrival
times Dj − ∆t. This already takes care of the eligibility window ∆t. Feeding such
a flow through the CPU’s service window will then introduce the same delay as in
the prior case.

CPU Schedulability It is first necessary to obtain information about the possible
size of the delay budget d for the scheduler input flows. However, it is not possible
to determine the budget in the present case. The delay budget for EDF schedulers is
defined as the maximum time between arrival and departure at the server containing
the scheduler. In the present case, this partial budget is unknown - only the end-
to-end budget is. A loose approximation can be obtained by deducting the sum
of all static delays

∑
δ (which will be deduced in this chapter) from the end-to-

end budget ∆t. Note that being schedulable is no guarantee for timely arrival with
regard to the endpoint, but unschedulable flows are guaranteed to be late. A general
schedulability criterion for each processor node is:

∑

i

αi(t− d) ≤ βcpu(t)

with d = ∆t −
∑

δ

(9.25)

9.4.3 Processor Output

Since βcpu is known, the output flow of a CPU can be derived. For TFA, the output
flow and arrival curve can be calculated with the aid of the sum of all inputs:

R∗ =
∑

i

Ri ⊗ βcpu

α∗ =
∑

i

αi � βcpu
(9.26)

The leftover service curve required for both SFA and TFA on the other hand can be
obtained from a slight variant of eq. 9.24. The overhead caused by the scheduler,
all sync flows and all interfering message flows can be subtracted from the CPU’s

9.4. Scheduler Models 159

service, resulting in the residual service for the message flow of interest:

βl.o.
foi = λr3 	

(∑

i

αoh
i +

∑

i 6=foi

αi

)
(9.27)

9.4.4 Priority Queue Scheduler

We now have the processors’ outputs, which are packet flows with wide-sense in-
creasing deadlines. The next node on the path is the hardware PQ, the second layer
of EDF schedulers in the DM. Its purpose is the chronological aggregation of all
input flows into one output flow, ordered by deadlines.

PQ Schedulability The constraint is that there must be no back-pressure to the
CPU, so overflow of the input queues is not permitted. This is necessary to keep
program execution deterministic and hence maintain the schedulability criterion.
We will first derive an upper limit to the delay budget di from the buffer capacity
of the input queue. The input queue can take in data at a rate of r3, so it offers a
maximum service γr3 . The delay di must therefore be the time it takes an incoming
flow constrained by αi (which must be sub-additive) to fill an input queue of size
b. Since γr3 poses an upper limit on the input rate, we will convolute it with αi,
the min-plus convolution of two sub-additive functions being the minimum [123, p.
113] of both. This will result in the following schedulability criterion:

∑

i

αi(t− di) ≤ β(t)

with di = min{s > 0 : min(αi, γr3)(s) = b}

(9.28)

Abstract Model - Service Curves In the analysis of the abstract model of an EDF,
the maximum delay depends solely on the total flow passing through the sched-
uler’s constant rate node. In this case, a service curve containing a fixed delay Ta for
evaluation of each timestamp and the impact of the packetiser in each queue (β

r3,
lp
r3

)

must be included, as all inputs experience this. This can be written as

βch = δTa ⊗ βr3, lpr3 (9.29)

The complete EDF scheduler in the PQ module featuresM channels, each connected
to the constant rate node of the PQ.

160 Chapter 9. Theoretical Model

λr3

PL

PL

...

δTa

δTa

FIGURE 9.12: PQ Scheduler node

And with equation 9.29, we can finally calculate the residual service a single flow
(at the PQ, which already can be aggregates) would experience:

βl.o.
foi = λr3 	 (

∑

j 6=foi

(αj � βch)
(9.30)

9.5 Etherbone Master – Framer

The EBM is responsible for wrapping WB accesses to other systems in the EB proto-
col, it creates a network packet and hands it over to the network interface.

9.5.1 EBM Functional Recap

The EBM gathers Wishbone Bus Operations and a framer sub-module analyses type,
order and destination. It then generates appropriate EB record headers and inserts
them as required. Once dispatch of the opened packet is requested, the EBM fi-
nalises and inserts the network header information, and starts transmission. More
details can be found in chapter 7.5. Because the EBM is controlled by the PQ in the
present case, requests for dispatch can be caused by reaching the size limit or by
hitting a timeout.

Following the path from the PQ downstream, we will begin by modelling the
framer sub-module of the EBM.

9.5.2 Input Parser

The overhead produced by the framer depends on the WB operations. In the case of
DM traffic though, only timing messages will arrive. These follow a fixed format of
8 consecutive write operations to the same destination, which makes the introduced
record overhead constant (see chapter 7.5).

Timing messages must not be split, and therefore the payload of EB records
will be of a constant length lp. This is packetisation at message level, and so the
framer needs to contain a fixed length packetiser (see section 9.2.4) in the payload
flow. Because lp is constant, the length function L(n)p of the n-th payload packet is

9.5. Etherbone Master – Framer 161

L(n)p = n · lp. This results in the following service curve for the message payload
L-packetiser:

PL
p(x) = sup

n∈N

{
lpn · 1{lpn≤x}

}
(9.31)

The framer now needs a shaper prefixing the L-packetiser, which would be a guar-
anteed rate node of some arbitrary rate λr. The time Ta the framer requires to analyse
the input needs to be accounted for. Because the analyser is pipelined and the input
format fixed, this delay can be expressed as a simple guaranteed delay node δTa . The
two nodes can be concatenated to form a rate-latency node as the shaping curve σ:

σr,Ta = rt+ Ta (9.32)

Impact It is known from [123, p. 43] that a packetiser offers a minimum service
described by the rate of the bit-by-bit system and the maximum delay from packet
buffering, βr, lmax

r
. The impact of payload’s packetised greedy shaper on the system’s

service is:
βp = β

r,
lp
r

⊗ δTa (9.33)

9.5.3 Header Generation

The framer must now prefix each timing message with an appropriate EB record
header of constant length lh, which will create EB records of length lh + lp. While
the header themselves are of no particular interest to an analysis, they are necessary
in terms of the system service they consume. There are two different strategies to
discuss through which injection of overhead can be modelled.

Scaled Flow Approach Consider the knowledge about the expected input and
output flows. The output is obtained by injection of data of size lh every lp in the
input flow. Assuming header insertion would happen instantaneously, gives

R∗(t) = R(t) · lp + lh
lp

(9.34)

Eq. 9.34 shows header injection to be in fact data scaling, if a bijective relation be-
tween header and payload size exists. The overhead can be modelled by application
of a scaling function (see “Scaler”, p. 145) in the EBM and the inverse function in the
timing receiver. The scaling curve and its inverse are:

SR(a) = a · lp + lh
lp

S−1
R (a) = a · lp

lp + lh

(9.35)

162 Chapter 9. Theoretical Model

9.5.4 Output Flow and Service Curves

Scaling is the simple and accurate representation of constant header insertion into
packets of constant size.

SRPM δpσr2

FIGURE 9.13: Block Diagram of EBM Framer Module

Figure 9.13 shows the resulting block diagram with packetiser, parser and scaler.
With eq. 9.31, 9.32, 9.33, and 9.35, the output flow and service of the EBM framer can
be modelled using the following equations:

R∗f = SR

(
PL
p (σ ⊗R)⊗ δTp

)
9.31, 9.32, 9.35 (9.36)

βf = β
r2,

lp
r2

⊗ δTp 9.33, 9.35 (9.37)

Scaling It is noteworthy that the service does not include the scaling function SR,
although the output flow R∗f does. Fidler and Schmitt show [126] that the order of
scaling and service elements is interchangeable within a certain rule-set. In order to
obtain a suitable equivalent system, it is necessary to consider the complete network,
not individual modules.

All scaling effects spilling over to downstream modules are therefore ignored
until reaching the analysis section 9.10. Instead only the scaling functions and un-
scaled service equations are provided.

9.6 Etherbone Master – TX

The purpose of the TX sub-module is to take in a variable number of EB records and,
by prefixing it with a packet header, turn them into network packets. The maximum
packet length and how long TX should gather EB records before producing a packet
is configurable.

Header and Payload Size Let lnh be the aggregated size of all headers for the Eth-
ernet IEEE802.3, IPv4, UDP and EtherBone protocol. Let lSp be the length of a timing
message with an EB record header. The number of messages going into the same
packet has a constant upper limit given by the maximum payload size, lmax − lnh,
and a constant lower limit of one message, lSp .

9.6.1 Variable Length Function

It is clear that waiting for a full packet is not an option, since the delay would be
inversely proportional to the arriving flow. This is an undesired effect, as incoming

9.6. Etherbone Master – TX 163

flows would need to be padded to reduce delay and an equilibrium between trans-
mission delay from the rest of the system and waiting time in the EBM TX would
have to be found.

Timeout A timeout was introduced to bound the delay, which requires limiting
the maximum waiting time for the first message to enter a packet. This results in
a variable payload length lto(t). The payload packetiser therefore employs a length
function L(n), which provides cumulative packet lengths with a step-size being the
minimum of lmax and the level at the timeout, lto. Since l(n) = L(n)− L(n− 1), it is
possible to calculate L(n) from L(n− 1).

The timeout starts at the first message entering a packet, which is the case when
R′(t) (which isR(t) after the packetisers bit-by-bit system) crosses the packet bound-
ary (now L(n− 1)). With F (t) being the flow level at time t, we get

g(x) = inf
s∈R∗

+

{s : F (s) > x} (9.38)

The timeout occurs after a timespan T . Unfortunately, this will introduce a problem:
While R is packetised to be always multiple of lSp , it has to pass a bit-by-bit shaper,
becoming F = (R ⊗ σ)(t) = R′. Therefore, R′(g(x) + T) can return a level right in
the middle of a message (eq. 9.39).

M = {k · lSp }, k ∈ N

x ∈M → F
(
g(x)

)
∈M

T ∈ R → ∃T : F
(
g(x) + T

)
/∈M

(9.39)

To guarantee the delay bound, it is not possible to wait for a commenced message
to fully arrive. To only put complete messages into a packet, it is necessary to round
R′(t) down to the nearest multiple of lSp . This means applying a floor function, which
is equivalent to run R′(t) again through the L-packetiser of the EBM framer:

R′′(t) =

⌊
R′(t)

lSp

⌋
· lSp = PL

f

(
(R⊗ σ)(t)

)
(9.40)

And with eq. 9.40 and F = R′′ so L-function for the network payload is:

Lnp(n) = min
{

(L(n− 1) + lmax), R′′
(
g(L(n− 1)) + T

)}
, n ∈ N (9.41)

9.6.2 Header

The present case requires packets of variable payload length l(n), yet with a header
of fixed length lnh. As mentioned in [126, p. 290 (4)], scaling functions can be applied
to the length function L(n) of a packetiser. L(n) is only point-wise defined for n ∈ N
though, while scaling functions must be continuous.

PL(x) = sup
n∈N

{
L(n)1{L(n)≤x}

}
(9.42)

164 Chapter 9. Theoretical Model

However, the L-packetiser function from eq. 9.42 is defined for all real numbers [123,
p. 42], thus allowing the extension of L(n) into the R∗+ domain by assigning each
a = R(t) a value from L(n). So having obtained a continuous scaling function,
scaling curves can be derived.

Scaling Function The L-packetiser equation is modified by a scaling function for
constant header insertion. This means that each packet length l(n) must be scaled
by the addition of lh, so that Sp

P (l(n)) = l(n) + lnh. With the definition of the length
function given by L(n) = L(n − 1) + l(n) → L(n) =

∑n
i l(i), the point-wise defined

scaling function Sp
P now becomes:

Sp
P (L(n)) =

n∑

i

(l(i) + lh) = L(n) + n · lnh

Combination with the L-packetiser equation 9.42 provides the scaling function SP

defined for R, swapping the pre-factor for the indicator function with its condition
provides the inverse:

SP(a) = sup
n∈N

{
(L(n) + n · lnh)1{L(n)≤a}

}
(9.43)

S−1
P (a) = sup

n∈N

{
L(n)1{L(n)+n·lnh≤a}

}
(9.44)

The appropriate minimum and maximum scaling curves can once again be derived
from max-plus and respectively min-plus deconvolution of the scaling function with
itself.

L(1)L(0) L(2) L(3)

L(1)
L(1) + 1h

L(2) + 2h

L(3) + 3h

L(2)

L(3)

L(1) + 1h L(2) + 2h

L(3) + 3h

L(1) L(2) L(3)

L(0)

L(1)

L(2)

L(3)

L(0) + 0h

L(0) + 0ha

S
(a

)

S(a)

a

Header insertion Header removal

FIGURE 9.14: Packet Header Scaling Functions

Figure 9.14 illustrates the scaling functions (thick red line) for packet header han-
dling. The left plot shows header insertion with eq. 9.43, the right the removal via
the inverse function, eq. 9.44. The diagonal mirror axis is sketched in to demonstrate
function inversion.

9.6. Etherbone Master – TX 165

9.6.3 Finding Limits for Payload Length and Timeout

With the presented scaling curve, it is possible to calculate the exact introduced
overhead at any given point in time for a specific flow. However, by careful choice
of the payload limit and timeout value of the packetiser, it is possible to constrain the
setting in a way that allows simplification of the scaling curve to a constant factor.

Impact of Payload Length The behaviour of the TX module is governed by two
parameters, the allowed payload length Φ and the timeout T . Bandwidth utilisation
depends on the overhead to payload ratio, the larger the payload, the better. As Φ
approaches lmax − lnh, that is, maximum possible packet length (1500 B) without the
header, bandwidth utilisation is at its optimum with r2

Φ
lmax

. Lowering Φ splits the
payload into more packets, which generates more overhead and therefore directly
consumes extra bandwidth. Because latency in a packetiser is determined by the
maximum packet length over rate, lowering Φ also lowers latency.

Impact of Timeout The necessity of T ≥ Φ
r2

immediately becomes obvious. If T
was less, the packetiser could never reach Φ before hitting the timeout and so a
lower limit for T has been found. We shall now establish a sensible upper boundary
for T .

A packet size l processed over a timespan T is an expression of bandwidth. Φ
being set, we can now employ T to choose the bandwidth. Because the DM is the
only source of high priority traffic, unused bandwidth is equivalent to bandwidth
lost to overhead. The proposition is therefore that it is allowable to introduce addi-
tional overhead without changing maximum throughput, as long as the combined
traffic does not exceed the maximum bandwidth at the system’s bottleneck.

The bottleneck is encountered at the WR network, the switches having the low-
est rate at r1. This is in turn down scaled by a factor S−1

F because, as discussed in
section 9.7, forward error correction will introduce further redundancy. The result-
ing bandwidth is denoted as the system’s sustainable rate rs. This can be used to
propose the limits for T :

Φ

r2

≤ T ≤ Φ + lnh
rs

(9.45)

The reason is that if a maximum sized payload plus its header can be processed
at the systems sustainable rate within the timeout, any reduction in payload flow
will create more overhead. However, if the sum stays within the sustainable rate,
backlog from overhead cannot accumulate. So T = Φ+lnh

rs
would ensue an optimal

bandwidth utilisation. In the absence of any other high priority source, eq. 9.43
and 9.44 can be simplified to:

SPs(a) =
Φ + lnh

Φ
(9.46)

S−1
Ps (a) =

Φ

Φ + lnh
(9.47)

166 Chapter 9. Theoretical Model

If any lower latency is required, it can be obtained at the loss of bandwidth to
overhead by decreasing Ttx.

Absolute Figures The total delay budget for the system was given as ∆t = 500 µs,
so it is interesting whether to test the obtained boundaries chosen for T actually fit
within this frame.

Tmin =
Φ

r2

=
1440 B

2 Gbit/s
= 5.76 µs (9.48)

Tmax =
Φ + lnh

S−1
F (r1)

=
1496 B

0.25 · 1 Gbit/s
= 47.78 µs (9.49)

At 1.2% of the total delay budget, we can assume Tmin to be a safe choice. Tmax

however, at 9.5%, should be examined again in the final analysis.

SPPL
Pσr2

FIGURE 9.15: Block Diagram of EBM TX Module

Service The minimum (and because of the fixed timeout also maximum) service
curve for the TX module is that of a standard packetiser, but the delay is solely
determined by T . Note that scaling is applied last and therefore not part of the
service curve of this module. The resulting curve is thus very straightforward:

βtx = βr2,Ttx (9.50)

9.7 Forward Error Correction

Context and Necessity The CS ultimately needs a central instance (separate, but
synchronised instances are just an equivalent model) which communicates that servers
providing the physical calculations to control the accelerator. This again means that
there must be a fan-out from the CS’s DM to numerous endpoints, placing it as the
root node of one or more networks of a tree topology.

The concept of the current CS relies on treating the whole system and timing
network as lossless. If it was not, commands would need to be re-sent if they did
not arrive at their destination, which adds the need for feedback from the endpoints.
Due to the tree topology, this is already a problem because the bottleneck on the way
up to the root node is getting ever tighter and a reason to avoid re-transmission.
The second reason is that an upper bound on control loop delay is only possible if
re-transmission does not need to be considered.

9.7. Forward Error Correction 167

Application The chances of packet loss has to be reduced to a level at which, for
all practical purposes, the system can be treated as lossless. The way to achieve this
involves both increasing the system’s mean-time-between-failure and employing
forward error correction algorithms. The purpose of the latter is to protect both
network packets and their meta information against bit errors, more details can be
found in the work of Prados Boda and Fleck, [79].

Impact on the Model In the scope of this work, the FEC will be treated as a black
box system. The observable effect is the creation of k interleaved packets from one
incoming packet after a packetisation and encoding delay.

9.7.1 FEC Encoding

The FEC re-packetises to the length set in the EBM TX modules, then starts the en-
coding process, buffers the resulting encoded packets and finally sends the encoded
(scaled) data.

Packetiser Because the packets are of variable size, the first packetiser does intro-
duce a delay equal to lmax

r2
. After encoding, the second packetiser has to deal with

the scaled version of the packets, thus adding a delay of k · lmax
r2

.

Encoding Time We will assume a constant encoding time in the FEC, introducing
a delay of Te, which already includes the introduced k− 1 inter-frame gaps between
the generated packets. Additionally it is assumed that a time Td ≥ Te is required to
decode the information again in the timing receiver.

Scaling Data will be scaled up to mimic the FECs introduction of redundant data.
Similar to the EBM framer in 9.5, this can be described by the application of a scaling
curve for the FEC, SF , which multiplies packet size by k, the number of packets
generated.

The resulting sub-system, packetiser, delay and scaler and output packetiser, is
shown in figure 9.16.

SFPL
F δTe PLS

F

FIGURE 9.16: Block Diagram of FEC Module

The resulting scaling functions are:

SF(a) = k · a

S−1
F (a) =

1

k
· a

(9.51)

168 Chapter 9. Theoretical Model

Service The rightmost packetiser in figure 9.16 is expecting the scaled data. We
can therefore apply the scaling function to the maximum packet size and obtain the
following service curve for the FEC:

βF1 = βr2, lmaxr2

⊗ δTe ⊗ βr2,SF (lmax)

r2

(9.52)

9.7.2 Timing Receiver

FEC Decoding Interest lies in determining an end-to-end delay bound for the tim-
ing system. In the present case, the decoding happens in the timing endpoint, which
is why it is necessary to also model this part of the timing receiver in some detail.

Gathering Packets and Decoding Time For forward error correction, only a part
of the packets belonging to one transmission need to arrive. It is necessary to assume
the worst case though, which means waiting for the last packet to arrive. The first
step is therefore re-packetising all arriving packets from one transmission into one
big packet. Afterwards, the packets are decoded, which makes the whole DFEC use
the same equation as the FEC. The service curve is similar to eq. 9.52.

Symmetric Scaling As already presented in section 9.2.4, a symmetric scaling vari-
ant is applied, which requires the corresponding decoder to apply the inverse of the
original scaling function.

S−1FPLS

F δTd PL
F

FIGURE 9.17: Block Diagram of the DFEC Module

βF2 = β
r2,

SF (lmax)

r2

⊗ δTd ⊗ βr2, lmaxr2

(9.53)

9.8 Etherbone Slave and Event-Condition-Action Unit

Demultiplexing Removal of the packet header happens instantaneous at the in-
verse scaler. So the EBS RX block diagram looks like a mirrored version of the EBM
TX (see figure 9.15 and 9.18). The EBS de-framer does not work the same way as
the EBM framer, it removes the EB record header and adds a delay, but does not
re-packetise. This can therefore be described as an inverse scaler followed by a rate-
latency system (see lower right of figure 9.18, “EBS Deframer”).

This finally leaves the ECA unit (see 7.6). Being one of the most complex logic
cores in the system, it can nevertheless be described as a simple black box model.
ECA is responsible to schedule actions originating from arriving messages to be

9.9. White Rabbit Network Model 169

executed at the timestamp they carry. To sort arrivals, ECA adds a bounded delay
of 4 µs.

This would be followed by an EDF scheduler, which is not modelled. The reason
is that all messages are dispatched ∆t = 500 µs before they are due. For all messages
that arrive on time, the EDF would hold them back until their execution time. This
would hide the leftover delay budget from the analysis.

9.9 White Rabbit Network Model

9.9.1 Interference at NIC

Origin At the network interface, the DM’s flow is multiplexed with flows from
the WR timing core. WR uses PTP packets to synchronise the UTC time between
timing receivers/switches. In addition, there are other services spuriously sending
packets, like the Address Resolution Protocol (ARP), Dynamic Host Configuration
Protocol (DHCP) or Simple Network Management Protocol (SNMP).

Approach for DM HP Service DM traffic has the highest priority of all services.
However, pre-emption is not allowed, so the minimum service to the DM has to
consider waiting for transmission of the longest possible low priority packet. Packet
lengths of lower priority services can be described as l<name> supn∈N{l<name>(n)}. The
longest possible low priority packet is thus llomax = max{lptp, larp, ldhcp, lsnmp}, result-
ing in the DM a minimum service of

βN = βr1 	 llomax (9.54)

Improving WR PTP performance WR PTP periodically has to send packets to
synchronise UTC time to counter long term drift against the time reference (GPS
receiver). It is questionable if a system with only two priorities is a good design
choice because a continued starvation of WR PTP service would lead long periods
of uncompensated clock drift in all downstream timing switches and receivers. It
would therefore be sensible to introduce another priority level between DM and
background for WR PTP, and allocating a minimum service rate for clock synchro-
nisation.

PTP needs periodic adjustment, so it is assumed that all WR PTP flows are pe-
riodic. The corresponding staircase functions are sufficient to model the arrival
curves [123, p. 8]. The presented approach models the mutual influence on service
by application of one shaper per flow. This limits the influence of the interfering
flow to its maximum allocated rate. Assuming a fraction of the total rate k is as-
signed, with k ∈ N∗, to WR traffic. It would then be forced to obey σptp = λ r1

k
,

making sure αptp (as an interfering flow) does not exceed this rate in the presence of
DM traffic. It follows that the shaper for the DM traffic must guarantee the agreed
minimum rate to WR, which leads to σdm = λr1· k−1

k
. The shaping curves are the

guaranteed service for each flow, and λr1 ≥ σptp + σdm. The maximum length packet
to be considered in the delay equation differs for WR and DM flows, as DM is of

170 Chapter 9. Theoretical Model

highest priority, WR of second highest and all others of lowest priority. The leftover
service for each of the higher priority flows can be calculated as:

αptp = lptp · υTptp,0 = lptp ·
⌈
t+ 0

Tptp

⌉
= γ lptp

Tptp
,lptp

(9.55)

βnic = λr1 	 (αptp � σptp)⊗ δ lmax
r1

(9.56)

9.9.2 WR Switches

The DM is connected via a tree topology to 2000+ timing receivers. WR switches
feature 18 ports each, which means a fanout of 1-17. This indicates a minimum of
k = dlog17 2000e = 3 layers of switches. The topology is adjusted for geographical
reasons though, so the actual size is likely to be 5 layers. WR switches are treated as
black boxes. The delay they introduce has been removed from traffic measurements
and is represented in a simplified model.

Switch Properties All switches treat traffic from the DM as high priority. The
switches feature cut-through for low latency. This means HP packets are passed on
as soon as possible, sending the first bits before their last bits have arrived. The
switches are non-preemptive, meaning they must buffer (introduce a delay) if a
lower priority packet is currently being transfered.

The switches are therefore modelled as a small constant delay Ts representing the
time it takes to inspect the packet header and apply the switching matrix. Following
this is the multiplexer, a constant rate node operating at r1. Because the switch can
be busy with a low priority packet, there is another delay of llomax

r1
in its minimum

service. Because LP traffic is partly point-to-point and originates at all switches, it
cannot be assumed multiplexing is applied only at the first switch. The service of a
WR switch is therefore defined as:

βsw = δTs ⊗ (βr1 	 llomax) (9.57)

9.10 End-to-End Delay Analysis

All sub-components of the CS have been modelled and an end-to-end delay analy-
sis of the complete system can now be conducted. We will perform the necessary
preparation for a PMOO analysis, as it (in most cases) leads to the tightest delay
bounds. In the scope of this thesis, PMOO also has the benefit that the required
reduction of the system into a single equivalent node allows a clearer visualisation.

For ease of representation, the system is split into four parts. The first is the sink
tree posed by CPUs, aggregating flows from their threads, and the PQ, aggregating
flows from CPUs. The second is the single-path section of the DM without the NIC,
the third are the NICs of DM and timing receiver as well as all WR switches. The
fourth and last is the timing receiver.

9.10. End-to-End Delay Analysis 171

Packetisers in the Big Picture To reduce the size of the figures, all packetiser
blocks in the following diagrams show not just L-packetisers, but already PGS, a
combination of a bit-by-bit system and an L-packetiser (see figure 9.13, 9.15). Fur-
thermore, a substitution of L-packetiser functions was applied. Packetiser PM1 has
a maximum packet size of lp = 32 B. Afterwards, EB record headers are added, the
packets are scaled. PP1 collects EB records, which is a timing message scaled with
SR. It has maximum packet (payload) size of lnp = k·SR(lp) = SR(klp). FEC input col-
lects payloads plus network header, which means scaling them by SP so maximum
packet size is ln = SP (SR(klp)) and FEC output and DFEC collect encoded packets,
means scaled by SF , which equals a maximum packet size of lf = SF (SP (SR(klp))).
All three L-packetisers can therefore be expressed by the same L-packetiser and a
scaling function. In the block diagram, all L-packetiser scaling is noted above the
PGS’ name and any scaling applying to the bit-by-bit system below the PGS’ name.

Network Tunnel Because flows of timing messages are aggregated into network
packets and separated at the endpoints EBS, they intermittently become a single
flow in the model. This is called a trunk or tunnelled connection and is marked
in grey in the following overview figure 9.18. More details can be found under
subsection 9.10.5.

9.10.1 EDF Sink Tree

Depending on whether the flow of interest for PMOO analysis is defined as all tim-
ing message input flows or a single one, different service and arrival curves for CPU
and PQ have to be used. We shall designate a flow of interest with ingress at the CPU
level as Rxy, being the x-th flow at CPU y.

Sum of all Timing Flows If the intention is finding the delay bound for any and
all of the timing flows, the arrival curves of all flows must be aggregated and the
service of the PQ’s constant rate note is concatenated with the single path section of
the system, denoted as βsp. The incoming flow at the PQ node is then defined by

αpq =
N−1∑

j

M−1∑

i

(
αij � (βCPU ⊗ βq ⊗ δa)

)
(9.58)

172 Chapter 9. Theoretical Model

S
R

P
M

1
δ
p

P
P
1

S
P

P
P
2

S
F

δ
e

P
P
3

δ
c
b

δ
c
b

EB
M

Fr
am

er
EB

M
T

X
FE

C

β
N

1

N
IC

T
X

δ
c
b

S
−

1
F

P
P
4

δ
d

P
P
5

S
−

1
P

P
P
6

S
−

1
R

β
r
x

P
M

2
β
e
c
a

δ
c
b

δ
c
b

EC
A

EB
S

D
ef

ra
m

er
EB

S
R

X
D

FE
C

β
N

2

N
IC

R
X

β
w

r
1

β
w

r
2

β
w

r
4

β
w

r
5

∑ α
b
g

W
R

N
et

w
or

k

β
c
p
u

∑ α
i ∑ α

o
h

i

β
c
p
u

∑ α
i ∑ α

o
h

i

P
Q

P
Q

...
β
p
q

δ
a

δ
a

δ
c
b

δ
c
l

PQ
LM

32

LM
32

...

δ
c
l

S
R

,P
,F

S
R

,P
S
R

S
R

S
R

,P
S
R

,P
,F

β
w

r
3

...

Tu
nn

el

∑ α
b
g

∑ α
b
g

∑ α
b
g

∑ α
b
g

∑ α
b
g

FIGURE 9.18: Block Diagram of NC Control System Model:
Data Master (1st and 2nd row), White Rabbit Network (3rd row),

Timing Receiver (4th row). Tunnel coverage is shown in grey

9.10. End-to-End Delay Analysis 173

Single Flow of Interest The delay bound for a single timing message flow can
be obtained by calculating the leftover service at both the CPU at which the FOI
originates and the PQ. We shall start by modifying eq. 9.58 to include only the flows
originating at other CPUs by replacing the limits of the first sum by j ∈ [0, N)− {y},
with y being the index of the origin CPU of the FOI.

α∗−y =
N−1∑

j 6=y

M−1∑

i

(
αij � (βCPU ⊗ βq ⊗ δa)

)
(9.59)

We then need to add all flows originating at CPU y, except for the FOI x, and
calculate the matching output arrival curve by feeding the aggregate flow through
the CPUs leftover service, after serving the FOI:

βl.o.
−xy =

(
βCPU 	

(
M−1∑

i

αoh
i + αxy

))
⊗ βq ⊗ δa (9.60)

α∗−xy =
∑

i 6=x

αiy � βl.o.
−xy (9.61)

This leaves concatenating the leftover service the FOI experienced at both CPU and
PQ level. The leftover service for the FOI at CPU level is given by eq. 9.27 on p. 159.
Combined with eq. 9.59 and 9.61, the leftover service in the sink tree is

βl.o.
st = λr3 	 (α∗−y + α∗−xy) (9.62)

9.10.2 Equivalent Circuit for WR Network

The WR network consists of several layers of WR switches for which an equivalent
node needs to be created. The NIC nodes of DM and TR are also to be combined into
the equivalent system, because they also carry the interfering WR background flows
(PTP, BOOTP, ARP, SNMP). The middle row in figure 9.18 shows the structure of the
WR system. An equivalent node is therefore the leftover service in the concatenation
of all involved nodes. Since DM traffic is high priority and non-preemptive, all
nodes must allow for a maximum length low priority packet to complete. For the
WR switches 9.57 and the NICs 9.54, this is already included.

It is noteworthy that the calculation of leftover service in the present case does
pay for multiplexing several times. This is done on purpose, because WR back-
ground traffic is generated at all switch levels and the NICs. Therefore, multiplexing
does happen at each node again. The equivalent service for all WR network nodes
can be written as

βwr = βN1 ⊗
⊗

1≤i≤k

βsw ⊗ βN2 (9.63)

174 Chapter 9. Theoretical Model

9.10.3 Data Master to Timing Endpoint

Concatenation and Scalers The presence of scalers in the system (all Sx blocks in
figure 9.18) prevents direct analysis. Nodes separated by a scalers cannot be con-
catenated by standard NC, so the scalers need to be removed. This can be achieved
by one of three ways:

• Move all scalers to ingress

• Move all scalers to egress

• Move symmetric scalers to their inverse

PLSS

PL S

βSS

β S

a.)

b.)

FIGURE 9.19: Equivalent Circuits for Scalers

Moving Scalers The present case has symmetric scalers, so it is possible to move
them towards their respective inverse functions (Sx adjacent to S−1

x) so they cancel
each other out. Moving a scaler is achieved by replacing it with its equivalent circuit
from figure 9.19. The replacement follows the rules for scaled service on p. 148 in
section 9.2.4, the same principle holds for L-packetisers and their scaling functions.

The tightness of the achieved bounds depends on the chosen equivalent circuits.
The best choice differs for backlog, output and delay bounds. [126, p. 294 (8)] states
that for delay analysis, a system in the a.) row of figure 9.19 should stay unchanged,
and a system from the b.) row can be changed to a.). This means the three scalers
SR, SP and SF in the DM are to be moved downstream until they reach S−1

R , S−1
P and

S−1
F and cancel each other out.

Step-by-Step Removal While the presented method removes the scaler blocks, it
is clear that their influence on other components remains. The removal process is
described using the notation for packetisers and their bit-by-bit systems from p. 170.

9.10. End-to-End Delay Analysis 175

S
R

P
M

1
δ
p

P
P
1

S
P

P
P
2

S
F

δ
e

P
P
3

δ
c
b

δ
c
b

EB
M

Fr
am

er
EB

M
TX

FE
C

β
N

1

N
IC

T
X

δ
c
b

S
−

1
F

δ
d

S
−

1
P

S
−

1
R

β
r
x

P
M

2
β
e
c
a

δ
c
b

δ
c
b

EC
A

EB
S

D
ef

ra
m

er
EB

S
R

X
D

FE
C

β
N

2

N
IC

R
X

δ
β
w

r

1

1

3
2

Th
e

C
PU

-P
Q

si
nk

tr
ee

is
re

m
ov

ed
fr

om
th

e
re

pr
es

en
ta

ti
on

,a
s

th
er

e
is

no
sc

al
in

g
ap

pl
ie

d.
(1

,2
)T

he
W

R
no

de
is

no
ta

co
nc

at
en

at
io

n
of

it
s

se
rv

er
s,

bu
t

a
sy

m
bo

lf
or

th
e

ne
tw

or
k

to
ea

se
vi

su
al

is
at

io
n.

Th
e

N
IC

s
of

D
M

an
d

TR
ha

ve
be

en
in

cl
ud

ed
.

(3
)

A
ll

co
ns

ta
nt

de
la

ys
ca

n
al

so
be

co
m

bi
ne

d
in

to
a

sy
m

bo
lic

no
de

,a
s

sc
al

in
g

do
es

no
t

in
-

flu
en

ce
th

em
.

S
R

S
R

,P
S
R

,P
,F

P
P
4

S
R

,P
,F

P
P
5

S
R

,P

P
P
6

S
R

FIGURE 9.20: Introduction of Symbols for
static Delays and WR Network

176 Chapter 9. Theoretical Model

9

8
7

4
5

6

S
R

P
M

1
P
P
1

S
P

S
F

β
r
x

P
M

2
β
e
c
a

β
w

r

S
R

S
R

,PP
P
2

S
R

,P
,F

P
P
3

P
P
1

S
−

1
R

S
R

S
R

P
P
2

S
−

1
P

S
P

S
−

1
F

S
R

,PP
P
3

S
F

P
P
2

S
−

1
P
,R

S
R

S
R

S
P

S
−

1
F
,P

S
R

P
P
3

S
−

1
F
,P

,R

P
P
3

S
R

,P
,F

P
P
4

S
−

1
F

S
−

1
P

S
−

1
R

S
R

,PP
P
5

S
R

P
P
6

δ

(4,5,6)
First

iteration
of

equivalent
circuit

re-
placem

entfollow
ing

pattern
in

fig.9.19.
(7,8,9)A

fter
the

second
and

third
iteration,all

L-packetisers
are

of
equal

packet
size,

w
hile

their
bit-by-bit

system
s

are
scaled

dow
n

w
ith

up
to

three
inverse

scaling
functions.

The
finalresultis

show
n

in
black,allinterm

e-
diate

steps
are

show
n

in
grey.

FIGURE 9.21: Replacement of DM Scalers

9.10. End-to-End Delay Analysis 177

10

11

12
13

14

15

16

17

P
M

1
β
w

r
P
P
1

S
−

1
R

S
F

P
P
2

S
−

1
P
,R

S
R

S
P

S
−

1
F
,P

,R

P
P
3

S
F

S
R

S
P

β
w

r

S
−

1
F
,P

,R

β
r
x

P
M

2
β
e
c
a

S
R

,P
,F

P
P
4

S
−

1
F

S
−

1
P

S
−

1
R

S
R

,P P
P
5

S
R

P
P
6

S
F

S
R

S
P

S
F

S
R

S
P

S
R

S
P

S
R

S
P

S
−

1
F
,P

,R

P
P
4

S
−

1
F
,P

,R

P
P
4

P
P
5

S
−

1
P
,R

P
P
5

S
−

1
P

S
R

δ

(1
0)

A
ll

th
re

e
sc

al
er

s
ar

e
m

ov
ed

pa
st

th
e

W
R

ne
tw

or
k,

ea
ch

re
pl

ac
in

g
th

e
pr

ev
io

us
W

R
re

pr
es

en
ta

ti
on

su
cc

es
si

ve
ly

by
a

sc
al

ed
eq

ui
va

le
nt

sy
st

em
.

(1
1)

Th
e

sc
al

er
s

ar
e

re
m

ov
ed

fr
om

th
e

W
R

sy
st

em
an

d
at

ta
ch

ed
to

th
e

TR
sy

st
em

(1
2)

Th
e

sc
al

er
s

ar
e

m
ov

ed
pa

st
th

e
P
P
4

no
de

,
le

av
in

g
it

eq
ui

va
le

nt
ly

sc
al

ed
to

P
P
3
.

O
nc

e
ag

ai
n,

ev
er

y
m

ov
e

re
pl

ac
es

a
sy

st
em

by
an

eq
ui

va
le

nt
ci

rc
ui

t.
(1

3,
14

)T
he

S
F

sc
al

er
is

no
w

ad
ja

ce
nt

to
it

s
in

-
ve

rs
e
S
−

1
F

,t
he

y
ca

nc
el

ea
ch

ot
he

r
ou

t
an

d
ar

e
re

m
ov

ed
.

(1
5)
S
P

is
m

ov
ed

pa
st

th
e
P
P
5

no
de

.
(1

6)
S
P

is
ad

ja
ce

nt
to

it
s

in
ve

rs
e
S
−

1
P

,b
ot

h
ar

e
re

m
ov

ed
.

(1
7)

Th
e

re
su

lt
of

th
e

m
od

ifi
ed

bl
oc

ks
is

no
w

th
e

se
qu

en
ce
P
P
4
,P

P
5
,S

R
.

FIGURE 9.22: Scaling WR NW and Replacement of TR Scalers

178 Chapter 9. Theoretical Model

18
19

20

21

P
M

1
P
P
1

S
−

1
R

P
P
2

S
−

1
P
,R

S
−

1
F
,P

,R

P
P
3

β
r
x

P
M

2
β
e
c
a

S
−

1
R

S
R

P
P
6

S
R

S
−

1
F
,P

,R

P
P
4

P
P
5

S
−

1
P
,R

P
P
6

S
−

1
P
,R

S
R

S
−

1
F
,P

,R

P
P
4

P
P
5

S
−

1
P
,R

P
P
6

S
−

1
R

β
r
x

P
M

2
β
e
c
a

S
−

1
F
,P

,R

P
P
4

P
P
5

S
−

1
P
,R

P
P
6

S
−

1
P
,R

P
M

1
P
P
1

S
−

1
R

P
P
2

S
−

1
P
,R

S
−

1
F
,P

,R

P
P
3

δ

δ

(18,19)The
rem

aining
scaler

S
R

is
m

oved
past

the
P
P
6

node,leaving
itadjacentto

its
inverse

S
−

1
R

.
They

cancel
each

other
out

and
are

re-
m

oved.
(20)

This
leaves

the
final

m
odified

sequence
P
P
4 ,
P
P
5 ,P

P
6 .

(21)
D

M
,

W
R

and
TR

scaled
system

s
are

re-
joined,providing

the
single-path

system
.

β
w

r

S
−

1
F
,P

,R

β
w

r

S
−

1
F
,P

,R

FIGURE 9.23: Final TR Scaler Replacement and Join with DM Blocks

9.10. End-to-End Delay Analysis 179

9.10.4 Equivalent Service of Packetised Greedy Shapers

Moving a scaler downstream past a packetised greedy shaper will influence both
the L-packetiser and the bit-by-bit system. Thus, it will transform a system of the
form σ, PLS into an equivalent circuit of S−1(σ), PL.

Iterative Scaling Because the minimal scaling curve (max-plus deconvolution) of
scaling functions are defined to represent less or equal service, it follows that itera-
tive use drives the curves towards pessimistic service representations, so

(SX � SX)((SY � SY)(a)) ≤ SX(SY (A)) � SX(SY (a))

Therefore the process followed is to firstly apply all scaling functions, i.e. SX(SY (SZ(a))
. . . , then apply the deconvolution operator. Because the scaling functions are bijec-
tive, the order is of no consequence. To provide a more readable representation, the
following notation is used:

S1(a) = SR(a)

S2(a) = SR(SP (a))

S3(a) = SR(SP (SF (a)))

Using these shortforms, the equivalent service of all packetisers in block diagram 9.23
is given by the following equations:

PM1 = PM2 → β
r2,

lp
r2

(9.64)

PP1 = PP6 → S−1
1 (βP) ≤ β

S−1
1 (r2),

klp

S−1
1 (r2)

(9.65)

PP2 = PP5 → S−1
2 (βP) ≤ β

S−1
2 (r2),

klp

S−1
2 (r2)

(9.66)

PP3 = PP4 → S−1
3 (βP) ≤ β

S−1
3 (r2),

klp

S−1
3 (r2)

(9.67)

For the sake of completeness, a shorthand scaled version of the WR service reads

βwrs = S−1
3 (βwr) (9.68)

9.10.5 Aggregate Scheduling

The system has been modelled in terms of its service, but there is a hitherto uncon-
sidered constraint on flows traversing the system. When flows of timing messages
are multiplexed on the DM’s WB bus, this follows a standard NC model. Between
the DM and the endpoint however, this becomes an Ethernet based network con-
nection.

Aggregation From the EB TX module to the EB RX module, messages are bundled
into network packets (grey area in figure 9.18). This wrapping is called aggregate

180 Chapter 9. Theoretical Model

scheduling, or in more general networking terms, a tunnelled connection. There is
a significant difference in the multiplexing behaviour, because the multiple timing
message flows become one single flow of network packages while they are in the
tunnel. Message flows are no longer running as cross traffic to each other and thus
cannot delay each other. The resulting single flow only has the WR services as its
cross traffic and because DM traffic is treated as HP without pre-emption within the
WR network, only the processing times for maximum length LP traffic accumulate
as latency. As a result, the latency for traversing the tunnel, and therefore the end-
to-end delay, strongly decreases (compare chapter 10.4, figure 10.5 and 10.6).

For TFA, this is of no consequence, as it operates on the assumption that all in-
coming flows are aggregated (added) before analysis. For SFA and PMOO however,
the ingress, the tunnel and the egress must be analysed as separate cases. The transi-
tion between the ingress and the tunnel is trivial, because the arrival curve entering
the tunnel is the aggregate, i.e. sum of all the ingress’s output arrival curves:

αt =
∑

α∗ini (9.69)

Regaining Individual Flows Once the tunnel ends at the EB RX module though,
a problem presents itself. The output aggregate flow constrained by αt must now be
split up again into the original number of flows, which is not as trivial as it might
seem. For the demonstration cases in chapter 10, the problem can be circumvented
because all incoming flows were chosen to be equal. Thus, the output arrival curve
of the last node in the tunnel can be divided by the number of original flows. Find-
ing a generic solution for the corresponding residual service curves is not trivial and
still work in progress in the beginning of 2017 (see chapter 11.5.1). However, there
exists usable workaround for the present case. Bondorf and Schmitt proved in [129]
that the maximum backlog encountered in a TFA at a given node is also the maxi-
mum backlog any other form of analysis can encounter, thus capping the backlog.
Furthermore, the sustainable rates of the individual flows cannot have increased in-
side the tunnel. If one consequently assigns the rates of the ingress’s output arrival
curves α∗ini to αouti and sets their initial burst to the TFA bounded burst value of the
aggregate output arrival curve α∗t , all αouti are defined by valid arrival curves. From
the rate and burst limits, it follows that the resulting arrival curves must be greater
or equal to the tight arrival bound, which means they are still valid constraints to
their flows.

This allows to obtain an end-to-end delay by adding the individual delay for
ingress, tunnel and egress. The calculated difference in latency between assigning
the best case (zero burstiness) and the worst case (aggregate burstiness) to any or
all output arrival curves causes latency differences in the single digit microsecond
range in the DM simulation. The approach was therefore considered an acceptable
intermediate solution for the present case.

9.10. End-to-End Delay Analysis 181

9.10.6 Summary

In this chapter, it has been shown that NC is applicable to the case study and how its
peculiarities can be handled. Additionally, it has been shown that machine sched-
ules, which control accelerator components in the FAIR case study, can be modelled
as network flows. Changing flows can be expressed by using suprema of alternative
arrival curves or recurring analyses with non-empty buffers.

The model has been further enhanced to show how the trinity of Program, Cycle
based Bus and packet based Network of the SoC System can be modelled in NC. All
sub-modules have been discussed in detail and service representations have been
deduced. The findings were then combined to produce a single equivalent service,
which can be used to calculate the maximum delay for a particular flow of interest
or the sum of all flows.

In the evaluation in chapter 10, the results obtained by simulating the model
in the Disco DNC v2 simulator [128] will be represented and the results, as far as
feasibly possible, compared with tests of the prototype system.

183

Part IV

Conclusion

185

Chapter 10

Evaluation

10.1 Overview

This chapter aims to evaluate all solutions from chapters 6-9 against the problems
presented in the FAIR case study in chapter 4. The research methodology is outlined
and the experimental setup described in detail. The results from simulations and
experiments are presented as are current real world applications of the research.
Finally, a conclusion from this work is drawn and future work is outlined.

10.2 Test and Verification

When undertaking the research and prototype development for this thesis, a suit-
able verification scheme was devised alongside it. The approach was split into sev-
eral layers of tests, ranging from individual unit tests through simulation to tests
on real hardware, all the way to the full CS stack necessary for control of a real
accelerator.

10.2.1 Hardware Unit Tests

All hardware modules developed during the course of this work have been individ-
ually verified by simulations in the QuestaSim hardware simulator [134]. This was
achieved via test benches that probed the module with semi-random stimuli and
verified the desired behaviour. For simpler cases, test benches were constructed as
pure VHDL. For more complex bus devices, the Coroutine Co-simulation Test Bench
(Cocotb) framework was employed [135]. In the course of this work, a WB driver
and monitor class for Cocotb was created to facilitate complex device regression
tests, the resulting source code was contributed to the project [136].

10.2.2 Firmware Unit Tests

Whenever firmware performance needed to be verified, it was tested between two
LM32 CPUs in the same SoC. One was running the firmware module to be tested,
the other ran a monitor program, timestamping certain bus activity of the device
under test. Other aspects of the firmware were tested in the hosting CPU itself by
use of minor extra code, timestamping execution by means of either the CPU’s own
program counter register or by accessing WR time.

186 Chapter 10. Evaluation

10.2.3 Full Test System

To test the interaction of all components in a real world scenario, the timing test
facility (TTF) was constructed. While the author contributed test cases, the imple-
mentation is not part of this thesis. The TTF’s purpose is to put the CS under devel-
opment constantly through a series of tests to verify its functionality and accuracy.
It was used to verify the DM’s performance in the scope of this work. The DM is
run on a PEXARIA V [137] platform, connected to an industrial PC host via PCIe.

GPS

Test
Director

Data
Master

Time
Reference

Test
Collector

PPSv
Timestampingv

Machine
Schedules

Reports:
Completeness
Order
LatevMessages
TimevSynchronisation

WR Timing
Receivers

Message
VerificationvFSM

PPSv
Signalsv

WRvSwitch
Layerv1

WRvSwitch
Layerv5

WRvSwitch

FIGURE 10.1: GSI Timing Test Facility,
Schematic of Verification System

Figure 10.1 shows the employed TTF setup. The system monitors the following
cases simultaneously:

Interface Test The TTF accesses at least one endpoint per switch level via EB and
retrieves various information. As the first step, it traverses the SDB records to list all
available WB devices at this endpoint. Success confirms a working EB connection
over the timing network.

Image Verification The TTF tries to access the build information ROM next, which
contains information such as the date, the target platform, hashes of the most recent
commits of the repository which went into this build, etc. The verification makes
sure all endpoints run images of the expected version and intended for their plat-
form.

Time Synchronisation Test Next, the TTF checks the status of the endpoint’s WR
core. If the core confirms that it is properly phase tracking the upstream switch and
its local time is close to the expected current time, the result is valid. This method
of synchronisation test is coarse and complemented by “Pulse Offset Monitoring”
described later.

10.2. Test and Verification 187

Message Sequence The DM is sending several message sequences generated from
machine schedules and one for synchronisation testing. Endpoints are then pro-
grammed by the TTF to react to timing messages. If the endpoint has a host system,
it is programmed to deliver message content to the host, which runs a verification
FSM. These are basically a downgraded software DM, constructing expected traffic
from machine schedules offline. Reordering at the DM or during transmission is of
no consequence, as the ECA sorts arrivals by their deadline. Timing messages are
then checked by the FSM against the expected content. If a message is missing, or
any of its fields (such as ID, execution time, etc.) do not match the expected value,
an error is logged.

Message Timeliness In the CS, messages must not be delayed, otherwise unfore-
seeable consequences may arise. The ECA therefore verifies message timeliness. If
a message arrival time is later than its execution time minus ECA’s processing time,
it is flagged “late” and an error is logged.

If messages arrive much too early, ECA’s input buffers run the risk of overflow-
ing. To prevent this, a limit has been introduced to the time lead a message may
have. If any message arrives more than four seconds early, it is removed from the
buffer and an error is logged.

The ECA’s design presents one major problem though. While ECA does have
logging capabilities for late messages, it does not log the difference between mes-
sage arrival and its execution time. The ECA is the single largest component in the
whole SoC system (see area in figure 7.1) and at one action per clock cycle and 1 ns
output granularity, extensively optimised for high performance. For this reason,
including logging capabilities for mean, minimum and maximum difference have
been postponed. It is, however, definitely a sensible feature to have in future.

Pulse Offset Monitoring As mentioned under “Message Sequence”, the DM also
generates a message stream for synchronisation testing, the PPS. It generates one
message every second, its execution time always lying at the very moment the WR
sub-second counter resets to zero.

Each endpoint is programmed to emit a pulse at one of its IO ports upon recep-
tion of this message. The outputs are connected to endpoints of the ExploderV [138]
form factor, which feature 16 digital inputs each. They are used as a TDC and tag
all incoming pulses with a timestamp. The Exploders run “golden” images, which
are thoroughly tested for several months and can be viewed as reliable. TTF collects
these timestamps via EB and uses them to monitor time synchronisation accuracy
over all switch levels and endpoints.

188 Chapter 10. Evaluation

10.2.4 Network Delay Simulations

FIGURE 10.2: Screenshot of Delay
Analysis with DiscoDNC

All delay calculations have been con-
ducted with the DiscoDNC v2.2.6 sim-
ulator framework [128]. DiscoDNC
is a Java framework for deterministic
NC, which accepts network and flow
descriptions in form of piecewise lin-
ear service and arrival curves. It then
performs TFA, SFA and PMOO analy-
ses to obtain delay, backlog and arrival
bounds.

Multiplexing Disciplines An impor-
tant factor when constructing NC sim-
ulation models is the multiplexing dis-
cipline of each server. DiscoDNC only
supports FIFO and Arbitrary policy, i.e.
serving packets in the order of their ar-
rival or an unknown order. PMOO is
only proven for arbitrary multiplexing, i.e., no knowledge about the used policy.
This will always lead to correct results. However, the results are always more pes-
simistic than using explicit knowledge about policy.

The difference between arbitrary and FIFO policy lies in the calculation of the
leftover service curve. For the purpose of this explanation, a simple rate-latency
curve is assumed (see 9.5, page 144). When the multiplexing policy is FIFO, the
leftover service curve has two summands contributing to its latency: the constant
latency of the server’s minimum service curve and the additional latency caused
by processing the backlog of the cross traffic. In arbitrary multiplexing, however,
there is an additional summand. Because there is no order, additional data from
cross traffic can overtake the flow of interest, increasing the server’s backlog in the
meantime. The latency therefore consists of the server’s constant latency and the
processing time for the initial and runtime backlog.

EDF Most of the timing system follows a FIFO discipline, however. To obtain the
tightest bound possible, the network was configured differently for each analysis
strategy. The EDF schedulers in the LM32s and the PQ are always set to an arbitrary
policy, the rest of the network is set to FIFO for SFA and TFA.

Fixed Priority The WR network uses non-preemptive, fixed priority policy with
WR traffic being low priority, DM traffic being HP. This is a special case. The LP traf-
fic is technically arbitrary, but is of no interest to the analysis. HP traffic, however,
does not have to share bandwidth with LP. This allows a simplification when mod-
elling fixed high priority flows in DiscoDNC: The LP traffic flows are removed and
represented by their worst case effect on HP. This is the wait time (non-preemptive)

10.3. Etherbone Analysis 189

for completion of a maximum length LP packet, which is applied as fixed latency to
the HP flow aggregate.

Arrival Curve Generation DiscoDNC does not work directly with flows, only
with the arrival curves describing them. When analysing the DM’s behaviour, this
was yet another reason for developing a scheme to obtain affine arrival curves
directly from flows (machine schedules). The basic concept is described in chap-
ter 9.3.2 on page 151.

10.3 Etherbone Analysis

This section relies in large part on the evaluation from the 2012 journal article on the
EB protocol [93]. Its performance in terms of overhead and latency is analysed and
compared against other low level bus protocols.

10.3.1 Overhead Details

EB Overhead in EB contains the network header, meaning all protocol headers
below EB (802.3 GbE, IP, UDP). Inside EB, overhead consists of EB record head-
ers, base write addresses, read back addresses, and read addresses. The amount
of overhead in an EB packet depends on the type, the order of WB bus operations,
and their addressing. EB supports block and random access operations in a sin-
gle network packet. Minimum packet overhead in the current implementation with
802.3 Ethernet, IPV4, UDP, and EB is 18 + 20 + 8 + 8 + 8 = 62 Bytes. Efficiency
is calculated as payload over packet data (payload + overhead). Assuming a max-
imum packet size of 1500 Bytes, the best case efficiency for EB is in block write
operations 1432/(66 + 1432) · 100 = 95.6%, the worst case is random access writes
(480/(1010 + 480) · 100 = 32.2%. Block reads do not differ in format from random
access reads, all read addresses must be provided. This takes up a great deal more
bandwidth than block writes. Because of streaming, however, block read operations
have no impact on latency.

RDMA In the case of RDMA, packet overhead is somewhat bigger in general.
Let us have a closer look at sample read request and write operations of captured
iWarp RDMA packets. With 802.3 Ethernet, IP, TCP, iWarp, DDP, and RDMA, it
has more protocol layers than EB. The overhead of all the packet headers add up to
18 + 20 + 32 + 6 + 14 + 1 = 91 Bytes [95].

PCIe PCI Express is the most lightweight of the three protocols in terms of over-
head. Physical layer, DLLP, and TLP add up to a minimum overhead of 2 + 6 + 16 =
24 Bytes [100]. The small footprint is mostly due to the lack of routing capabilities,
though PCIe still carries many legacy features meant to keep compatibility with PCI.

190 Chapter 10. Evaluation

10.3.2 Overhead Comparison

It becomes clear that EB fills a specialist role for control applications when it comes
to bandwidth efficiency. For block writes of 256 B EB can compete well with the
other protocols. When it comes to block reads, EB is the least efficient of the three,
because all addresses are contained inside the packet. However, due to the stream-
ing functionality, this does not have an impact on latency. The more random access
operations are present, the better EB fares in comparison. When handling many
small bus operations, EB beats RDMA as well as PCIe, because it can transport all
of them in the same network frame. Infiniband RDMA is of course vastly superior
to EB in terms of bandwidth, as is PCIe, if more lanes were added. The outcome fits
well with EB’s intended role as a slim protocol for control applications. For FAIR’s
planned CS, the high efficiency for block writes is also useful for the occasional dis-
tribution of set values.

1*256B 8*32B 64*4B
0

250
500
750

1000
1250
1500
1750

EB
PCIe
RDMA

5820

1*256B 8*32B 64*4B
0

250
500
750

1000
1250
1500
1750

5820

Write Operations / B

O
ve

rh
ea

d
/ B

Read Operations / B

O
ve

rh
ea

d
/ B

FIGURE 10.3: Overhead of EB, PCIe, and RDMA when transmitting
256 Bytes read and write operations, 32 Bit word width. EtherBone

distinctly excels in random access operations and block writes [93]

10.3.3 Latency

EB was designed to introduce very low latency. In this implementation, the WB data
rate is 4 times that of the GbE network, therefore all processing can be handled while
gathering the next data word. Ideally, EB therefore does not cause any additional
latency. The delay introduced when processing or answering an EB packet equals
the time it takes to receive and process the packet headers, determining if a valid
EB packet was received and if a reply was requested. However, there is a threshold
to the latency caused by targeted WB slaves above which delays will accumulate.
While pipelined operations are supported, a bus cycle is not complete until all ac-
knowledgements and data blocks have been received by the WB master. The EB
core has to wait for all answers at the end of a WB cycle. If the maximum latency of
the ACKs on the WB bus is never greater than 3 (4 cycles per word on IF side, 1 cy-
cle on EB/WB side) cycles, EB is guaranteed not to need pre-buffering. Since the TX
header is complete in the buffer by the time the first WB operations take place, there
is still a reserve of 42 cycles if individual operations should take longer to complete.
The measurements for EB were taken using the WR time stamping unit, normally
used for a special version of precision time protocol. Values for all other systems
were taken from literature. We define the round-trip latency as first byte sent to the
first byte of the reply arriving at the sender, connected end to end, in our case over
a 10 m fibre cable. This shows EB to work well for short message latency with a

10.4. Network Calculus Simulation Models 191

1.2 µs round-trip time. The prototype hardware implementation still encompassed
packet buffers that could not be removed in this version due to their importance for
the WR timing framework. Without this buffering, simulations show EB latency to
be around 550 ns for our setup and will also be independent of message size. This
result fits in well with the 1 µs estimates made by Rumble et al. in 2011 [139].

Direct quantitative comparison with other systems is difficult when the latency
measurements have to be taken from third parties. In most papers, the test beds are
not completely described and the understanding of latency is not exactly defined.
For example, when talking about round-trip latency, it is very important at which
OSI layer the turnaround takes place. On top of this, the underlying hardware dif-
fers widely. Bearing this in mind, we will stick to a qualitative view on latency. The
lowest figures found for RDMA over Infiniband come from a performance bench-
mark found online [96] and is stated as < 1 µs. Since it is given as an end to end
value, it would have to be doubled to 2 µs. The results for PCIe [100] were taken
from a comparison to the hypertransport protocol. The read latency of an 8 B packet
came down to 232 ns from first byte sent to the first byte of the reply packet. Consid-
ering the PCIe bandwidth of 2.5 Gbit/s and the bus controller running at 333 MHz,
EB did not fare badly in comparison. Furthermore, there is still room for improve-
ment in EB down to 550 ns when the WR store-and-forward buffers are removed.
In the context of these figures, EB results can be said as being on the edge of the
technically feasible and being a good fit for a timing/CS application.

10.4 Network Calculus Simulation Models

The DiscoDNC models to be used were constructed from the model in chapter 9.
There were a total of four different models built. All numerical values used in
their simulation, such as the rates and latencies for servers, can be found in the
tables C.2, C.3, C.3 in appendix C from page 221 onward.

FAIR CS Model The first FAIR model was built to show the delay bound for the
final FAIR implementation over net command bandwidth. Figure 10.5 shows the
delay bound in milliseconds for different analysis types over the bandwidth of tim-
ing messages (without any overhead) in megabits per second. The different series
of analyses – TFA, SFA and PMOO – are calculated for different sets of flows with
identical arrival curves. The identifiers in the legend show the number of flows in
the first digit and the number of CPUs each generating this number of flows in the
second digit after the x. The simulation is made to show the maximum delay value
occurring within a series. Because the resulting delay values for identical arrival
curves are also identical, this is of no consequence. However, when one considers
the implication for different flows, it becomes clear that the basic situation is the
same. Only the maximum delay is of interest when determining if a set of com-
mands can be delivered on time.

FAIR CS Tunnel Influence The second model, represented by the graph in fig-
ure 10.6, shows the same setup, but without the network tunnel between the EB TX

192 Chapter 10. Evaluation

module in the DM and the EB RX module in the endpoint. This effectively allows
multiplexing/reordering between individual timing messages. While this simula-
tion is not an accurate model of the real world system, removing the influence of the
tunneling property and observing the effects on latency was helpful in understand-
ing the behaviour of the FAIR CS model.

GSI TTF Model The third model for the current TTF test system at GSI in order
to compare values with a real world test system. Because to this day (November
2016) there is no FEC encoder or decoder prototype available for the test system,
these are not included in this simulation and therefore do not increase traffic, loos-
ening the GbE bottleneck. Furthermore, the WR switches do not yet show the de-
sired behaviour of a fixed policy of high priority command traffic neither do the
NIC modules in the DM and endpoint [140]. In addition, packet losses were ob-
served when WR switches were subjected to an input bandwidth much greater than
≈ 100 Mbit/s. In order to produce a model compatible to the TTF behaviour, WR
switches were modelled as FIFO nodes receiving IEEE 1588 WR PTP, ARP, DHCP
and SNMP cross traffic of equal priority as the DM. The bandwidth of the cross traf-
fic by type was estimated from packet dumps in the WR network, see table C.6. No
packet loss was simulated.

The last difference to the FAIR CS model lies in the DM firmware. The current
version cannot yet reach the 5 µs interval planned for the FAIR implementation, as
it is yet not fully optimised. It lacks a hardware optimisation reducing RAM access
from 4 to 1 cycles, the removal of several function calls and a manual assignment of
general purpose registers to variables of the scheduler routine, to avoid stack use.
The measured value for the current implementation is 7.75 µs. All values changed
versus the FAIR model can be found in table C.4.

GSI Minimal Test System The fourth model, as shown in figure 10.8, depicts a
minimal test system (MTS) for testing close to the maximum total bandwidth. The
purpose of the simulation is a comparison between measured and simulated val-
ues. Contrary to the GSI TTF model, the MTS consists solely of two PEXARIA V
boards [137], one configured as a DM, the other as an endpoint. They are directly
connected, without a network of WR switches in between.

10.5. Observed Simulation Results 193

10.5 Observed Simulation Results

10.5.1 FAIR CS Model

The bandwidth limit at 192 Mbit/s is imposed by the bottleneck at the WR network,
where the lowest available bandwidth in the system coincides with the highest over-
head. When crossing this threshold, all delay values jump to positive infinity (∞+

values are not drawn in the graph). This latency is to be expected, any input flow
bigger than the system’s maximum throughput must eventually lead to infinite wait
times. The same holds true for the second bottleneck in the system, the maximum
message rate per CPU. If the threshold is crossed in a CPU, all flows originating at
that CPU will experience infinite wait times.

SFA vs PMOO Performance A remarkable aspect of figure 10.5 is the difference
in performance between SFA and PMOO. The common notion used to be PMOO
delivering the tightest bounds, because it saves on multiplexing cost. This has been
refuted in recent years; there are circumstances when SFA can indeed outperform
PMOO [127].

The FAIR timing network is very similar to the example given by Schmitt et
al. [127]. There is a tight bottleneck right in the beginning (CPU message rate),
followed by servers with higher service rates. We shall use the minimal case of two
nodes with two flows from figure 9.8 again as an example.

β1 β2

Rif

α2

Rfoi
α1

FIGURE 9.8: Minimal Network Example: 2 Nodes, 2 Flows (p. 149)

The input flows αi are given as leaky-bucket arrival curves of the form γri,bi , the
servers βi as rate latency nodes of the form βRi,Ti . Simply speaking, when concate-
nating servers by convolution of their service curves, the minimum of both rates is
used and the latencies are added. Arbitrary multiplexing is assumed, and for the
purpose of the explanation, only the case of b2 = 0, T1 = 0 is inspected. The delay
bounds for the minimal system resolve to:

dSFA =
T2 + b1

(R1 ∧R2)− r2

+
r2T2

R2− r2
(10.1)

dPMOO =
T2 + b1

(R1 ∧R2)− r2

+
r2T2

(R1 ∧R2)− r2

(10.2)

By comparison of the right fractions in both equations, it is easy to see that the
advantage of SFA over PMOO can be made arbitrarily large by increasing R2, the
rate of the downstream server.

194 Chapter 10. Evaluation

0 25 50 75 100 125 150 175 192.7

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Net Bandwidth / Mbit/s

La
te

nc
y

/
m

s

8x8 TFA 8x8 SFA 8x8 PMOO
1x6 TFA 1x6 SFA 1x6 PMOO
1x4 TFA 1x4 SFA 1x4 PMOO
Max. Bandwidth Target Latency

FIGURE 10.5: FAIR CS Simulation,
command latency bound over bandwidth. CPU x Threads equals the
number of flows per type of analysis (marker shape). Infinum of curves

of equal colours shows the corresponding latency bound

10.5. Observed Simulation Results 195

The reason for this effect lies in the loss of information about topographical ser-
vice distribution when forming a single equivalent node before calculating leftover
service. The bottleneck becomes dominant, which leads to an overly pessimistic
representation of all downstream servers in the present case.

Message Delay The SFA analyses in the bottom of figure 10.5 (circular markers)
show a maximum delay bound of ≈ 240 µs. With PMOO lying above 380 µs, it is
clear that SFA outperformed PMOO in this scenario. Figure 10.5 also clearly con-
firms that it is theoretically possible to deliver timing messages at the maximum
bandwidth of 192 Mbit/s within the desired target latency of 500 µs. Considering
table C.3, the infinum of all series must lie above 218 µs, as this is the sum of all
static latency of the servers along the path. This means it occurs independently of
traffic rate, burst or multiplexing cost.

10.5.2 FAIR CS Tunnel Influence

The model shown in figure 10.6 on page 196 was built solely for the purpose of
demonstrating the effect of the added multiplexing cost. The strongly increased
cross traffic created by the other timing message flows would have a heavy impact
on the total latency compared to the tunnelled model, reducing the usable band-
width within the desired delay budget of 500 µs to ≈ 50 Mbit/s. It is noteworthy
that in this case PMOO analysis does outperform SFA again, as SFA pays the extra
delay caused by the many multiplexed flows at every node that used to be tunnelled.

10.5.3 GSI TTF Model

Message Delay It is interesting to see PMOO excelling in this scenario. The recur-
ring multiplexing with WR cross traffic is obviously costly, putting TFA and SFA at
more than 300 µs off compared to to PMOO with a start at ≈ 140 µs. The 8x8 PMOO
analysis is also visibly deviating from a linear course, as the greater CPU message
interval decreased rate R1 in the minimal example given on page 193. The 1x4 anal-
yses all fall short and stop at ≈ 125 Mbit/s. This is to be expected, as the message
rate of 32 B/7.75 µs = 33 Mbit/s per CPU does not suffice to saturate the interface
with only four CPUs. However, the 1x4 series has been included for comparison
with the FAIR model and the yet to be presented minimal model.

The results in figure 10.7 on page 197 show PMOO delay bounds at 100 Mbit/s
are at 250 µs. This matches the observations on the real TTF system described in 10.6.2
where test runs with a lead less than 300 µs indeed occasionally returned late mes-
sages.

196 Chapter 10. Evaluation

0 25 50 75 100 125 150 175 192.7

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Net Bandwidth / Mbit/s

La
te

nc
y

/
m

s

8x8 TFA 8x8 SFA 8x8 PMOO
1x6 TFA 1x6 SFA 1x6 PMOO
1x4 TFA 1x4 SFA 1x4 PMOO
Max. Bandwidth Target Latency

FIGURE 10.6: FAIR CS Tunnel Influence Simulation,
command latency bound over bandwidth. Removal of the tunneling
effect on messages leads to a strong latency increase compared to 10.5

10.5. Observed Simulation Results 197

0 25 50 75 100 125 150 175 192.7

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Net Bandwidth / Mbit/s

La
te

nc
y

/
m

s
8x8 TFA 8x8 SFA 8x8 PMOO
1x6 TFA 1x6 SFA 1x6 PMOO
1x4 TFA 1x4 SFA 1x4 PMOO
Max. Bandwidth Target Latency

FIGURE 10.7: TTF Simulation, command latency bound over band-
width. 64 Flow (8 x 8) PMOO and SFA analyses (red squares and cir-
cles) show the goal of a 500µs latency bound can be guaranteed up to
187Mbit/s. This more than satisfies the goal of 100Mbit/s net band-

width (see 4.6)

198 Chapter 10. Evaluation

10.5.4 GSI MTS Model

Message Delay This case has at first glance the most unusual results of the four
models, as the resulting curves for different analyses actually cross each other. Still,
this is not an unexpected outcome considering the SFA-PMOO situation dependent
performance. A delay bound can be obtained from the infinum of all analysis types
for a given flow configuration. This results in an upper bound of ≈ 270 µs. The
main purpose of this model was a comparison to real world hardware, which is
undertaken in 10.6.3. The actual values used are shown in table C.5.

The infinum of delay bound curves for 64 flows at 100 Mbit/s were compared
with the latency budgets used for the MTS experiment documented in table C.5,
shown in the graph as cyan markers. The values at the markers show the ratio
of late messages to total messages measured at the corresponding latency budget
(marker’s position on the y-axis). All budgets above the latency bound infinum pro-
duce a rate of 0, which indicates that the area above indeed represents a “safe” zone
inside which all messages arrive on time. This confirms by both NC simulation and
experiment that the goal of a 500 µs latency was achieved. The ratio approaching 1
at 150 µs means that virtually all messages will be late if the budget is chosen lower
than the static delay all packets experience regardless of traffic when traversing the
system.

10.5. Observed Simulation Results 199

0 25 50 75 100 125 150 175 192.7

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0

0

0

0

0

1.7× 10−7

1.2× 10−5

0.98

1

1

1

Net Bandwidth / Mbit/s

La
te

nc
y

/
m

s
8x8 TFA 8x8 SFA 8x8 PMOO
1x6 TFA 1x6 SFA 1x6 PMOO
1x4 TFA 1x4 SFA 1x4 PMOO
Max. Bandwidth Target Latency Late Messages

FIGURE 10.8: MTS Simulation, command latency over bandwidth.
Real MTS’s ratio of late messages to messages at 100Mbit/s (table 10.3)
is shown in cyan. Position on the y-axis corresponds to latency budget,
the number to the observed ratio. Ratios of 0 show that budgets above

the curves’ infinum ensured timely delivery

200 Chapter 10. Evaluation

10.6 Full Test System Results

10.6.1 Evolution of Data Master Modules

Version 1 2 3 4 5

Timing Granularity 8 ns 8 ns 1 ns 1 ns 1 ns

CPU Cores 1 4 8 8 9

Threads per Core 1 1 1 2 8

Thread Scheduler – – RR EDF EDF

Schedule Sync. – SM MSI MSI MSI/Ext

Priority Queue SW Heap ST ST ST

Etherbone Master SW HW HW HW HW

Memory – 2 pages 2 pages dynamic dynamic

Fixed Exec. Time – – – – yes

Native Schedules – – – – yes

CPU Load Analysis – – – yes yes

NW Load Analysis – – – yes yes

TABLE 10.1: Data Master Features

Both EB and the DM itself have undergone various changes over the last five years.
Table 10.1 lists the most important features and architectural changes. The sched-
uler has been changed from Round Robin (RR) to EDF, the synchronisation concept
changed from a shared memory for all CPUs to MSI mailboxes and recently the
CMD-Q system described in chapter 8. The first PQ implementation was software
based, this design changed from a dual port memory based heap to a sorting tree
in the current implementation. Memory management changed from direct access
over a shadow page approach to a fully dynamic concept managed in the DM’s
host system.

10.6. Full Test System Results 201

Version 1 2 3 4 5

Unit Tests yes yes yes yes yes

Minimal Test System yes yes yes yes –

Int. Test System yes yes yes – –

Delay Simulation – – yes yes yes

TABLE 10.2: Data Master Testbeds

As table 10.2 shows, the interplay of system components could not fully be tested
yet. Because of the timeframe of this thesis, certain features such as dynamic mem-
ory management and multi-thread operation were not fully implemented at the time
and could only be tested in a minimal test setup yet. While this test is not signifi-
cant on an absolute scale, it provides a relatively solid qualitative assessment of the
concepts. However, version 3 of the DM and CS has undergone and passed the full
test stack.

202 Chapter 10. Evaluation

10.6.2 GSI Timing Test Facility

FIGURE 10.9: GSI Timing Test Facility,
Photos of actual Verification System

The TTF has been run for months in continuous operation. Figure 10.9 shows the
actual hardware setup used, a more detailed description can be gained from sec-
tion 10.2.3 and schematic 10.1 on page 186.

The TTF was running four cores at up to half capacity of randomly generated
schedules, which were verified in the endpoints. This entailed several one week
long tests, each producing a message volume between 1× 107 to 5× 1010 messages.
The observed results all complied with the simulation results presented in figure 10.7:
All tests set up with a message lead of≥ 400 µs never showed any messages flagged
as late. Values below 300 µs occasionally showed test results containing spurious
late messages. Values below 250 µs produced late messages in an apparently ran-
dom pattern, any values ≤ 150 µs lead to a continuous stream of late messages in all
test cases and occasional message loss. Cutting the message lead short in such an
extreme manner leads to accumulation at the DM. All other monitored conditions,
such as functional EB connections, completeness of the received command sched-
ules and time synchronisation accuracy were behaving according to specifications
in all cases. The measured accuracy of the WR system was verified manually via an
oscilloscope. The results were consistently satisfying the requirements of the case
study with a jitter ≤ 15 ps and a mean difference to the GPS time reference of ≤

10.6. Full Test System Results 203

180 ps. The measured timestamps were in almost all most cases within the desired
± 0.5 ns of the mean. Deviating endpoints could in almost all cases be traced to re-
producible bugs that have been fixed. The important aspect of this measurement is
not guaranteeing perfect synchronisation though, but detection of the condition to
rule out wrongful attribution of late/lost message errors to the DM prototype.

A different test run with CPU host systems channels as a sink to the ECA [141].
While the ECA software output channel is slow and cannot keep up with more ≈
1 Mbit/s, the test showed that a net rate of 50 Mbit/s produced neither late nor lost
messages.

10.6.3 Minimal Test System

Message Lead / µs 500 450 400 350 300 250 200 150 100 50

Late Msg Ratio 0 0 0 0 0 1.7e-7 1.2e-5 0.98 1 1

TABLE 10.3: Late Messages Ratio at 100Mbit/s
Net Bandwidth in the Minimal Test System

A small scale test system of two directly connected boards was employed to test a
setup at a net bandwidth of 100 Mbit/s (≈ 500 Mbit/s total), which is not yet reliable
using WR switches. The minimal test system consists solely of two PEXARIA V
boards [137], one configured as a DM, the other as an endpoint. They are directly
connected via fibre, without a network of WR switches in between. The purpose is
to enable high rate tests by removing the influence of yet unreliable switch policy
and lossy transmission [140]. The effect of the unavailable FEC core is mimicked by
quadrupling each message when sending.

When testing the setup at a total bandwidth close to full GbE line speed, WR
did lose time synchronisation on several occasions. Since WR, like PTP, does not de-
pend on transmission time, this behaviour can most probably be attributed to a race
condition in the WR firmware. The system was therefore configured to run 6 CPUs
with quadrupled output at maximum of 64 Mbit/s each, achieving the required net
bandwidth rate of the final FAIR system of 100 Mbit/s. Each test run was set up to
generate a total of 5 · 1010 messages over the course of one day. No messages were
lost in the experiments. The number of late messages detected by the ECA, as shown
in table 10.3 follows the simulation results from figure 10.8. The measured values
are marked and labelled in cyan, a white overlay was added on top the other plots
to retain legibility. The plot clearly shows that no late messages occurred above the
infinum of all delay plots at ≈ 250 µs.

205

Chapter 11

Conclusion

11.1 Overview

This chapter aims to evaluate all solutions from chapters 6-9 against the problems
presented in the FAIR case study in chapter 4. The research methodology is outlined
and the experimental setup described in detail. The results from simulations and
experiments are presented as are current real world applications of the research.
Finally, a conclusion from this work is drawn and future work is outlined.

11.2 Experimental Results

11.2.1 Etherbone

Performance The desired small protocol footprint has been achieved. The mea-
sured round-trip latency at 1.2 µs was above the calculated values, but the differ-
ence stemmed from packet buffering in this prototype, which is indispensable for
the operation of the WR clock synchronisation cores in the present version. Without
the buffering time, the latency will be even lower. This performance proves EB to
be a worthwhile protocol for use in future timing and CSs and hopefully further
applications in the large physics community will be seen in the near future.

Integration The interplay between EB HDL macro-cores and software API has
been successfully shown at the 6th WR Timing Workshop in 2012 [142]. Faithful
transmission of bus operations and timely message delivery were demonstrated, as
well as scanning the device chain on a remote WB bus. Between 2013 and 2016, a
complete EB software framework was developed. There now exists a complete API
for EB discovery and communication, providing functions for finding and listing
SDB devices as well as bi-directional access to the remote WB bus. There also now
exist Linux Kernel drivers for PCIe, USB and UDP network connections. TCP is also
available as a convenience feature for PCIe targets, although not natively. Instead it
is sent to the target’s host system (Linux computer), which deals with the TCP wrap-
per and talks EB over PCIe with the target. Pure software slaves, capable of running
in Linux environments were also designed, as well as a pure hardware master for
high speed EB communication.

206 Chapter 11. Conclusion

The most common needs for interaction with an EBS system were identified and
a whole suite of tools has been developed in order to address those needs. This cov-
ers finding EBS on networks, listing their internal WB bus structure, finding SDB
devices on the bus and direct read and write access to bus locations. A flash mem-
ory programmer and CPU firmware loader for EB were added along with some
diagnostic tools. The latter consists of a packet dissector for the Wireshark Network
Analyser and a snooping tool for EB connections on Linux computers. The EB tool
suite is completed by a reader for gate- and firmware build information, a serial
console and a tunnel application for redirecting EB connections. See appendix B.3.1
for details.

EB for Accelerator Timing The main purpose of the planned CS is to provide two
basic functions. The first is time tagging events, the second is sending commands
that will trigger pre-programmed actions at a given time. EB can be used broadcast
or unicast mode, the former will be used for commands. Because all WB devices in
the target SoC systems are memory mapped, EB can be employed for all require-
ments, reading timestamps as well as delivering commands and pre-programming
the necessary command filter rules into receivers. The difference between a com-
mand and any other EB content lies only in the targeted WB slave and data content,
not in format. Commands go to a FIFO input register in the ECA unit, which con-
trols the end point’s IO cores. Programming filter rules is achieved by writing to
corresponding control registers of the ECA, Timestamps can be read from the TLU.

11.2.2 DataMaster Platform

11.2.3 Network Calculus Simulations

It has been shown that NC is applicable to the case study and how its peculiarities
can be handled. Additionally, it has been shown that machine schedules, which
control accelerator components in the FAIR case study, can be modelled as flows.
Changing flows can be expressed by using suprema of alternative arrival curves or
recurring analyses with non-empty buffers.

The model has been further enhanced to show how the trinity of program, cycle
based bus and packet based network of the SoC system can be modelled in NC. All
sub-modules have been discussed in detail and service representations have been
deduced. The findings were then used to create a numerical simulation for Dis-
coDNC, which can be used to calculate the maximum delay for a particular flow of
interest or the sum of all flows.

11.3 Real World Applications

There are already a number of real world applications employing WR based sub-
nanosecond timing and CSs, proving the concept by controlling machines in a pro-
duction environment. The most important examples for this thesis are the applica-
tions at FAIR, which both employ the DM and EB on top of WR to form a complete

11.3. Real World Applications 207

CS. Further applications employing only WR and EB are listed under 11.3.3, “Ap-
plication in other Projects”.

Etherbone in Control Systems Basic functionality for the GSI/FAIR’s and CERN’s
timing system was shown in 2012 in the form of timestamping pulses from a signal
generator and producing a pulse on the end points IO based on the read timestamp
plus a delay.

In the beginning of 2013, design on the first version DM, the top unit of the FAIR
accelerator, was started. It uses the hardware EB master implementation to create
control messages. It was tested and found suitable for deterministically sending
machine control messages to several timing receivers, triggering IO actions. This
was first employed in March 2014 in the testing of the source of the FAIR proton
linear accelerator, developed in Saclay, France.

In April 2015, the DM started to control the linear accelerator stage of the CRYRING
accelerator, a small, independent synchrotron ring at FAIR. In this scenario, EB is
now used to control approximately 50 different timing receivers with several differ-
ent form factors. As of 2016, including lab and test setups, EB is now used over UDP,
TCP, USB, PCIe, PCI, VME and SCU-Bus. EB has finally proven to be both suitable
for deterministic CS use and as a flexible interface between the computer and the
SoC world.

11.3.1 Proton Injector

In the course of 2014, the second DM implementation was assigned as a prototype
controller to the ion source of the proton linear accelerator for FAIR currently under
construction in Saclay, France. In 2015, the WR based CS with the DM at its top
successfully controlled the microwave cavity and chopper [143].

208 Chapter 11. Conclusion

11.3.2 CRYRING Accelerator

FIGURE 11.1: 3D Model of the CRYRING Syn-
chrotron and Injector [144]

The CRYRING accelerator is a small
synchrotron machine with its own lin-
ear injector stage (figure 11.1). It was
used as a heavy ion storage ring at the
Manne Siegbahn Laboratory at Stock-
holm University and was contributed
to the FAIR project in 2014. CRYRING
serves as a testbed for the FAIR CS. Tests
operations with a WR based CS, receiv-
ing commands from the DM over the EB
protocol, were commenced in the end of
2014 [8].

First Beam In June 2015, the first ion
beam was produced in CRYRING’s in-
jection stage. This was the second suc-
cessful application of the DM as a control unit for real machinery. This event was
documented on the WR development mailing list:
“. . . for the first time we have beam in the injector of CRYRING at GSI involving a White
Rabbit based timing system . . . We control the beam chopper of the CRYRING LINAC sec-
tion . . . and trigger . . . beam instrumentation to detect the signal of the pulsed beam after the
chopper . . . ” [145].

First Turn The most recent successful test of the prototypes developed for this
thesis was CRYRING’s first turn, that is, the beam achieving more than one orbit
in the synchrotron ring. This success is documented in a FAIR press release from
August 2016, where it was noted: “Successful beam transport from ESR to CRYRING
. . . Furthermore, new beam diagnostics and FAIR-like control hardware and software could
be tested with real beam.” [144]

11.3.3 Application in other Areas

Existing Applications Apart from the DM, which is currently only employed in
the FAIR project, WR and EB implementations in soft- and hardware are already
employed elsewhere. Timing and CSs with an accuracy in the sub-nanosecond do-
main are drawing an increased interest from various institutions. An application
subject to a large amount of publicity was the deployment of WR between CERN
and Grand Sasso Neutrino Detectors [146] to help answer the question if particles
faster than the speed of light exist. This was the first field application of WR. The
technology is also already employed in other large physics experiments, such as the
Culham Centre for Fusion Energy, Oxfordshire, UK [147].

11.4. Conclusion 209

Apart from the field of particle accelerators, wired machine coordination at nanosec-
ond level over several kilometres provides the greatest benefit to the telecommuni-
cation industry. Increased synchronisation accuracy of a multitude of receivers dras-
tically increases the spatial resolution of distributed tracking systems, for example.
It also enables higher bandwidths by exact synchronisation of sample clock phases
in standard communication applications.

In particular the accurate synchronisation of phase antenna arrays has already
provided several promising applications for such a WR based CS. There are sev-
eral examples in the field of radio astronomy, such as the Large High Altitude Air
Shower Observatory in the Sichuan province, China [148]. There are more than 20
institutions employing WR (usually with EB) and a complete list can be found at
the OHWR Website [9].

Further possible Applications This research could be directly employed in other
systems that will benefit from high precision, deterministic control over several kilo-
metres. Examples would be the aforementioned phase antenna arrays in telecom-
munications, timing and synchronous control of mobile network base stations, dis-
tributed airspace monitoring and control, timestamping for stock-market applica-
tions or correlated data acquisition in industrial factory control systems. While the
provided implementation does require specialised hardware, integration with stan-
dard computers was a major consideration in prototype development.

The PEXARRIA V boards used in the experimental validation of this research
provide a simple way of integrating the high precision control system features of this
approach with standard industrial PCs or servers. By installing one of the boards
in a PCIe slot, the computer is fully equipped to act as timing receiver. Connecting
these boards with WR switches over fibre then provides a fast, deterministic channel
for control traffic. An interface to the OS (currently Unix/Linux based systems only)
is provided in form of PCIe drivers for EB and a complete API framework called
Simple API For Timing library (SAFTlib). SAFTlib comes with an XML based code
generator, which supplies the necessary C++ code to neatly integrate timing devices
into user-space programs.

11.4 Conclusion

The research undertaken and presented in this thesis has shown, both theoretically
and by experimental validation, that sub-nanosecond accuracy time synchronisa-
tion can be utilised to create a deterministic, alarm-based CS. The underlying WR
time synchronisation technology was analysed and the results showed both the
need and the potential for a protocol to enable deterministic data exchange between
FPGA based SoC systems. This need was satisfied with the creation of EB, the anal-
ysis of its properties in this chapter showed that it rightfully found a niche next to
established low level hardware protocols such as RDMA or an attempt at routing
PCIe over local area networks. Both the EB and WR protocols are now thoroughly

210 Chapter 11. Conclusion

tested and in productive use for more than four years on more than thousand de-
vices around the world. The whole CS hardware-software stack is therefore, within
known limits concerning WR switch hardware, validated by experiment.

The goals (scale in number of supported endpoints, scale in distance and timing
accuracy) as stated in chapter 1.2, have been fulfilled. This has been shown either
through direct validation by experiment or could be deduced from experimental
results.

11.4.1 Number of Endpoints

While experimental setups were limited to 50 endpoints due to the availability of
prototype timing receivers, the approach’s scalability can be deduced from the small
scale experiments and several system properties.

The network topology resembles a tree, with time critical control traffic being in-
jected at the root. Due to the tree topology, the required bandwidth for downward
traffic at each link port can either stay constant or decline, but cannot increase. The
link at the root node therefore dictates available bandwidth . With command traffic
being broadcasted to allow easy tapping control traffic and deployment of new con-
trol equipment, it follows that the available bandwidth B (100 Mbit/s) at each link
is independent of m and n .

WR switches feature 18 ports. To meet the goal of 2000 endpoints 4.6, the mini-
mum number of required levels is m = 3. The number of links would be sufficient
to connect (18 − 1)3 = 4913 devices. Considering the proposed redundant links
except the last mile to the endpoints 4.5.2, m = 4 levels of switches are required
to satisfy the goal, providing support for (b(18 − 1) ÷ 2c3 · (18 − 1) = 8704 de-
vices. To be able to adapt the topology to geographical necessities (placement of
switches only possible in radiation-free zones, maximum capacity of cable conduits,
etc.), a 5th level was introduced. The system’s theoretical capacity then increases to
b(18− 1)÷ 2c4 · (18− 1) = 69632 devices.

A conjecture has then been deduced from two experiments. First, a single WR
switch was proven by experiment to correctly function as an interconnect between
1 uplink and 17 downlinks(m = 1, n = N = 17) and to propagate timing and
control traffic within the expected bandwidth and latency bounds 4.6. Second, 5
cascaded WR switches were proven by experiment to correctly function as an inter-
connect between 1 master uplink and 25 downlinks, 5 at each level in the hierarchy
(m = M = 5, n = 5). Functionality was verified by once again measuring the WR
timing accuracy (see 2.7.6) in order to verify time distribution and comparing the
measured offset of pulses generated by the control system against their set values
to verify control traffic. In both scenarios, each endpoint received the total available
bandwidth B. This shows that both the maximum fanout N and necessary depth
M can be achieved. With B being independent of m and n and experiments by Bai
and Prados [140] having shown latency for broadcast to be independent of n and
proportional to m, it is safe to assume that increasing n to capacity will also result
in a functional system. It therefore follows that the CS approach proposed in this
thesis will scale to several thousand controlled machines by broadcasting control
messages over a network tree on GbE over fibre.

11.4. Conclusion 211

11.4.2 Distance

Experimental proof that the approach can bridge the required distance of 2 km is a
trivial matter. The experimental setup consisted of a WR switch and two endpoints,
each connected over a cable spool containing 2 km of fibre. This experiment was al-
ready conducted by Lipiński, Włostowski, Serrano, et al. [47] in 2011, including WR
correcting the thermal drift caused by the application of a hot air gun to the spools.
The experiment was replicated at GSI up to 10 km and the findings confirmed that
the WR system does correctly compensate the ensuing transmission delays.

11.4.3 Timing Accuracy

Resolution and Accuracy The requested timing resolution for command execu-
tion of 1 ns could be proven by experiment. The experiment setup consisted of two
separate timing receivers connected by a cascade of 5 WR switches, which were in
turn connected to the DM. The digital signal outputs of both timing receivers were
hooked up to an oscilloscope, and the DM issued commands to generate two pulses
with 1 ns offset (figure 11.2).

FIGURE 11.2: Measurement on outputs of two timing receivers (red
and green curves). Time difference between curves (P5 skew measure-
ment) shows the achieved timing resolution and accuracy when exe-

cuting DM commands for two pulses offset by 1ns

Each timing receiver was programmed to execute only one of the commands. The
outcome can be seen in figure 11.2, showing clearly that a resolution of 1 ns could
indeed be achieved. The remaining 42.5 ps difference is comprised of the synchroni-
sation uncertainty of the WR system and the measurement error of the oscilloscope.

212 Chapter 11. Conclusion

Latency Bound It was shown by both delay model simulations and experiment,
that the desired control loop speed of 500 µs (one way) could be achieved (see fig-
ure 10.8 and section 10.6.3), control loop speed only being limited by the reaction
times of external inputs (1 ms for B2B, up to 10 ms for interlocks and experiment re-
quests). Both the formal model and the numerical simulations confirmed that con-
trol message rate is, in the final FAIR system employing FEC, only limited by the
available net bandwidth in the WR network of 192 Mbit/s. Combining these find-
ings, it can be shown theoretically that timely arrival can be guaranteed for specified
traffic both offline and for limited changes during runtime. It was validated by ex-
periment that these findings hold true for all sequences known ahead of time.

In addition, it is shown that the proposed CS supports fully deterministic, par-
allel control processes, synchronised to the full accuracy of the system. Currently, a
human readable intermediate format has been chosen in the form of XML strings,
each containing a machine schedule. With the addition of hardware modules for
sorting and sending command messages, most sources for non-determinism, such
as message aggregation, network protocol coding and synchronisation handling
could already be removed from the DM design. Approaches for dealing with re-
maining sources of jitter are touched upon under 11.5.1.

Months of tests in the GSI TTF, the successful control of the Saclay ion source and
control of the CRYRING accelerator have shown that these properties also hold true
under real conditions, in a complete CS setup. Moreover, a control scheme that al-
lows machine schedules to be steered at runtime is presented and has been validated
in the GSI TTF, running control sequences for a linear injector and a synchrotron ring
in parallel.

11.5 Outlook & Future Work

Despite all the the effort which has gone into this project and all successes so far,
much future work still remains.

11.5.1 Optimisations

DM Optimisations There is still much potential for optimisation in the DM SoC,
especially hardware optimisations. Memory is currently attached to CPUs via WB
and therefore needs four cycles of access time. Binding one port of its dual port
memory without a WB interface directly to the CPU would result in a constant ac-
cess time of one cycle, speeding up message processing considerably. At the same
time it would remove any need for caches, thus freeing memory and removing a
possible source of jitter.

There is plenty more memory optimisation to be undertaken, as about 30% of the
RAM blocks in other parts the DM design are badly utilised. The standard memory
blocks are organised as units of 10 kbit (M10K). Components wrongfully acquiring
an M10K when trying to use only a small amount of memory are wasting the left-
over bits. This memory could be freed and added to the pool of RAM available to
the LM32 CPUs, enabling more CPUs or pre-loading more machine schedules.

11.5. Outlook & Future Work 213

Simulation Current simulation material was obtained by processing machine sched-
ules manually in Octave/Matlab [149], calculating their minimal arrival curves and
concave hulls. An automated process for the deduction of arrival curves from ma-
chine schedules has yet to be implemented.

An collaboration has been proposed by one of the creators of the DiscoDNC sim-
ulation environment at the Distributed Computer (Disco) Systems Lab at the Uni-
versity of Kaiserslautern, Germany, and was started in March 2017. This involves
the research and development of a solution which calculates NC arrival curves from
machine schedules. The algorithm would be used for delay calculation in FAIR’s CS
and is currently being developed in the scope of a bachelor thesis.

In addition, DiscoDNC does not natively support network tunnelling. The so-
lution utilising separate calculations and adding the resulting bounds described in
chapter 9.10.5 is a workable solution, but does not necessarily provide tight bounds.
An improved version is currently under development with the consultancy of NC
experts from Disco.

11.5.2 New Features

Etherbone As of mid 2016, there are very few extensions to EB planned. One
consists of changing the EB network core to be able to be shared between multiple
hosts, others are minor diagnostic features for hardware cores such as the addition
of packet counters.

DM Features The firmware approach presented in chapter 8 has not been fully
integrated yet (see 10.6.1) and still needs to be verified in a full test system. Fur-
thermore, to better test the complete FAIR CS stack, logging capability for mean,
minimum and maximum difference between message arrival and execution time
shall be added to the ECA unit. Another possible implementation could be a sep-
arate debug module between the ECA and the top CB switch, looping ECA traffic
through. While such an approach offers an easier implementation, the impact on
ECA performance would still need to be carefully evaluated beforehand.

11.5.3 Integration with FAIR

The DM has yet to be fully integrated with the FAIR CS and further prove its ability
to control real world accelerators of increasing complexity. As figure 11.3 shows, a
concept for the software interface and control of the DM by operators, beam requests
and machine interlocks already exists. Of the depicted software modules, the Gen-
erator is part of the DM project. The Generator is converting all abstract commands
into hardware view, i.e. memory addresses and pointers. It is also responsible for
automatic conversion of physical parameters into machine schedules.

214 Chapter 11. Conclusion

FIGURE 11.3: Excerpt from the Control System
Interface Design Process

The Generator modules contain large contributions of the research and designs
in chapter 8. Currently only part of the functionality is implemented in the form
of several libraries, a full prototype is planned for fall 2017. The Director module’s
task is to combine input from the physics framework, interlock controller and beam
requests and order changes from the Generator module regarding its path through
machine schedules. The CS presented in this thesis will face its next big challenge,
taking control of GSI’s SIS18 synchrotron ring, in early 2018. However, the real trial
is yet to come in 2025 when the complete FAIR facility is in operation.

215

Appendix A

Source Code

A.1 Data Master Gateware & Firmware

All sources regarding the DM as well as the complete FAIR timing system are
public domain under the GNU Lesser General Public License Version 3. Sources
are available at GitHub at the repository of the GSI control system division un-
der the name “bel_projects” The current (01/12/2016) release branch “balloon”
can be found and browsed under https://github.com/GSI-CS-CO/bel_
projects/tree/balloon. All DM development/experimental branches bear the
prefix “dm”, the most recent development for the full CS is always to be found un-
der the “proposed_master” branch.

All DM specific sources can found under the directory modules/ftm, all EB code
is a sub-module to bel_projects imported from the Open Hardware Repository and
can be found under the directory ip_cores/modules/etherbone-core. The sub-module
branch used for EB is called “proposed_master”.

A.1.1 Checkout of Project Sources

1 git clone --recursive https://github.com/GSI-CS-CO/bel_projects.git
2 cd MYPATH/bel_projects
3 git checkout <branchname>
4 git submodule update --init --recursive

The build workflow is fully make / automake based and is currently supported
for several Linux distributions such as Debian, Ubuntu and Archlinux. A windows
build workflow is not provided and it has proven difficult to build the projects on
Windows computers in the past.

An important prerequisite for building FPGA images is to have a compatible
locale setting. The Quartus design software only supports locale settings using a
point as decimal separator, a comma (as normally used in German) will inevitably
lead to wrong PLL frequencies and following build errors.

A complete guide on how to checkout, build and work with the
project sources of GSI/FAIR’s future control system can be found on
the GSI Timing Wiki at https://www-acc.gsi.de/wiki/Timing/
TimingSystemHowConfigureEnvironment.

https://github.com/GSI-CS-CO/bel_projects/tree/balloon
https://github.com/GSI-CS-CO/bel_projects/tree/balloon
https://www-acc.gsi.de/wiki/Timing/TimingSystemHowConfigureEnvironment
https://www-acc.gsi.de/wiki/Timing/TimingSystemHowConfigureEnvironment

217

Appendix B

Employed Software

B.1 Programming Languages

• VHDL 2003

• Verilog

• ANSI C99

• C++

• Python 2.7

• Matlab / Octave

• Bash script

• Make

B.2 3rd Party Tools

B.2.1 Development & Verification

• Synthesis & Compilation

– Altera Quartus 16.0.2 – VHDL/Verilog Synthesis

– Xilinx ISE – VHDL/Verilog Synthesis

– GCC 4.3.3 for x86 – C/C++ Compilation

– GCC 4.3.3 for LM32 – C/C++ Compilation

• Simulation

– MentorG. QuestaSim 10.1 – VHDL/Verilog Simulation

– CocoTb Verification – VHDL/Verilog Verification

• Monitoring

– Wireshark Network Analyser – Packet capture and analysis

218 Appendix B. Employed Software

B.3 Custom Inhouse Tools

B.3.1 Etherbone

• Discovery

– eb-discover – List EB slaves (EBS) on the network

– eb-find – Find an SDB device on the EBS’s bus by ID

– eb-ls – List SDB devices on the bus of an EBS

• Programming

– eb-flash – Program the Flash memory of an EBS

– eb-fwload – Load firmware to CPUs of an EBS

• Direct bus access

– eb-get – Download binary file from RAM in an EBS

– eb-put – Upload binary file to a RAM in an EBS

– eb-read – Read from a WB address within an EBS

– eb-write – Write a value to a WB address within an EBS

• Introspection

– eb-snoop – Snoops on ports of open EB connections

– EB dissector – Packet dissector for Wireshark

• Misc

– eb-console – Serial console over EB

– eb-info – Get build information from an EBS

– eb-mon – Get WR and EB status information from an EBS

– eb-tunnel – Redirect EB connection between PC’s interfaces

B.3.2 Wishbone

• Code Generator

– WBGenPlus – VHDL from XML for WB Slaves Interfaces

B.3.3 DataMaster

• Code Generator

– ScheduleMaster – C from Accelerator Schedule for machine control

219

Appendix C

Tables

C.1 List of Publications

Authors Title Published in
or presented at

Type Pages Year

Serrano, J.,
Alvarez, P.,
Cattin, M.,

Garcia Cota,
E., Lewis, J.,
Moreira, P.,
Wlostowski,
T., Gaderer,

G. T.,
Loschmidt,
P., Dedic, J.,

Bär, R., Fleck,
T., Kreider,
M., Prados,

C., Rauch, S.

The White Rabbit
Project

Proc. of the
International

Conference on
Accelerator and

Large
Experimental

Physics Control
Systems

ICALEPCS

Conf.
Paper 93 - 95 2009

Bär, R.,Fleck,
T., Kreider,

M., Mauro, S.

The Timing
Master for the

FAIR Accelerator
Facility

Proc. of the Int.
Conf. on

Accelerator and
Large

Experimental
Physics Control

Systems
ICALEPCS

Conf.
Paper

642-
645 2011

Kreider, M.,
Terpstra, W.,

Lewis, J.,
Serrano, J.,

Wlostowski,
T.

EtherBone - At
network layer for
the Wishbone SoC

Bus

Proc. of the Int.
Conf. on

Accelerator and
Large

Experimental
Physics Control

Systems
ICALEPCS

Conf.
Paper 2011

220 Appendix C. Tables

Kreider, M.,
Bär, R, Beck,
D., Terpstra,
W., Davies,
J., Grout, V.,

Lewis, J.
Serrano, J.,

Wlostowski,
T.

Open borders for
system-on-a-chip

buses: A wire
format for

connecting large
physics controls

Physical Review
Special Topics -

Accelerators and
Beams

Journal 2012

Kreider, M.,
Bär, R., Beck,
D., Davies, J.,

Grout, V.

The FAIR Timing
Master: A

Discussion of
Performance

Requirements and
Architectures for a

High-precision
Timing System

Proceedings of the
Fifth Int. Conf. on

Internet
Technologies and
Applications (ITA

13)

Peer
Rev.

Conf.
Paper

2013

Kurz, N.,
Adamczewski-

Musch, J.,
Frühauf, J.,

Hoffmann, J.,
Beck, D.,

Kreider, M.,
Prados, C.,
Rauch, S.,

Terpstra, W.,
Zweig, M.

White Rabbit
Applications for

FAIR Experiments

GSI Scientific
Report Journal 380 2013

Kreider, M.,
Bär, R., Beck,
D., Terpstra,
W., Davies,
J., Grout, V.

New
Developments on

the FAIR Data
Master

Proceedings of the
9th Int. Conf. on

Personal
Computers and

Particle
Accelerator

Controls PCaPAC

Conf.
Paper

204-
206 2014

Kreider, M.,
Bai, J., Beck,
D., Hahn, A.,

Prados, C.,
Rauch, S.,

Terpstra, W.,
Zweig, M.

Launching the
FAIR Timing
System with
CRYRING

Proceedings of the
10th Int. Conf. on

Personal
Computers and

Particle
Accelerator

Controls PCaPAC

Conf.
Paper

152-
154 2015

C.2. Tables of Simulation Values 221

Terpstra, W.,
Kreider, M.

Message Signalled
Interrupts in

Mixed-Master
Control

Proc. of the 15th
Int. Conf. on

Accelerator and
Large

Experimental
Physics Control

Systems
ICALEPCS

Conf.
Paper

152-
154 2015

Kreider, M.

To the very
nanosecond: A
tutorial on open

source timing and
control systems

Sixth Int. Conf. on
Internet

Technologies and
Applications (ITA

13)

Invited
Talk 2015

TABLE C.1: Publications with Contributions from this Research Work

C.2 Tables of Simulation Values

Scaler Symbolic Numeric Scaling Factor

S−1
R (a) lp

lp+lh
· a 32+8

32
· a 0.8

S−1
P (a) Φ

Φ+lnh
· a 36(32+8)+46

36(32+8)
· a 0.9626

S−1
F (a) Φ+lnh

4Φ+lnh
· a 1

4
· a 0.25

S−1
1 (a) S−1

R (a) 4
5
· a 0.8

S−1
2 (a) S−1

P (S−1
R (a)) 4

5
· 180

187
· a 0.7701

S−1
3 (a) S−1

F (S−1
P (S−1

R (a))) 4
5
· 180

187
· 1

4
· a 0.1925

TABLE C.2: Rate Scaling Factors for all Models

222 Appendix C. Tables

Node Rate Latency

Symb. Num. Mbit/s Symb. Num. µs

CB 3 r3 4 Gbit/s 4000.0 Tcb3 4 · 32 bit
4 Gbit/s 0.032

PQ r3 4 Gbit/s 4000.0 Tp 6 · 32 bit
4 Gbit/s 0.048

PQ In r3 4 Gbit/s 4000.0 Tp 6 · 32 bit
4 Gbit/s 0.064

CB 2 r2 2 Gbit/s 2000.0 Tcb2 4 · 32 bit
2 Gbit/s 0.064

EBS DF r2 2 Gbit/s 2000.0 Tebs 0.064

EBM F r2 2 Gbit/s 2000.0 lp
r2

32 B
2 Gbit/s 0.128

ECA In r2 2 Gbit/s 2000.0 lp
r2

32 B
2 Gbit/s 0.128

FEC1 S−1
2 (r2) 0.7701 · 2Gbit/s 1540.2 k·lp

S−1
2 (r2)

36·32 B
0.7701·2 Gbit/s 0.748

DFEC3 S−1
2 (r2) 0.7701 · 2Gbit/s 1540.2 k·lp

S−1
2 (r2)

36·32 B
0.7701·2 Gbit/s 0.748

FEC2 ∞+ Te 2.000

DFEC2 ∞+ Td 2.000

PQ Sort ∞+ Te 2.000

FEC3 S−1
3 (r2) 0.1925 · 2Gbit/s 385.0 k·lp

S−1
3 (r2)

36·32 B
0.1925·2 Gbit/s 2.992

DFEC1 S−1
3 (r2) 0.1925 · 2Gbit/s 385.0 k·lp

S−1
3 (r2)

36·32 B
0.1925·2 Gbit/s 2.992

ECA Sort ∞+ Teca 4.000

CPU lp
Tmsg

32 B
5 µs 51.2 Tmsg 5.000

EBS RX S−1
1 (r2) 0.8 · 2Gbit/s 1600.0 k·lp

S−1
1 (r2)

36·32 B
0.8·2 Gbit/s 5.760

NIC S−1
3 (r1) 0.1925 · 1Gbit/s 192.5 lmax

r1
1500 B

1 Gbit/s 12.000

WR SW S−1
3 (r1) 0.1925 · 1Gbit/s 192.5 lmax

r1
+Tsw 1500 B

1 Gbit/s + 0.5µs 12.500

EBM TX S−1
1 (r2) 0.8 · 2Gbit/s 1600.0 lnh+k·lp

S−1
1 (r1)

56+36·32 B
0.1925·1 Gbit/s 47.780

TABLE C.3: NC Node Values, final FAIR implementation

C.2. Tables of Simulation Values 223

Node Rate Latency

Symb. Num. Mbit/s Symb. Num. µs

CB 3 r3 4 Gbit/s 4000.0 Tcb3 4 · 32 bit
4 Gbit/s 0.032

PQ r3 4 Gbit/s 4000.0 Tp 6 · 32 bit
4 Gbit/s 0.048

PQ In r3 4 Gbit/s 4000.0 Tp 6 · 32 bit
4 Gbit/s 0.064

CB 2 r2 2 Gbit/s 2000.0 Tcb2 4 · 32 bit
2 Gbit/s 0.064

EBS DF r2 2 Gbit/s 2000.0 Tebs 0.064

EBM F r2 2 Gbit/s 2000.0 lp
r2

32 B
2 Gbit/s 0.128

ECA In r2 2 Gbit/s 2000.0 lp
r2

32 B
2 Gbit/s 0.128

FEC1 - - - - - -

DFEC3 - - - - - -

FEC2 - - - - - -

DFEC2 - - - - - -

PQ Sort ∞+ Te 2.000

FEC3 - - - - - -

DFEC1 - - - - - -

ECA Sort ∞+ Teca 4.000

CPU lp
Tmsg

32 B
5 µs 33.0 Tmsg 7.750

EBS RX S−1
1 (r2) 0.8 · 2Gbit/s 1600.0 k·lp

S−1
1 (r2)

36·32 B
0.8·2 Gbit/s 5.760

NIC S−1
2 (r1) 0.7701 · 1Gbit/s 770.1 lmax

r1
1500 B

1 Gbit/s 0.500

WR SW S−1
2 (r1) 0.7701 · 1Gbit/s 770.1 Tsw 0.5 µs 0.500

EBM TX S−1
1 (r2) 0.8 · 2Gbit/s 1600.0 lnh+k·lp

S−1
1 (r1)

56+36·32 B
0.1925·1 Gbit/s 47.780

TABLE C.4: NC Node Values, 2016 GSI TTF Implementation

224 Appendix C. Tables

Node Rate Latency

Symb. Num. Mbit/s Symb. Num. µs

CB 3 r3 4 Gbit/s 4000.0 Tcb3 4 · 32 bit
4 Gbit/s 0.032

PQ r3 4 Gbit/s 4000.0 Tp 6 · 32 bit
4 Gbit/s 0.048

PQ In r3 4 Gbit/s 4000.0 Tp 6 · 32 bit
4 Gbit/s 0.064

CB 2 r2 2 Gbit/s 2000.0 Tcb2 4 · 32 bit
2 Gbit/s 0.064

EBS DF r2 2 Gbit/s 2000.0 Tebs 0.064

EBM F r2 2 Gbit/s 2000.0 lp
r2

32 B
2 Gbit/s 0.128

ECA In r2 2 Gbit/s 2000.0 lp
r2

32 B
2 Gbit/s 0.128

FEC1 S−1
2 (r2) 0.7701 · 2Gbit/s 1540.2 k·lp

S−1
2 (r2)

36·32 B
0.7701·2 Gbit/s 0.748

DFEC3 S−1
2 (r2) 0.7701 · 2Gbit/s 1540.2 k·lp

S−1
2 (r2)

36·32 B
0.7701·2 Gbit/s 0.748

FEC2 ∞+ Te 2.000

DFEC2 ∞+ Td 2.000

PQ Sort ∞+ Te 2.000

FEC3 S−1
3 (r2) 0.1925 · 2Gbit/s 385.0 k·lp

S−1
3 (r2)

36·32 B
0.1925·2 Gbit/s 2.992

DFEC1 S−1
3 (r2) 0.1925 · 2Gbit/s 385.0 k·lp

S−1
3 (r2)

36·32 B
0.1925·2 Gbit/s 2.992

ECA Sort ∞+ Teca 4.000

CPU lp
Tmsg

32 B
5 µs 33.0 Tmsg 7.750

EBS RX S−1
1 (r2) 0.8 · 2Gbit/s 1600.0 k·lp

S−1
1 (r2)

36·32 B
0.8·2 Gbit/s 5.760

NIC S−1
2 (r1) 0.7701 · 1Gbit/s 770.1 lmax

r1
1500 B

1 Gbit/s 0.500

WR SW - - - - - -

EBM TX S−1
1 (r2) 0.8 · 2Gbit/s 1600.0 lnh+k·lp

S−1
1 (r1)

56+36·32 B
0.1925·1 Gbit/s 47.780

TABLE C.5: NC Node Values, Minimal Test Implementation

C.2. Tables of Simulation Values 225

Flow Rate Burst

Symb. Num. kbit/s Symb. Num. B

WR αptp 4 · 490 B/s 16 lptp 490 B 490

ARP αarp 64 B/s 0.5 larp 64 B 64

DHCP αdhcp 576 B/s 4.6 ldhcp 576 B 576

SNMP αsnmp 1500 B/s 6 lsnmp 1500 B 490

TABLE C.6: Estimated Background Flow Values
for WR Systems without QoS (TTF, Mini Test)

227

References

[1] Institute of Electrical and Electronics Engineers (IEEE), Ieee xplore digital
library. [Online]. Available: http://ieeexplore.ieee.org (visited on
05/29/2016).

[2] Association for Computing Machinery (ACM), ACM digital library. [Online].
Available: http://dl.acm.org/ (visited on 05/29/2016).

[3] Springer, Springer online library. [Online]. Available:
http://www.springer.com/gb/computer-science (visited on
05/29/2016).

[4] Google Inc., Google scholar. [Online]. Available:
https://scholar.google.com/ (visited on 05/29/2016).

[5] Pennssylvania State University, Citeseerx. [Online]. Available:
http://citeseerx.ist.psu.edu/ (visited on 05/29/2016).

[6] Google Inc., Google books. [Online]. Available:
https://books.google.com/ (visited on 05/29/2016).

[7] Open Hardware Repository (OHWR), Form factors for White Rabbit based
Control Systems, Nov. 2016. [Online]. Available:
http://www.ohwr.org/projects (visited on 11/30/2016).

[8] M. Kreider, J. Bai, D. Beck, A. Hahn, C. Prados, S. Rauch, W. W. Terpstra,
and M. Zweig, “Launching the FAIR Timing System with CRYRING”,
English, in Proceedings of the 10th International workshop on personal computers
and particle accelerator controls, OCLC: 945432373,
Eggenstein-Leopoldshafen: Synchrotron radiation source ANKA, 2015,
pp. 152–154, ISBN: 978-3-95450-146-5. [Online]. Available:
http://accelconf.web.cern.ch/1E2790D3-C34E-4E94-806A-
EB670A9C6B4A/FinalDownload/DownloadId-
0A05DAA3CCE5C084AC64AC1B31F1D956/1E2790D3-C34E-4E94-
806A-
EB670A9C6B4A/AccelConf/PCaPAC2014/papers/proceed.pdf
(visited on 11/28/2016).

[9] Open Hardware Repository (OHWR), Users of White Rabbit Technology, Nov.
2016. [Online]. Available:
http://www.ohwr.org/projects/white-rabbit/wiki/WRUsers
(visited on 11/30/2016).

[10] International Organization for Standardization (ISO), “ISO5725-6: Accuracy
(trueness and precision) of measurement methods and results-Part 6: Use in
practice of accuracy values”, 1994.

http://ieeexplore.ieee.org
http://dl.acm.org/
http://www.springer.com/gb/computer-science
https://scholar.google.com/
http://citeseerx.ist.psu.edu/
https://books.google.com/
http://www.ohwr.org/projects
http://accelconf.web.cern.ch/1E2790D3-C34E-4E94-806A-EB670A9C6B4A/FinalDownload/DownloadId-0A05DAA3CCE5C084AC64AC1B31F1D956/1E2790D3-C34E-4E94-806A-EB670A9C6B4A/AccelConf/PCaPAC2014/papers/proceed.pdf
http://accelconf.web.cern.ch/1E2790D3-C34E-4E94-806A-EB670A9C6B4A/FinalDownload/DownloadId-0A05DAA3CCE5C084AC64AC1B31F1D956/1E2790D3-C34E-4E94-806A-EB670A9C6B4A/AccelConf/PCaPAC2014/papers/proceed.pdf
http://accelconf.web.cern.ch/1E2790D3-C34E-4E94-806A-EB670A9C6B4A/FinalDownload/DownloadId-0A05DAA3CCE5C084AC64AC1B31F1D956/1E2790D3-C34E-4E94-806A-EB670A9C6B4A/AccelConf/PCaPAC2014/papers/proceed.pdf
http://accelconf.web.cern.ch/1E2790D3-C34E-4E94-806A-EB670A9C6B4A/FinalDownload/DownloadId-0A05DAA3CCE5C084AC64AC1B31F1D956/1E2790D3-C34E-4E94-806A-EB670A9C6B4A/AccelConf/PCaPAC2014/papers/proceed.pdf
http://accelconf.web.cern.ch/1E2790D3-C34E-4E94-806A-EB670A9C6B4A/FinalDownload/DownloadId-0A05DAA3CCE5C084AC64AC1B31F1D956/1E2790D3-C34E-4E94-806A-EB670A9C6B4A/AccelConf/PCaPAC2014/papers/proceed.pdf
http://www.ohwr.org/projects/white-rabbit/wiki/WRUsers

228 REFERENCES

[11] Oxford dictionary. [Online]. Available: http:
//www.oxforddictionaries.com/definition/english/clock
(visited on 05/29/2016).

[12] Tektronix Inc., Understanding and Characterizing Timing Jitter, Aug. 2003.
[Online]. Available: info.tek.com/rs/tektronix/images/55W_
16146_5_MR_Letter.pdf (visited on 11/25/2016).

[13] R. A. Nelson, D. D. McCarthy, S. Malys, J. Levine, B. Guinot, H. F. Fliegel,
R. L. Beard, and T. R. Bartholomew, “The leap second: its history and
possible future”, Metrologia, vol. 38, no. 6, p. 509, 2001.

[14] M. A. Lombardi, L. M. Nelson, A. N. Novick, and V. S. Zhang, “Time and
frequency measurements using the global positioning system”, Cal Lab:
International Journal of Metrology, vol. 8, no. 3, pp. 26–33, 2001. [Online].
Available:
http://www.glb.nist.gov/calibrations/upload/1424.pdf
(visited on 06/11/2016).

[15] Nautical Almanac of the stars, Jan. 2016. [Online]. Available:
www.nauticalalmanac.it (visited on 05/28/2016).

[16] M. Denny, The science of navigation: from dead reckoning to GPS. JHU Press,
2012.

[17] J. W. Norie, A new and complete epitome of practical navigation.
Rarebooksclub.com, 1852, ISBN: 1-236-63584-1.

[18] R. T. Gould, The marine chronometer, its history and development. Acc Art
Books, 2013, ISBN: 1-85149-365-4.

[19] M. A. Lombardi, “The Accuracy & Stability of Quartz Watches”, Horological
Journal, vol. 150, no. 2, p. 57, 2008. [Online]. Available:
http://tf.nist.gov/general/pdf/2276.pdf?iframe=true&
width=100%&height=100% (visited on 06/13/2016).

[20] M. E. Frerking, “Fifty years of progress in quartz crystal frequency
standards”, in Frequency Control Symposium, 1996. 50th., Proceedings of the
1996 IEEE International., IEEE, 1996, pp. 33–46.

[21] W. M. Itano and N. F. Ramsey, “Accurate measurement of time”, Scientific
American, vol. 269, no. 1, pp. 46–53, 1993.

[22] T. P. Heavner, E. A. Donley, F. Levi, G. Costanzo, T. E. Parker, J. H. Shirley,
N. Ashby, S. Barlow, and S. R. Jefferts, “First accuracy evaluation of
NIST-F2”, Metrologia, vol. 51, no. 3, p. 174, 2014.

[23] Y. B. Ovchinnikov, “Development of NPL Rb fountain frequency standard”,
in European Frequency and Time Forum (EFTF), 2012, IEEE, 2012, pp. 96–100.

[24] N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke,
K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock
with 10–18 instability”, Science, vol. 341, no. 6151, pp. 1215–1218, 2013.

[25] E. F. Arias, B. Guinot, and T. J. Quinn, “Rotation of the Earth and Time
scales”, in ITU-R SRG Colloquium on the UTC Time Scale, 2003, pp. 28–29.

http://www.oxforddictionaries.com/definition/english/clock
http://www.oxforddictionaries.com/definition/english/clock
info.tek.com/rs/tektronix/images/55W_16146_5_MR_Letter.pdf
info.tek.com/rs/tektronix/images/55W_16146_5_MR_Letter.pdf
http://www.glb.nist.gov/calibrations/upload/1424.pdf
www.nauticalalmanac.it
http://tf.nist.gov/general/pdf/2276.pdf?iframe=true&width=100%&height=100%
http://tf.nist.gov/general/pdf/2276.pdf?iframe=true&width=100%&height=100%

REFERENCES 229

[26] L Essen and J. Parry, “An atomic standard of frequency and time interval: a
caesium resonator”, Nature, vol. 176, no. 4476, pp. 280–282, 1955.

[27] Physikalisch Technische Bundesanstalt, Die Zeitskalen TAI und EAL.
[Online]. Available:
http://www.ptb.de/cms/ptb/fachabteilungen/abt4/fb-
44/ag-441/darstellung-der-gesetzlichen-zeit/die-
zeitskalen-tai-und-eal.html (visited on 06/13/2016).

[28] US Department of Defense, “GPS SPS performance standard”, Tech. Rep.,
2008. (visited on 06/10/2016).

[29] H. Clausert, G. Wiesemann, V. Hinrichsen, and J. Stenzel, Grundgebiete der
Elektrotechnik 2. Oldenbourg Verlag, 2007, vol. 2, ISBN: 3-486-25428.

[30] P. Horowitz, W. Hill, and T. C. Hayes, The art of electronics, 3rd editon, 3rd ed.
Cambridge university press Cambridge, 2015, ISBN: 978-0-521-80926-9.

[31] D. Banerjee, PLL performance, simulation and design. Dog Ear Publishing,
2006, ISBN: 1-59858-131-1.

[32] B. Razavi, Monolithic phase-locked loops and clock recovery circuits: theory and
design. John Wiley & Sons, 1996, ISBN: 0-7803-1149-3.

[33] A. Widmer, Partitioned dc balanced (0,6) 16b/18b transmission code with error
correction, US Patent 6,198,413, Mar. 2001. [Online]. Available:
https://www.google.com/patents/US6198413.

[34] GPS Timing Subcommittee, “Timing Subcommittee Report”, US
Government, Tech. Rep., 2014. (visited on 06/10/2016).

[35] M. A. Lombardi, “Computer time synchronization”, NIST, Time and
Frequency Division, 2000. [Online]. Available:
http://elektron.pol.lublin.pl/users/ELEKP/ap_notes/NIST_
comp_time_synchro.pdf (visited on 06/13/2016).

[36] ——, “How accurate is a radio controlled clock”, The Horological Journal, vol.
152, no. 3, pp. 108–111, 2010. [Online]. Available:
http://tf.boulder.nist.gov/general/pdf/2429.pdf (visited on
06/11/2016).

[37] D. Deeths, G. Brunette, and S. BluePrints, “Using NTP to control and
synchronize system clocks-part i: Introduction to NTP”, Sun BluePrints
OnLine-July, 2001.

[38] M. A. Lombardi, “Comparing loran timing capability to industrial
requirements”, in Proceedings of the 2006 International Loran Association (ILA)
Meeting, 2006. [Online]. Available:
http://tf.nist.gov/general/pdf/2193.pdf (visited on
06/11/2016).

[39] P. Loschmidt, R. Exel, A. Nagy, and G. Gaderer, “Limits of synchronization
accuracy using hardware support in IEEE 1588”, in Precision Clock
Synchronization for Measurement, Control and Communication, 2008. ISPCS
2008. IEEE International Symposium on, IEEE, 2008, pp. 12–16.

http://www.ptb.de/cms/ptb/fachabteilungen/abt4/fb-44/ag-441/darstellung-der-gesetzlichen-zeit/die-zeitskalen-tai-und-eal.html
http://www.ptb.de/cms/ptb/fachabteilungen/abt4/fb-44/ag-441/darstellung-der-gesetzlichen-zeit/die-zeitskalen-tai-und-eal.html
http://www.ptb.de/cms/ptb/fachabteilungen/abt4/fb-44/ag-441/darstellung-der-gesetzlichen-zeit/die-zeitskalen-tai-und-eal.html
https://www.google.com/patents/US6198413
http://elektron.pol.lublin.pl/users/ELEKP/ap_notes/NIST_comp_time_synchro.pdf
http://elektron.pol.lublin.pl/users/ELEKP/ap_notes/NIST_comp_time_synchro.pdf
http://tf.boulder.nist.gov/general/pdf/2429.pdf
http://tf.nist.gov/general/pdf/2193.pdf

230 REFERENCES

[40] P. Moreira, J. Serrano, T. Włostowski, P. Loschmidt, and G. Gaderer, “White
Rabbit: Sub-Nanosecond Timing Distribution over Ethernet”, in Proc. of the
International Symposium on Precision Clock Synchronization for Measurement,
Control and Communication ISPCS, Oct. 2009, pp. 1–5.

[41] D. L. Mills, “Internet time synchronization: the network time protocol”,
IEEE Transactions on Communications, vol. 39, no. 10, pp. 1482–1493, 1991.
[Online]. Available: http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=103043
(visited on 05/09/2016).

[42] J. Serrano, M. Lipiński, T. Włostowski, E. Gousiou, E. van der Bij, M. Cattin,
and G. Daniluk, “The White Rabbit project”, in Proceedings of the 2nd
International Beam Instrumentation Conference (IBIC2013), EDA Consortium,
2013. [Online]. Available:
http://cds.cern.ch/record/1743073/files/thbl2.pdf (visited
on 05/09/2016).

[43] K. Lee, J. C. Eidson, H. Weibel, and D. Mohl, “IEEE 1588-standard for a
precision clock synchronization protocol for networked measurement and
control systems”, in Conference on IEEE, vol. 1588, 2005, p. 2.

[44] D. L. Mills, “NTP performance analysis”, 2004. [Online]. Available: http:
//www.cis.udel.edu/~mills/database/brief/perf/perf.pdf
(visited on 11/10/2016).

[45] ITU, Telecommunication Standardization Sector, “Distribution of timing
information through packet networks”, International Telecommunication
Union, Tech. Rep. G.8264, 2014.

[46] A. X. Widmer and P. A. Franaszek, “A DC-balanced, partitioned-block,
8b/10b transmission code”, IBM Journal of research and development, vol. 27,
no. 5, pp. 440–451, 1983.

[47] M. Lipiński, T. Włostowski, J. Serrano, and P. Alvarez, “White rabbit: a PTP
application for robust sub-nanosecond synchronization”, in Precision Clock
Synchronization for Measurement Control and Communication (ISPCS), 2011
International IEEE Symposium on, Sep. 2011, pp. 25–30. DOI:
10.1109/ISPCS.2011.6070148.

[48] E. Wilson and E. J. Wilson, An introduction to particle accelerators. Clarendon
Press, 2001, ISBN: 0-19-850829-8.

[49] H. Schopper, Advances of Accelerator Physics and Technologies. World
Scientific, 1993, ISBN: 981-02-0957-6.

[50] H. Wiedemann, Particle accelerator physics. Springer, 2015, ISBN:
978-3-319-18316-9.

[51] R. F. Harrington, Introduction to electromagnetic engineering. Courier
Corporation, 2003, ISBN: 0-486-43241-6.

[52] GSI, GSI Public Relations Material, 2008.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=103043
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=103043
http://cds.cern.ch/record/1743073/files/thbl2.pdf
http://www.cis.udel.edu/~mills/database/brief/perf/perf.pdf
http://www.cis.udel.edu/~mills/database/brief/perf/perf.pdf
http://dx.doi.org/10.1109/ISPCS.2011.6070148

REFERENCES 231

[53] M. Oliphant, “The acceleration of particles to very high energies”, Classified
memo submitted to DSIR University of Birmingham Archive, 1943.

[54] J. Ross, SIS18 Technische Zeichnungen und Fotografien, 2008.

[55] P. Strehl, Beam instrumentation and diagnostics. Springer, 2006, vol. 120, ISBN:
3-540-26401-9.

[56] M. Kreider, R. Bär, D. Beck, J. Davies, and V. Grout, “The FAIR Timing
Master: A Discussion of Performance Requirements and Architectures for a
High-precision Timing System”, in Proceedings of the Fifth International
Conference on Internet Technologies and Applications (ITA 13), Wrexham, UK:
North East Wales Institute, Oct. 2013, ISBN: 978-0-946881-81-9.

[57] Facility for Anti-Proton and Ion Research (FAIR), Overview of FAIR
accelerator, Aug. 2016. [Online]. Available:
https://static1.bmbfcluster.de/5/4/8/4_cb57bb50968c33b/
5484abg_62da0208476191f.jpg.

[58] G. Kraft, “Tumor therapy with heavy charged particles”, Progress in Particle
and Nuclear Physics, vol. 45, S473–S544, 2000.

[59] R. Steiner, G. Englert, W. Rösch, H. Brandis, H. Hübner, and E. Schaffner,
“The GSI control system”, 1990.

[60] U. Krause, V. Schaa, and R. Steiner, “The GSI Control System”, in
Proceedings of ICALEPCS, vol. 91, 1991.

[61] U. Krause and V. Schaa, “Re-engineering of the GSI control system”, arXiv
preprint physics/0111060, 2001. [Online]. Available:
http://arxiv.org/abs/physics/0111060 (visited on 11/28/2016).

[62] Siemens, Simatic Cycle and Response Times, Jan. 2016. [Online]. Available:
https://cache.industry.siemens.com/dl/files/558/
59193558/att_895996/v1/s71500_cycle_and_reaction_times_
function_manual_en-US_en-US.pdf (visited on 01/11/2016).

[63] R. V. Aroca and G. Caurin, “A real time operating systems (RTOS)
comparison”, 2009. [Online]. Available:
http://home.iitj.ac.in/~saurabh.heda/Papers/Survey/RTOS%
20Performance%20Comparison%20-2008.pdf (visited on
10/03/2016).

[64] B. Frammery, “The LHC Control System”, in Proceedings of ICALEPCS, 2005,
pp. 10–14. [Online]. Available: http://accelconf.web.cern.ch/
AccelConf/ica05/proceedings/pdf/I1_001.pdf (visited on
11/28/2016).

[65] European Centre for Nuclear Research (CERN), Overview of CERN
accelerator, Aug. 2016. [Online]. Available:
http://www.stfc.ac.uk/stfc/includes/themes/MuraSTFC/
assets/legacy/LHCinteractive/LHC_default.jpg.

[66] Argonne National Laboratory, Experimental Physics and Industrial Control
System (EPICS), 1995 – 2016. [Online]. Available:
http://www.aps.anl.gov/epics/ (visited on 05/29/2016).

https://static1.bmbfcluster.de/5/4/8/4_cb57bb50968c33b/5484abg_62da0208476191f.jpg
https://static1.bmbfcluster.de/5/4/8/4_cb57bb50968c33b/5484abg_62da0208476191f.jpg
http://arxiv.org/abs/physics/0111060
https://cache.industry.siemens.com/dl/files/558/59193558/att_895996/v1/s71500_cycle_and_reaction_times_function_manual_en-US_en-US.pdf
https://cache.industry.siemens.com/dl/files/558/59193558/att_895996/v1/s71500_cycle_and_reaction_times_function_manual_en-US_en-US.pdf
https://cache.industry.siemens.com/dl/files/558/59193558/att_895996/v1/s71500_cycle_and_reaction_times_function_manual_en-US_en-US.pdf
http://home.iitj.ac.in/~saurabh.heda/Papers/Survey/RTOS%20Performance%20Comparison%20-2008.pdf
http://home.iitj.ac.in/~saurabh.heda/Papers/Survey/RTOS%20Performance%20Comparison%20-2008.pdf
http://accelconf.web.cern.ch/AccelConf/ica05/proceedings/pdf/I1_001.pdf
http://accelconf.web.cern.ch/AccelConf/ica05/proceedings/pdf/I1_001.pdf
http://www.stfc.ac.uk/stfc/includes/themes/MuraSTFC/assets/legacy/LHCinteractive/LHC_default.jpg
http://www.stfc.ac.uk/stfc/includes/themes/MuraSTFC/assets/legacy/LHCinteractive/LHC_default.jpg
http://www.aps.anl.gov/epics/

232 REFERENCES

[67] M. G. Abbott, J. A. Dobbing, M. T. Heron, G. Rehm, J. Rowland, I. S. Uzun,
and S. Duncan, “Performance and future development of the diamond fast
orbit feedback system”, Proceedings of EPAC08, p. 3257, 2008.

[68] A. Gamp, M. Liepe, T. Plawski, K. Rehlich, and S. N. Simrock, “Design of
the RF phase reference system and timing control for the TESLA linear
collider”, in XIX International Linear Accelerator Conference, vol. 98, 1998.

[69] A. Winter, P. Schmüser, F. Ludwig, H. Schlarb, J. Chen, F. X. Kärtner, and
F. Ö. Ilday, “High-precision laser master oscillators for optical timing
distribution systems in future light sources”, in Proceedings of EPAC, 2006.

[70] T. Włostowski, G. Daniluk, M. Lipiński, F. Vaga, and J. Serrano, “Trigger
and RF Distribution Using White Rabbit”, 2015. [Online]. Available:
http://cds.cern.ch/record/2213491 (visited on 12/20/2016).

[71] P. Schütt, Presentation Beamlines and Production Chains, from GSI internal
presentation material, 2010.

[72] P. Moritz, “BuTiS Development of a Bunchphase Timing System”, GSI, Tech.
Rep., 2006. [Online]. Available:
http://gsi.helmholtz.de/informationen/wti/library/
scientificreport2006/PAPERS/FAIR-ACCELERATORS-20.pdf.

[73] Facility for Anti-Proton and Ion Research (FAIR), Detailed specification of the
FAIR accelerator control system component „General Machine Timing System“,
Aug. 2012.

[74] N. Kurz, J. Adamczewski-Musch, J. Frühauf, J. Hoffmann, D. Beck,
M. Kreider, C. Prados, S. Rauch, W. Terpstra, and M. Zweig, “White rabbit
applications for fair experiments”, GSI Scientific Report, 2013. DOI:
10.15120/GR-2014-1.

[75] N. Kurz, Detector Requirements, private communication, Jan. 2017.

[76] H. Klingbeil, Presentation on bunch to bucket transfer, from GSI internal
presentation material, 2010.

[77] J. Bai, “Development of the timing system for the Bunch-to-Bucket transfer
between the FAIR accelerators”, Doctoral Thesis, Goethe Universität
Frankfurt am Main, Nov. 2017.

[78] M. Lipiński and C. Prados, “White Rabbit Robustness”, GSI/CERN, Tech.
Rep., 2011. [Online]. Available: http://www.ohwr.org/attachments/
742/WhiteRabbitAndRobustness.pdf.

[79] C. Prados Boda and T. Fleck, “FEC in deterministic control systems over
Gigabit Ethernet”, in Proc. of the 8th International Workshop on Personal
Computers and Particle Accelerators, PCaPAC, 2010, pp. 172–174.

[80] M. Lipiński, C. Prados, J. Serrano, and T. Włostowski, “Reliability in a White
Rabbit network”, in Proc. of the International Conference on Accelerator and
Large Experimental Physics Control Systems ICALEPCS, 2011, pp. 698–701.

http://cds.cern.ch/record/2213491
http://gsi.helmholtz.de/informationen/wti/library/scientificreport2006/PAPERS/FAIR-ACCELERATORS-20.pdf
http://gsi.helmholtz.de/informationen/wti/library/scientificreport2006/PAPERS/FAIR-ACCELERATORS-20.pdf
http://dx.doi.org/10.15120/GR-2014-1
http://www.ohwr.org/attachments/742/WhiteRabbitAndRobustness.pdf
http://www.ohwr.org/attachments/742/WhiteRabbitAndRobustness.pdf

REFERENCES 233

[81] D. Beck, “Robustness”, Tech. Rep., Nov. 2013. [Online]. Available: https:
//www-acc.gsi.de/wiki/Timing/TimingSystemNetworkBasics
(visited on 11/30/2016).

[82] IEEE Standards Association, IEEE 802.3 Ethernet Standard, 2015. [Online].
Available: http:
//standards.ieee.org/getieee802/download/802.3-2015.zip
(visited on 05/29/2016).

[83] D. Beck, Forward Error Correction Values, Sep. 2016. [Online]. Available:
https://www-acc.gsi.de/wiki/Timing/TimingSystemEvent
(visited on 11/30/2016).

[84] T. Straumann, “Open Source real-time operating systems overview”, in
Proc. of the International Conference on Accelerator and Large Experimental
Physics Control Systems ICALEPCS, 2001, pp. 235–237.

[85] B. B. Brandenburg, “Scheduling and locking in multiprocessor real-time
operating systems”, PhD thesis, 2011. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.359.6393&rep=rep1&type=pdf (visited on 10/03/2016).

[86] R. H. Katz, Contemporary Logic Design. Redwood City, CA, USA:
Benjamin-Cummings Publishing Co., Inc., 1994, ISBN: 0-8053-2703-7.

[87] Altera Corp., “FPGA Architecture”, Tech. Rep., 2006. [Online]. Available:
https://www.altera.com/content/dam/altera-
www/global/en_US/pdfs/literature/wp/wp-01003.pdf (visited
on 10/03/2016).

[88] ——, Stratix X documentation, 2015. [Online]. Available: https:
//www.altera.com/literature/hb/stx/stratix_handbook.pdf
(visited on 09/12/2016).

[89] ——, Arria V documentation, 2015. [Online]. Available:
https://www.altera.com/content/dam/altera-
www/global/en_US/pdfs/literature/hb/arria-
v/av_51001.pdf (visited on 09/10/2016).

[90] W. Terpstra, “The Case for Soft-CPUs in Accelerator Control Systems”, in
Proc. of the International Conference on Accelerator and Large Experimental
Physics Control Systems ICALEPCS, Oct. 2011, pp. 1252–1255.

[91] Lattice Semiconductor, LM32-Processor Reference Manual, Jul. 2016. [Online].
Available: http:
//www.latticesemi.com/view_document?document_id=50900
(visited on 09/26/2016).

[92] Opencores, “Wishbone B4 WISHBONE System-on-Chip
(SoC)Interconnection Architecture for Portable IP Cores”, OpenCores, Tech.
Rep., 2010. [Online]. Available:
http://cdn.opencores.org/downloads/wbspec_b4.pdf.

https://www-acc.gsi.de/wiki/Timing/TimingSystemNetworkBasics
https://www-acc.gsi.de/wiki/Timing/TimingSystemNetworkBasics
http://standards.ieee.org/getieee802/download/802.3-2015.zip
http://standards.ieee.org/getieee802/download/802.3-2015.zip
https://www-acc.gsi.de/wiki/Timing/TimingSystemEvent
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.359.6393&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.359.6393&rep=rep1&type=pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01003.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01003.pdf
https://www.altera.com/literature/hb/stx/stratix_handbook.pdf
https://www.altera.com/literature/hb/stx/stratix_handbook.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/arria-v/av_51001.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/arria-v/av_51001.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/arria-v/av_51001.pdf
http://www.latticesemi.com/view_document?document_id=50900
http://www.latticesemi.com/view_document?document_id=50900
http://cdn.opencores.org/downloads/wbspec_b4.pdf

234 REFERENCES

[93] M. Kreider, R. Bär, D. Beck, W. Terpstra, J. Davies, V. Grout, J. Lewis,
J. Serrano, and T. Włostowski, “Open borders for system-on-a-chip buses: A
wire format for connecting large physics controls”, en, Physical Review
Special Topics - Accelerators and Beams, vol. 15, no. 8, Aug. 2012, ISSN:
1098-4402. DOI: 10.1103/PhysRevSTAB.15.082801. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevSTAB.15.082801
(visited on 05/09/2016).

[94] A. Romanow and S. Bailey, “An Overview of RDMA over IP”, in Proc. of the
First International Workshop on Protocols for Fast Long-Distance Networks
PFLDnet, Feb. 2003.

[95] R. Recio, P. Culley, D. Garcia, J. Hilland, and B. Metzler, “An RDMA
protocol specification”, Internet Engineering Task Force, Tech. Rep., 2005.

[96] J. Liu, J. Wu, and D. K. Panda, “High Performance RDMA Based MPI
Implementation over Infiniband”, International Journal on parallel
programming, vol. 32, no. 3, pp. 167–198, 2004.

[97] M. J. Rashti and A. Afsahi, “10-Gigabit iWarp Ethernet: Comparative
Performance Analysis with Infiniband and Myrinet-10g”, in Proc. of the
International Parallel and Distributed Processing Symposium, Mar. 2007.

[98] A. Gokhale and D. Schmidt, “Measuring and optimizing CORBA latency
and scalability over high-speed networks”, IEEE Transactions on Computers,
vol. 47, no. 4, pp. 391–413, Apr. 1998.

[99] Y. Ying, Y. Huang, and D. W. Walker, “A Performance Evaluation of Using
SOAP with Attachments for e-Science”, in In Proc. of the UK e-Science All
Hands Meeting, 2005, pp. 796–803.

[100] “PCI Express Base Specification Revision 3.0”, PCI-SIG, Tech. Rep., 2010.
[Online]. Available:
http://www.pcisig.com/specifications/pciexpress/base3/.

[101] A. Rubini, W. Terpstra, and M. Vanga, “Self Describing Bus Specification”,
Open Hardware Repository, Tech. Rep., Apr. 2013. [Online]. Available:
http://www.ohwr.org/attachments/4021/sdb-1.1.pdf (visited
on 05/06/2016).

[102] J. B. Postel, “User Datagram Protocol”, Internet Engineering Task Force,
RFC 768, Aug. 1980. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc768.txt.

[103] ——, “Transmission Control Protocol”, Internet Engineering Task Force,
RFC 793, Sep. 1981, p. 85. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc793.txt.

[104] ——, “Internet Protocol”, Internet Engineering Task Force, RFC 791, Sep.
1981, p. 45. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc791.txt.

http://dx.doi.org/10.1103/PhysRevSTAB.15.082801
http://link.aps.org/doi/10.1103/PhysRevSTAB.15.082801
http://www.pcisig.com/specifications/pciexpress/base3/
http://www.ohwr.org/attachments/4021/sdb-1.1.pdf
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc791.txt

REFERENCES 235

[105] N. Alachiotis, S. A. Berger, and A. Stamatakis, “Efficient PC-FPGA
Communication over Gigabit Ethernet”, in Proc. of the 2010 10th IEEE
International Conference on Computer and Information Technology, ser. CIT ’10,
2010, pp. 1727–1734, ISBN: 978-0-7695-4108-2.

[106] D. Yadav and A. Rajawat, “Area and throughput analysis of different aes
architectures for fpga implementations”, in IEEE International Symposium on
Nanoelectronic and Information Systems (iNIS), Dec. 2016, pp. 67–71. DOI:
10.1109/iNIS.2016.026.

[107] Altera Corp., Quartus prime design software v16.0.2, 1991 – 2016. [Online].
Available: https://www.altera.com/products/design-
software/fpga-design/quartus-prime/overview.html (visited
on 05/29/2016).

[108] M. Kreider, R. Bär, D. Beck, W. Terpstra, J. Davies, and V. Grout, “New
Developments on the FAIR Data Master”, in Proceedings of PCaPAC2014,
Karlsruhe, Germany, 2014, pp. 204–206, ISBN: 978-3-95450-146-5. [Online].
Available: http://accelconf.web.cern.ch/AccelConf/
PCaPAC2014/papers/fpo022.pdf (visited on 10/02/2016).

[109] W. M. Zabolotny, “Dual port memory based Heapsort implementation for
FPGA”, in Proc. SPIE, vol. 8008, 2011, 80080E–80080E–9. DOI:
10.1117/12.905281. [Online]. Available:
http://dx.doi.org/10.1117/12.905281.

[110] M. Peczarski, “New results in minimum-comparison sorting”, Algorithmica,
vol. 40, no. 2, pp. 133–145, 2004.

[111] Altera Corp., LVDS SERDES IP Core User Guide, May 2016. [Online].
Available:
https://www.altera.com/literature/ug/ug_altera_lvds.pdf
(visited on 09/15/2016).

[112] T. H. Cormen, Introduction to algorithms. Massachusetts Institute of
Technology, 2009, ISBN: 978-0-262-03384-8.

[113] Y. Han, “Deterministic sorting in O (n log log n) time and linear space”, in
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing,
ACM, 2002, pp. 602–608.

[114] GNU Project, GNU Compiler Collection Manual, 2007. [Online]. Available:
https://gcc.gnu.org/onlinedocs/gcc-4.2.0/gcc/Explicit-
Reg-Vars.html (visited on 05/29/2016).

[115] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles, “Dynamic storage
allocation: A survey and critical review”, in Memory Management, Springer,
1995, pp. 1–116.

[116] A. Ralston, E. D. Reilly, and D. Hemmendinger, Encyclopedia of computer
science. Petrocelli/Charter New York, 2000, ISBN: 0-470-86412-5.

http://dx.doi.org/10.1109/iNIS.2016.026
https://www.altera.com/products/design-software/fpga-design/quartus-prime/overview.html
https://www.altera.com/products/design-software/fpga-design/quartus-prime/overview.html
http://accelconf.web.cern.ch/AccelConf/PCaPAC2014/papers/fpo022.pdf
http://accelconf.web.cern.ch/AccelConf/PCaPAC2014/papers/fpo022.pdf
http://dx.doi.org/10.1117/12.905281
http://dx.doi.org/10.1117/12.905281
https://www.altera.com/literature/ug/ug_altera_lvds.pdf
https://gcc.gnu.org/onlinedocs/gcc-4.2.0/gcc/Explicit-Reg-Vars.html
https://gcc.gnu.org/onlinedocs/gcc-4.2.0/gcc/Explicit-Reg-Vars.html

236 REFERENCES

[117] W. Terpstra and M. Kreider, “Message Signalled Interrupts in Mixed-Master
Control”, in 15th Int. Conf. on Accelerator and Large Experimental Physics
Control Systems (ICALEPCS’15), Melbourne, Australia, 17-23 October 2015,
JACOW, Geneva, Switzerland, 2015, pp. 1083–1086. [Online]. Available:
http://accelconf.web.cern.ch/AccelConf/ICALEPCS2015/
papers/thha2o03.pdf (visited on 01/01/2017).

[118] A. M. Turing, “On computable numbers, with an application to the
entscheidungsproblem”, Proceedings of the London mathematical society, vol. 2,
no. 1, pp. 230–265, 1937.

[119] S. E. Anderson, Bit Twiddling Hacks, 2005. [Online]. Available:
https://graphics.stanford.edu/~seander/bithacks.html
(visited on 05/29/2016).

[120] W. Yue, H. Takagi, and Y. Takahashi, Advances in queueing theory and network
applications. Springer, 2009, ISBN: 978-0-387-09702-2.

[121] J. N. Daigle, Queueing theory with applications to packet telecommunication.
Springer Science & Business Media, 2005.

[122] R. L. Cruz, “A calculus for network delay. I. Network elements in isolation”,
IEEE Transactions on information theory, vol. 37, no. 1, pp. 114–131, 1991.
[Online]. Available: http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=61109
(visited on 09/25/2016).

[123] P. Thiran and J. Y. Le Boudec, Network Calculus. Springer, 2001, ISBN:
3-540-42184-X.

[124] Y. Jiang, “A basic stochastic network calculus”, ACM SIGCOMM Computer
Communication Review, vol. 36, no. 4, pp. 123–134, 2006. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1159929 (visited on
10/22/2016).

[125] J. B. Schmitt, F. A. Zdarsky, and L. Thiele, “A Comprehensive Worst-Case
Calculus for Wireless Sensor Networks with In-Network Processing”, IEEE,
Dec. 2007, pp. 193–202, ISBN: 978-0-7695-3062-8. DOI:
10.1109/RTSS.2007.17. [Online]. Available:
http://ieeexplore.ieee.org/document/4408304/ (visited on
10/09/2016).

[126] M. Fidler and J. B. Schmitt, “On the way to a distributed systems calculus:
An end-to-end network calculus with data scaling”, in ACM SIGMETRICS
Performance Evaluation Review, vol. 34, ACM, 2006, pp. 287–298. [Online].
Available: http://dl.acm.org/citation.cfm?id=1140310 (visited
on 10/09/2016).

http://accelconf.web.cern.ch/AccelConf/ICALEPCS2015/papers/thha2o03.pdf
http://accelconf.web.cern.ch/AccelConf/ICALEPCS2015/papers/thha2o03.pdf
https://graphics.stanford.edu/~seander/bithacks.html
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=61109
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=61109
http://dl.acm.org/citation.cfm?id=1159929
http://dx.doi.org/10.1109/RTSS.2007.17
http://ieeexplore.ieee.org/document/4408304/
http://dl.acm.org/citation.cfm?id=1140310

REFERENCES 237

[127] J. B. Schmitt, F. A. Zdarsky, and M. Fidler, “Delay Bounds under Arbitrary
Multiplexing: When Network Calculus Leaves You in the Lurch...”, in
INFOCOM 2008. The 27th Conference on Computer Communications. IEEE,
IEEE, 2008, pp. 1669–1677. [Online]. Available: http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4509823
(visited on 09/25/2016).

[128] S. Bondorf and J. B. Schmitt, “The DiscoDNC v2: a comprehensive tool for
deterministic network calculus”, in Proceedings of the 8th International
Conference on Performance Evaluation Methodologies and Tools, ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications
Engineering), 2014, pp. 44–49. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2747659 (visited on
10/16/2016).

[129] S. Bondorf and J. Schmitt, “Improving cross-traffic bounds in feed-forward
networks–there is a job for everyone”, in International GI/ITG Conference on
Measurement, Modelling, and Evaluation of Computing Systems and
Dependability and Fault Tolerance, Springer, 2016, pp. 9–24.

[130] L. Lenzini, E. Mingozzi, and G. Stea, “End-to-end delay bounds in
FIFO-multiplexing tandems”, in Proceedings of the 2nd international conference
on Performance evaluation methodologies and tools, ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications
Engineering), 2007, p. 61. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1345341 (visited on
10/16/2016).

[131] S. Bondorf, P. Nikolaus, and J. B. Schmitt, “Delay Bounds in Feed-Forward
Networks-A Fast and Accurate Network Calculus Solution”, arXiv preprint
arXiv:1603.02094, 2016. [Online]. Available:
http://arxiv.org/abs/1603.02094 (visited on 10/16/2016).

[132] A. Imamoto and B. Tang, “A Recursive Descent Algorithm for Finding the
Optimal Minimax Piecewise Linear Approximation of Convex Functions”,
in World Congress on Engineering and Computer Science 2008, WCECS ’08.
Advances in Electrical and Electronics Engineering - IAENG Special Edition of
the, Oct. 2008, pp. 287–293. DOI: 10.1109/WCECS.2008.42.

[133] J. Vandewalle, “On the calculation of the piecewise linear approximation to
a discrete function”, IEEE Transactions on computers, vol. 24, no. 8,
pp. 843–846, 1975.

[134] Mentor Graphics, Questa advanced simulator v10.2, 1991 – 2013. [Online].
Available: https://www.mentor.com/products/fv/questa/ (visited
on 05/29/2016).

[135] Potential Ventures, Coroutine Co-simulation Test Bench, Nov. 2016. [Online].
Available: http://potential.ventures/cocotb/.

[136] M. Kreider, Wishbone for cocotb, Nov. 2015. [Online]. Available: https:
//github.com/potentialventures/cocotb/tree/wishbone.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4509823
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4509823
http://dl.acm.org/citation.cfm?id=2747659
http://dl.acm.org/citation.cfm?id=1345341
http://arxiv.org/abs/1603.02094
http://dx.doi.org/10.1109/WCECS.2008.42
https://www.mentor.com/products/fv/questa/
http://potential.ventures/cocotb/
https://github.com/potentialventures/cocotb/tree/wishbone
https://github.com/potentialventures/cocotb/tree/wishbone

238 REFERENCES

[137] J. Hoffmann, “PEXARIA5 General Description”, Tech. Rep., Oct. 2013.
[Online]. Available: https://www.gsi.de/fileadmin/EE/Module/
EXPLODER/pexaria5_14.pdf (visited on 01/11/2016).

[138] ——, “EXPLODER3 preliminary specification”, Tech. Rep., Aug. 2013.
[Online]. Available: https://www.gsi.de/fileadmin/EE/Module/
EXPLODER/exploder3_v4.pdf (visited on 01/11/2016).

[139] S. M. Rumble, D. Ongaro, R. Stutsman, M. Rosenblum, and J. K. Ousterhout,
“It’s Time for Low Latency.”, in HotOS, vol. 13, 2011, pp. 11–11.

[140] J. Bai and C. Prados, “WR Switch under RFC 2889 Test”, Tech. Rep., Jan.
2016. [Online]. Available: https://www-acc.gsi.de/wiki/pub/
Timing/TimingSystemDocumentsReportsAndMeasurements/WR_
Switch_RFC_2889.pdf (visited on 01/11/2016).

[141] D. Beck, “’Torture’ Report about GMT with Debian on PC and SL6/CentOS
7 on SCU3”, Tech. Rep., Jun. 2016. [Online]. Available: https://www-
acc.gsi.de/wiki/Timing/TimingSystemDocumentsRep201607222
(visited on 03/11/2016).

[142] Open Hardware Repository (OHWR), 6th White Rabbit Workshop, 2002012.
[Online]. Available: http://www.ohwr.org/projects/white-
rabbit/wiki/Mar2012Meeting (visited on 05/29/2016).

[143] International Particle Accelerator Conference, “Status of the FAIR proton
LINAC”, English, OCLC: 958149341, Geneva: JACoW, 2015, ISBN:
978-3-95450-168-7. [Online]. Available:
http://accelconf.web.cern.ch/AccelConf/IPAC2015/ (visited
on 01/01/2017).

[144] FAIR, First ring for FAIR, Aug. 2016. [Online]. Available:
http://www.fair-center.eu/en/news-events/news-
view/article/first-ring-for-fair.html (visited on 11/15/2016).

[145] D. Beck, First beam with WR based timing system at GSI, WR development
mailing list, Dec. 2015. [Online]. Available:
http://lists.ohwr.org/sympa/arc/white-rabbit-dev/2015-
06/msg00018.html (visited on 02/11/2016).

[146] M. Lipiński, T. Włostowski, J. Serrano, P. Alvarez, J. D. G. Cobas, A. Rubini,
and P. Moreira, “Performance results of the first White Rabbit installation
for CNGS time transfer”, in 2012 IEEE International Symposium on Precision
Clock Synchronization for Measurement, Control and Communication
Proceedings, IEEE, 2012, pp. 1–6. [Online]. Available: http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6336610
(visited on 12/31/2016).

[147] J. Milnes, N. B. Ayed, F. Dhalla, G. Fishpool, J. Hill, I. Katramados,
R. Martin, G. Naylor, T. O’Gorman, R. Scannell, and others, “MAST
Upgrade–Construction Status”, Fusion Engineering and Design, vol. 96,
pp. 42–47, 2015. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S092037961500160X (visited on 12/30/2016).

https://www.gsi.de/fileadmin/EE/Module/EXPLODER/pexaria5_14.pdf
https://www.gsi.de/fileadmin/EE/Module/EXPLODER/pexaria5_14.pdf
https://www.gsi.de/fileadmin/EE/Module/EXPLODER/exploder3_v4.pdf
https://www.gsi.de/fileadmin/EE/Module/EXPLODER/exploder3_v4.pdf
https://www-acc.gsi.de/wiki/pub/Timing/TimingSystemDocumentsReportsAndMeasurements/WR_Switch_RFC_2889.pdf
https://www-acc.gsi.de/wiki/pub/Timing/TimingSystemDocumentsReportsAndMeasurements/WR_Switch_RFC_2889.pdf
https://www-acc.gsi.de/wiki/pub/Timing/TimingSystemDocumentsReportsAndMeasurements/WR_Switch_RFC_2889.pdf
https://www-acc.gsi.de/wiki/Timing/TimingSystemDocumentsRep201607222
https://www-acc.gsi.de/wiki/Timing/TimingSystemDocumentsRep201607222
http://www.ohwr.org/projects/white-rabbit/wiki/Mar2012Meeting
http://www.ohwr.org/projects/white-rabbit/wiki/Mar2012Meeting
http://accelconf.web.cern.ch/AccelConf/IPAC2015/
http://www.fair-center.eu/en/news-events/news-view/article/first-ring-for-fair.html
http://www.fair-center.eu/en/news-events/news-view/article/first-ring-for-fair.html
http://lists.ohwr.org/sympa/arc/white-rabbit-dev/2015-06/msg00018.html
http://lists.ohwr.org/sympa/arc/white-rabbit-dev/2015-06/msg00018.html
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6336610
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6336610
http://www.sciencedirect.com/science/article/pii/S092037961500160X
http://www.sciencedirect.com/science/article/pii/S092037961500160X

REFERENCES 239

[148] H. Li and G. Gong, “Prototype of White Rabbit network in LHAASO”, in
Proc. of the International Conference on Accelerator and Large Experimental
Physics Control Systems ICALEPCS, 2015. [Online]. Available:
http://icalepcs.synchrotron.org.au/papers/wepgf126.pdf
(visited on 12/30/2016).

[149] GNU Project, Octave Scientific Programming Language, 1992 – 2017. [Online].
Available: https://www.gnu.org/software/octave/ (visited on
05/29/2016).

http://icalepcs.synchrotron.org.au/papers/wepgf126.pdf
https://www.gnu.org/software/octave/

	Thesis Declaration
	Abstract
	Acknowledgements
	I Context and Background
	Introduction
	Motivation
	Research Methodology
	Research
	Development

	Contribution to Knowledge
	Generalisation and Impact
	Thesis Structure
	List of Publications

	Timekeeping
	Overview
	Terminology
	What it takes to measure time

	Timekeeping History
	Navigation - the Driving Force for Clocks
	From Springs to Crystals
	Clocks and the Quantum Tick

	Time Systems
	Oscillators and Clock Signals
	Electronic Oscillators
	Phase-Locked Loops
	Clock Recovery

	Digital Representations of Timestamps
	Problematic Nature of Leap Seconds
	Timekeeping in Computers

	Time Distribution
	Overview
	Disciplined Oscillators

	Network Timing Services
	White Rabbit Timing Protocol
	IEEE 1588 Precision Time Protocol
	Synchronous Ethernet
	Phase Detection Hardware
	Link Delay Model
	White Rabbit Performance
	Summary

	Particle Accelerators
	Overview
	Physics
	Charge and charged particles
	Forces
	Why use Magnets at all?

	Types of Particle Accelerators
	Linear accelerators (LINAC)
	Cyclotrons
	Synchrotron Machines
	Colliders
	Storage Rings
	Ion Sources

	Miscellaneous Components
	Targets
	Particle Filters
	Beam Diagnostic Equipment

	Control Systems for Particle Accelerators
	Timing
	Radiation and Shielding
	Summary

	II Problem Analysis
	FAIR Accelerator Case Study
	Overview
	Control Systems
	GSI's Control System History
	Other Control Systems
	FAIR CS Use-Cases
	Philosophy

	Beam Concept
	Parallel Operation
	Beam Production Chain vs Beam Process

	Timing Constraints
	Common Systems
	Bunch To Bucket Transfers
	External Requests
	Determinism and Transmission time

	Reliability
	Availability and Robustness
	Fault Tolerance

	Summary of FAIR CS Requirements

	Technology Survey
	Overview
	CPUs
	Hardware
	Programmable Hardware
	Introduction
	Advanced Capabilities
	The Limits of State Machines
	Best of both Worlds
	The missing Link
	Wishbone Bus Protocol

	III Approach and Implementation
	Etherbone Protocol
	Overview
	Purpose and Environment
	Requirements
	Further Applications
	Related Work
	Architecture
	General Consideration

	Etherbone Design Choices
	Underlying Transport Protocols
	EB Protocol

	Methods and Test Implementation
	Packet Length
	Checksums

	Etherbone Data Format
	Communication

	Data Master Hardware
	Overview
	System on Chip Architecture
	Processing Unit
	WB Bus and Crossbar Switches
	Memory Access
	Global Time

	Prototype Synthesis Analysis
	Necessary number of CPU Cores
	Test Setup
	Result

	Message Priority Queue
	Basic Considerations
	RAM-based Heap
	Sorting Networks & Sorting Trees

	Etherbone Master
	Challenges in Hardware Implementation
	Design Decisions
	Implementation
	Fitness for the Data Master

	Fast Input/Output Module
	Application
	High Speed IO
	Increasing Sampling Rates

	Data Master Firmware
	Overview
	Scheduler
	Sorting Algorithms
	Application in the DM
	Additional Requirements to the Scheduler
	Summary

	Payload Programs
	Memory Management
	Overview
	Schemes in DM context
	Summary

	Considerations on RT Flow Control
	Points of Decision
	Queues
	Order
	Pre-emption
	Flushing
	Repetitions and Redundancy
	Synchronisation
	Summary and Command Queue Design
	Detailed DM Command Specification

	Deterministic Programming
	External Sources of Non-Determinism
	Non-Determinism through Program Flow
	Proposed Approach
	Applied Techniques
	Summary

	Theoretical Model
	Overview
	Motivation
	Choice of Implementation

	Introduction to Network Calculus
	Overview
	Network Calculus Core Concepts
	Mathematical Background
	Elementary Building Blocks
	Delay Analysis Methodology

	Approach for modelling the Data Master
	Overview
	Machine Schedules as Flows
	Outside Interference
	Recurring Analyses

	Scheduler Models
	Scheduling under Network Calculus
	Soft-CPU Scheduler
	Processor Output
	Priority Queue Scheduler

	Etherbone Master – Framer
	EBM Functional Recap
	Input Parser
	Header Generation
	Output Flow and Service Curves

	Etherbone Master – TX
	Variable Length Function
	Header
	Finding Limits for Payload Length and Timeout

	Forward Error Correction
	FEC Encoding
	Timing Receiver

	Etherbone Slave and Event-Condition-Action Unit
	White Rabbit Network Model
	Interference at NIC
	WR Switches

	End-to-End Delay Analysis
	EDF Sink Tree
	Equivalent Circuit for WR Network
	Data Master to Timing Endpoint
	Equivalent Service of Packetised Greedy Shapers
	Aggregate Scheduling
	Summary

	IV Conclusion
	Evaluation
	Overview
	Test and Verification
	Hardware Unit Tests
	Firmware Unit Tests
	Full Test System
	Network Delay Simulations

	Etherbone Analysis
	Overhead Details
	Overhead Comparison
	Latency

	Network Calculus Simulation Models
	Observed Simulation Results
	FAIR CS Model
	FAIR CS Tunnel Influence
	GSI TTF Model
	GSI MTS Model

	Full Test System Results
	Evolution of Data Master Modules
	GSI Timing Test Facility
	Minimal Test System

	Conclusion
	Overview
	Experimental Results
	Etherbone
	DataMaster Platform
	Network Calculus Simulations

	Real World Applications
	Proton Injector
	CRYRING Accelerator
	Application in other Areas

	Conclusion
	Number of Endpoints
	Distance
	Timing Accuracy

	Outlook & Future Work
	Optimisations
	New Features
	Integration with FAIR

	Source Code
	Data Master Gateware & Firmware
	Checkout of Project Sources

	Employed Software
	Programming Languages
	3rd Party Tools
	Development & Verification

	Custom Inhouse Tools
	Etherbone
	Wishbone
	DataMaster

	Tables
	List of Publications
	Tables of Simulation Values

	References

