

 Wesley W. Terpstra

Mathias Kreider

 CSCO-TG

The FAIR Timing SystemThe FAIR Timing System

OutlineOutline

 How has the architecture changed

 What consequences for design / critical costs

 How CSCO-TG meets these constraints

 Using the system: addressing MID vs. GID

 Using the system: Atomic commands

 Discussion at end + whenever you like

Arch. Change 1: Central ControlArch. Change 1: Central Control

Before: one timing/control system per “machine”

Future: one timing/control system for entire facility

Arch. Change 1: Central ControlArch. Change 1: Central Control

Before: one timing/control system per “machine”

• Worked well when there were few machines (3)

• Inter-machine events were tricky; coordination needed

Future: one timing/control system for entire facility

• Coordination of nodes is easier

• The data master will be very complicated

Arch. Change 2: Time at all nodesArch. Change 2: Time at all nodes

Before: only the MIL master has the time

• Does not scale to large distances

• Every time-sensitive action must be announced to “dumb” nodes

Future: every node has the time

• The alarm “execute now” is moved from master to node

• Nodes (front-end controllers) execute on a schedule

• At some point, nodes are committed to execution / run autonomously

The Most Expensive ResourcesThe Most Expensive Resources

Complexity of the Data Master

• One data master controls entire facility → very complicated!

• Facility is much larger → must keep DM as simple as possible

Real-time bandwidth between DM and nodes

• It is essential that commands reach nodes on time

• Cannot afford to send “just any” traffic → only stuff that matters!

• Build for a large safety margin assuming worst-case traffic

Timing System Design GoalsTiming System Design Goals

Reduce: Complexity of the Data Master

• ECA accepts high-level commands → complexity from DM to node

• Matching rules (MIL+steroids) → use same command for many nodes

Reduce: Real-time bandwidth between DM and nodes

• Multiple actions at one node can result from one command

• Multiple nodes can respond to one command

• There are no “machine” boundaries between nodes

→ Leverage ECA to reduce # of commands (complexity+bandwidth)

Addressing: MID vs. Group ID (GID)Addressing: MID vs. Group ID (GID)

“Machines” don't exist anymore

• There is one control system → segregation is only a convenience

• Broadcast: every node already receives every command

• The decision to act on a command is governed by rules

• No need to dupliate a command that affects two “machines”

• Organize addressing by groups of nodes

• Example groups: SIS, Unilac, Unilac→SIS, SIS100→SFRSTarg

Addressing: MID vs. Group ID (GID)Addressing: MID vs. Group ID (GID)

Before: Send command to each machine separately

Future: Send command to node group

Less commands = less traffic + simpler to debug

Addressing: MID vs. Group ID (GID)Addressing: MID vs. Group ID (GID)

How to set this up?

• Nodes watch for commands and commands

• Nodes watch for commands and commands

• Nodes watch for commands and commands

→ ECA already supports this.

→ DM already supports this.

Addressing: MID vs. Group ID (GID)Addressing: MID vs. Group ID (GID)

Think in terms of node groups!

• “Machines” are node groups

• Nodes can be members of multiple groups

• Node groups can overlap

• Groups → less messages

• Groups → a simpler data master

Atomic commandsAtomic commands

Commands cause actions. Several.

• In the old system, only the master had time

• Thus: the master had to generate each action on time

• Now, all nodes have time

• Nodes react to commands that affect them

• Nodes add fine delay to compensate local configuration

• Nodes can take multiple actions (eg: toggle pulse on then off)

• Don't fight the design!

• Not a question of IF commands cause several actions

• Question: WHICH actions should be grouped into WHAT commands

Atomic commandsAtomic commands

Actions should be grouped by atomicity

• If two actions always happen together, they belong together

• Atoms are inseparable

• Inseperable actions = atomic command

• If two actions might NOT occur together → two actions

• Example: prepare transfer, execute transfer

• Prepare = ramp up all transfer magnets, charge kickers

• Execute = trigger both kickers with appropriate offset

• Happens together = belongs together

Atomic commandsAtomic commands

Offsets are your friend, not enemy

• Grouping actions = less commands = simpler DM = easier to debug

• But, what if two actions are separated in time?

• In old system: only DM has time → must be two commands

• In new system: CAN use offsets to combine the actions

• No one is forced to do this

• You MAY reduce the command count this way

• Respect atomicity! Don't combine actions unless an atom!

• No downside: commands=atomic → delayed actions safe

SummarySummary

New requirements → new design → rethink approach

• FAIR is bigger and more complex

• We are already commited to: central DM + distributed alarm model

• The only question is how we use the system we have

• Do we treat it like MILv2?

• Do we use it to its full potential?

• Timing group wants:

• Keep data master as simple as possible (critical and complex!)

• Keep real-time bandwidth low (finite resource, future uses unclear)

The FAIR Timing System ConceptThe FAIR Timing System Concept

Questions

?

? ?

?

?

??

?
?

?

? ??

?

??

?

?

?

?

??

?

The FAIR Timing System ConceptThe FAIR Timing System Concept

 Concerns:

 “It is simpler when all actions come from one place”

 “These 'long' actions can't be stopped”

 “No way to tell what's going with delays and rules”

 “Intelligent Endpoints are hell to debug”

The FAIR Timing System ConceptThe FAIR Timing System Concept

 Concerns:

 “It is simpler when all actions come from one place”

• First: They still do. Only the DM can causes actions.

• Fine delay would still be unknown to central master

• Complexity moved to DM

• Introduced more causes for errors

The FAIR Timing System ConceptThe FAIR Timing System Concept

 Concerns:

 “These 'long' actions can't be stopped”

• There is always a point of no return

• Just a question of time

• We give finer control

The FAIR Timing System ConceptThe FAIR Timing System Concept

 Concerns:

 “No way to tell what's going on with delays and rules”

• Unified distributed system via EtherBone and Wishbone

• All local rules and delays can be read by DM

• Some conflicts can be detected at setup time

The FAIR Timing System ConceptThe FAIR Timing System Concept

 Concerns:

 “Intelligent Endpoints are hell to debug”

• It never was easy. Impossible to see everything at runtime.

• Post mortem debug

• New system simpler:

• Log EVERYTHING → state, sent, received and done

• Gathering information easy → unified protocols

• Post mortem correlation easy → absolute timestamps

	
	Slide 2
	Glossary
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

