— EXTRACT FROM FUTURE ECA PAPER -

In the FAIR timing system, the data master issues a time-sensitive command
as a tuple of values, (x,y, z). Front-end controllers implement these commands
by executing actions to control the physical devices which direct the beam.
To determine if a command is relevant, front-end controllers match their local
configuration against the issued command tuples. Examples of tuple fields thus
far include: Machine, EventCode, Sequence, Beam Process, Production Chain.

This communication pattern, content-based publish-subscribe, has been ex-
tensively studied in database circles [1]. The only novel feature in the FAIR
timing system is that the command stream must be processed within hard real-
time constraints, on the order of nanoseconds. This necessitates a hardware
implementation, restricting both the format of the tuples and the complexity of
the matching rules we can implement.

Constant-time hardware circuits can only process a fixed amount of data.
Therefore, in the FAIR timing system, it is necessary to set an upper limit on the
tuple size. In the current implementation, this limit is set to 64-bits, although
this can be modified by reprogramming the FPGA. It further simplifies the
hardware design if there is also a limit imposed on the number of fields within
the 64-bit tuple. Given the current real-time budget, eight 125MHz clock cycles
are available, suggesting a cap of eight fields per tuple.

In a typical database query, one selects tuples using a boolean function. If
the function returns true, the tuple is included in the result set. In content-
based publish-subscribe systems, the same function serves to accept/reject or
filter the message. Unfortunately, complex functions cannot be executed in
constant (or real) time. Worse, the front-end controllers must support multiple
filter functions; for example, a single front-end controller might control two
accelerator devices.

A hardware query processing engine is implemented as a pipeline. Given our
budget, each stage of that pipeline must complete in eight cycles. Unfortunately,
there will likely be more than eight filters per front-end controller. Therefore,
it must be possible to reject more than one filter per cycle.

To solve the matching problem efficiently, we can again take inspiration from
the considerable work on databases. While databases queries do offer the ability
to evaluate an arbitrary function to select tuples, in practice they will use an
index for performance. An index is, in some sense, a lexically sorted array of the
tuples, suitable for binary search. We use the same approach in our hardware
query processing engine.

In a database one can construct multiple indexes for the same tuple. These
indexes typically differ in the ordering of the tuple fields. For example, one index
might sort tuples in the form (x,y, z) while another sorts them as (y, z,z). The
first index makes it possible to execute queries for xt = 5Ny = 3 or x = 2
efficiently as these prefixes of the key are listed together. The second index
makes it possible to execute queries for y = 5 or y = 3N z = 7. Both indexes
support queries for a concrete tuple, t =5Ny=6Nz=7.

While indexes are usually constructed over tuples of data, one can also con-
struct an index over queries. If there is an index which would support the query



for tuples, then that query can be placed into the index. Consider a query
watching for a tuple with y = 5Nz = 7. An index over data tuples ordered as
(y, z,x) would serve to process this query. If we add = = * to the query, then
we could insert (5,7, %) into an analogous query table. As long as the ordering
matches, the queries in the index are always prefixes. Due to this property,
given a data tuple, it is possible to hierarchically search the table for matching
queries. This is the core idea we use in the hardware implementation.

In hardware, we can make two copies of a circuit to compute two results in
parallel. Thus, multiple indexes can be searched for matching queries simulta-
neously. The savings in time simply costs us a more expensive chip to host the
additional logic. For the FAIR project, so far only two tuple orderings appear
necessary. Thus, by doubling the query processor’s size, we can support all
queries that are prefixes of these two orderings. Naturally, in our implementa-
tion, the number of indexes is left configurable so that if requirements change,
the front-end controller FPGAs can be reprogrammed to accommodate them.

— CUT HERE FOR CTT -

References

[1] Patrick Th Eugster, Pascal A Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The many faces of publish/subscribe. ACM Computing Surveys
(CSUR), 35(2):114-131, 2003.



