
Tests for the FAIR Datamaster
Martin Skorsky

Last change: 2024-10-02

Contents

1 Overview - What is tested 3

2 The Tests 6
2.1 dmPerformance . 6
2.2 test Cpu0Cpu1.py . 6
2.3 test RunningThreads.py . 11
2.4 test add.py . 11
2.5 test addDownloadCompare.py 11
2.6 test altDestinations.py . 11
2.7 test async.py . 13
2.8 test basic.py . 13
2.9 test blink.py . 14
2.10 test boosterStartthread.py . 15
2.11 test bpcStart.py . 24
2.12 test coupling.py . 24
2.13 test dmCmd.py . 26
2.14 test dmCmdAbort.py . 26
2.15 test dmCmdAsyncclear.py . 28
2.16 test dmCmdClearcpudiag.py 28
2.17 test dmCmdCursor.py . 28
2.18 test dmCmdDeadlinePreptimeStarttime.py 28
2.19 test dmCmdForce.py . 29
2.20 test dmCmdHeap.py . 29
2.21 test dmCmdHex.py . 29
2.22 test dmCmdNoop.py . 29
2.23 test dmCmdOrigin.py . 30
2.24 test dmSched.py . 30
2.25 test dmTestbench.py . 30
2.26 test dmThreads.py . 31
2.27 test environment.py . 31
2.28 test fid.py . 31

1

2.29 test flow.py . 31
2.30 test flowpattern.py . 32
2.31 test flush.py . 33
2.32 test loop.py . 34
2.33 test lzma.py . 35
2.34 test memory.py . 35
2.35 test originStartthread.py . 36
2.36 test originTwothreads.py . 36
2.37 test overwrite.py . 39
2.38 test overwriteQueue.py . 39
2.39 test parallelBranch.py . 45
2.40 test patternStartStop.py . 45
2.41 test pps.py . 45
2.42 test prioAndType.py . 48
2.43 test priorityQueue.py . 59
2.44 test referenceEdges.py . 59
2.45 test remove.py . 61
2.46 test runAllSingle.py . 64
2.47 test runCpu0Single.py . 64
2.48 test safe2remove.py . 70
2.49 test schedules.py . 71
2.50 test simultaneousThreads.py 71
2.51 singleEdgeTest . 73
2.52 test startStopAbort.py . 77
2.53 test switch.py . 78
2.54 test unilac.py . 78
2.55 test waitloopFlush.py . 79
2.56 test zzzFinish.py . 79

3 Common Components - The Testbench 80
3.1 dm testbench.py . 80
3.2 Structure of Description . 87

2

Chapter 1

Overview - What is tested

The tests for the datamaster are written with Python and the pytest frame-
work. This implies that tests can be started by name and also with a name
pattern to select a group of tests. The tests use the datamaster tools dm-cmd
and dm-sched.

The tests use the instance of the current build folder of the datamaster
tools and libcarpedm.

All tests are on branch dm-fallout-tests. The tests run with make or
make all in folder modules/ftm/tests. To compile libcarpedm use make

prepare. This runs make clean and make in folder modules/ftm/ftmx86.
Important: The tests need exclusive access to the datamaster and the

timing receiver. Otherwise the schedules and timing messages may be not
the ones to test.

Examples:
OPTIONS=’--runslow’ make

Run all tests against the local datamaster, even those marked with –
runslow. These test take longer than usual tests.

OPTIONS=’--runslow -k test threadsStartStop’ make

Run tests with test threadsStartStop in the file name, the class name or
the test method name. In this case it is a file name.

These two markers are allowed to skip some of the tests.

1. --runslow Tests marked with this marker are long running tests which
slow down the over all execution time. If you add this marker to the
OPTIONS, these tests will run. Do not use it during test development.

2. --development Tests marked with this marker are not ready for auto-
mated testing. These are under development. If you add this marker
to the OPTIONS, these tests will run.

Some test need both markers to run.

3

Table 1.1: Which test tests what (Part 1)
x means: this test uses the component, T means: this test tests this compo-
nent. For some tests the result is not checked. These are considered as OK
if no exception occurs.

Test n
u
m

b
er

of
te

st
s

T
o
ol

s

li
b

ca
rp

ed
m

fi
rm

w
ar

e

u
se

s
P

y
th

on

ch
ec

k
s

re
su

lt

dmPerformance x T x - -
test Cpu0Cpu1.py 4 T T T x x
test RunningThreads.py 1 - - - x x
test add.py 1 T T T x x
test addDownloadCompare.py 238 T T T x x
test altDestinations.py 20 T T T x x
test async.py 1 x T x x x
test basic.py 1 x T x x x
test blink.py 1 T T T x x
test boosterStartthread.py 8 x T T x x
test bpcStart.py 1 x T x x x
test coupling.py 1 x T x x x
test dmCmd.py 31 T x x x x
test dmCmdAbort.py 3 T T T x x
test dmCmdAsyncclear.py 1 T T T x x
test dmCmdClearcpudiag.py 1 T T T x x
test dmCmdCursor.py 1 T T T x x
test dmCmdDeadlinePreptimeStarttime.py 18 T T T x x
test dmCmdForce.py 1 T T T x x
test dmCmdHeap.py 3 T T T x x
test dmCmdHex.py 1 T T T x x
test dmCmdNoop.py 1 T T T x x
test dmCmdOrigin.py 1 T T T x x
test dmSched.py 8 T x x x x
test dmTestbench.py 19 T x x x x
test dmThreads.py 33 x x T x x
test environment.py 3 - - - x x
test fid.py 3 x x T x x
test flow.py 5 x T x x x
test flowpattern.py 4 x T x x x
test flush.py 24 x T T x x4

Table 1.2: Which test tests what (Part 2)
x means: this test uses the component, T means: this test tests this compo-
nent. For some tests the result is not checked. These are considered as OK
if no exception occurs.

Test n
u
m

b
er

of
te

st
s

T
o
ol

s

li
b

ca
rp

ed
m

fi
rm

w
ar

e

u
se

s
P

y
th

on

ch
ec

k
s

re
su

lt

test loop.py 1 x T x x x
test lzma.py 4 x T x x x
test memory.py 15 T T T x x
test originStartthread.py 4 x T x x x
test originTwothreads.py 1 x T x x x
test overwrite.py 3 x T x x x
test overwriteQueue.py 1 x T x x x
test parallelBranch.py 4 x T x x x
test patternStartStop.py 1 x T x x x
test pps.py 10 x T x x x
test pps10Hz.py 3 x T x x x
test prioAndType.py 2 x T x x x
test priorityQueue.py 2 x T x x x
test referenceEdges.py 4 x T x x x
test remove.py 6 x T x x x
test runAllSingle.py 4 x T x x x
test runCpu0Single.py 1 x T x x x
test safe2remove.py 19 x T T x x
test schedules.py 6 x x T x -
test simultaneousThreads.py 3 x x T x -
test singleEdgeTest.py 1 - T - - x
test startStopAbort.py 2 x T x x x
test switch.py 1 x T x x x
test unilac.py 3 x x T x x
test waitloopFlush.py 1 x x T x x
test zzzFinish.py 1 x T x x x

5

Chapter 2

The Tests

2.1 dmPerformance

dmPerformance tests the performance improvements in libcarpedm. The test
starts a schedule on a clean datamaster, checks if some part of the schedule
is removable, removes it and then adds another schedule. This is done for a
small schedule and a larger schedule. The test is ok if all commands work.
There is no check for this.

2.2 test Cpu0Cpu1.py

test Cpu0Cpu1.py tests three cases where an edge connects nodes on two
CPUs.

In the test testTwoCpusFlow, a flow node on CPU 0 connects with a
target edge and a flowdst edge to CPU 1. The test starts patterns, snoops
the messages and checks that more than 35 messages were sent after one
second. See Figure 2.1.

In the test testTwoCpusFlush, a target edge and a flushovr edge connect
CPU 0 and CPU 1. The test starts patterns, snoops the messages and checks
the messages after one second. See Figure 2.2.

In the test testTwoCpusSwitch, a switchdst edge and a target edge con-
nect from CPU 0 to CPU 1. The test starts patterns, snoops the messages
and checks the messages after one second. See Figure 2.3.

In the test testTwoCpusOrigin, a origindst edge connects from CPU 0
to CPU 1. The test tries to add the schedules, but this fails because such an
edge is not allowed (neigbourhood validation forbids this). See Figure 2.4.

Only for some node types and edge types it is allowed that source and
target node run on different CPUs.

6

Flow0
(CPU 0)

Block0
(CPU 0)

Evt1b
(CPU 1)

Block1
(CPU 1)

Evt0
(CPU 0)

Evt1a
(CPU 1)

Figure 2.1: A flow node on CPU 0 connects with a target edge to a block
node on CPU 1

7

Flush0
(CPU 0)

Block0
(CPU 0)

Evt1a
(CPU 1)

Block1
(CPU 1)

Evt0
(CPU 0)

Figure 2.2: A flush node on CPU 0 connects with a flushovr edge to a block
node on CPU 1

8

Switch0
(CPU 0)

Block0
(CPU 0)

Evt1b
(CPU 1)

Block1
(CPU 1)

Evt0
(CPU 0)

Evt1a
(CPU 1)

Figure 2.3: A switch node on CPU 0 connects with a target edge to a block
node on CPU 1

9

Block0
(CPU 0)

Evt0
(CPU 0)

Block1
(CPU 1)

Evt1a
(CPU 1)

Origin0
(CPU 0)

Figure 2.4: A origin node on CPU 0 connects with an origindst edge to an
event node on CPU 1

10

2.3 test RunningThreads.py

test RunningThreads.py is a test for development. The aim is to im-
prove prepareRunThreads. There were sporadic failures in the check that
no thread is running. The command dm-cmd <datamaster> running shows
running threads, which is unexpected. The test runs prepareRunThreads for
1000 times. The test adds some error handling and statistics in tearDown.
It is marked with @pytest.mark.development, since this test is not needed
in test runs.

2.4 test add.py

test add.py contains one test that adds a schedule, adds a second schedule.
Then download the resulting schedule and compare this to an expected dot
file. See Figure 2.5.

2.5 test addDownloadCompare.py

test addDownloadCompare.py test that a schedule is equivalent to the sched-
ule which is downloaded form the datamaster firmware. The test steps
are: clear the datamaster, add a schedule, start all pattern, download the
schedule, compare both schedules with scheduleCompare. scheduleCompare
should find no difference between the original and the downloaded schedule.
Each test case uses a different schedule.

This test requires scheduleCompare to be installed. This tool checks
that two dot-files represent the same schedule. The tool is build with make
in folder modules/ftm/analysis/scheduleCompare/main/. It is installed with
sudo make install in the same folder.

2.6 test altDestinations.py

test altDestinations tests for 9 edges and 10 edges of type altdst for
a block node. The schedule altdst-flow-9.dot has one block, nine flow
commands and nine messages. each flow command changes flow to another
message. The test adds this schedule and starts the pattern in this schedule.
The test checks that messages are produced.

The schedule altdst-flow-10.dot is similar to the one obove, but with
10 flow nodes and 10 messages. Adding this schedule is OK. The test checks
for the correct response.

11

Pattern_A_ALIGN_V1

Pattern_A_BLOCK_V1

Pattern_A_REPCOUNT_BLOCK_V1

Pattern_A_ENTRY

Pattern_A_ALIGN_V2

Pattern_A_EXIT

Pattern_A_BLOCK_V2

Pattern_A_REPCOUNT_BLOCK_V2

Figure 2.5: The resulting schedule which is added in two steps.

12

The schedule altdst-9.dot has one block and nine messages. The test
switches through all messages and checks with snoop that the correct mes-
sages are send.

The schedule altdst-10.dot has one block and 10 messages. This sched-
ule can be added to the datamaster. The test checks for the correct response.

The schedule test-altdst-missing-node.dot has one block with 9 altdst
edges and one defdst edge. The test checks that a switch command via CMD-
schedule works.

2.7 test async.py

This test was full test/dynamic/async.

1. Purpose of Test

For a schedule asynchronous clear a block, change the destination to a
timing message and check that all nodes are visited.

See Figure 2.6 for the test pattern.

2. Test Actions

Upload test schedule and start pattern LOOP . Check with dm-cmd

rawvisited. The nodes ’BLOCK B’, ’BLOCK LOOP’, ’CMD LOOP’
are visited. Lock pattern ’B’ (this locks ’BLOCK B’), check this with
showlocks. Clear pattern ’B’ which clears the queues of ’BLOCK B’,
check this with rawqueue. Change schedule with flow command. Des-
tination of ’BLOCK B’ is now ’MSG A’ for one message. Check this
with rawqueue. Unlock pattern ’B’, wait for 1.2 seconds and then check
with rawvisited that all nodes are visited and no blocks are locked
(with showlocks).

3. Success Criteria

Check that node ’MSG A’ is visited after changing the destination of
the flow.

2.8 test basic.py

This test was full test/static/basic.

1. Purpose of Test

This test uses dm-sched add and dm-sched remove. The pattern Fig-
ure 2.7 is loaded into datamaster and removed afterwards.

13

BLOCK_A

BLOCK_B

MSG_A

BLOCK_LOOP

CMD_LOOP

Figure 2.6: Pattern for the dynamic async test

2. Test Actions

On a cleared datamaster the test pattern is added with dm-sched

add. With dm-sched status it is checked that 24 nodes with the ex-
pected names are available. The test pattern is removed with dm-sched

remove. At the end dem-sched status is used to check that no pattern
is present on the datamaster.

3. Success Criteria

The test is successful if no schedule is loaded. Checked with dm-sched

status

2.9 test blink.py

1. Purpose of Test

Test flow nodes in connection with origin, preptime and two threads.

2. Test Actions

Start pattern ping for a single timing message which indicates the start
of the test. Set origin, preptime, starttime for threads 0, 1 of CPU 0.

14

BLOCK_A BLOCK_B

BLOCK_IN0 BLOCK_IN1

Figure 2.7: Pattern for the static basic test

Read these values. Start thread 0, 1 of CPU 0 with a single command.
Snoop timing messages for 10 seconds and check the frequency of the
messages.

3. Success Criteria

The test is successful when snoop of timing messages receives all four
types of messages, each marked by the parameter.

2.10 test boosterStartthread.py

test boosterStartthread.py tests schedules with nodes of type origin

and type startthread.

1. test threeThreads0 Use schedule booster startthread.dot

(see 2.9), which has three pattern (MAIN, A, B). The schedule runs on
CPU 1, thread 0. It starts threads 1, 2, and 3. Thread 1 and 2 trigger
a message with parameter 2, while thread 3 triggers a message with
paramter 3. The test result is checked with a snoop for 1 second. The
correct timeline of the messages is not checked.

15

B_FIREF

B_FIREF_ListDst

B_FIREF_QBl_Lo

Evt_FIREF0B_FIREF_Qb_Lo0
B_FIREF_Qb_Lo1

B_POLICE

B_POLICE_ListDst

B_POLICE_QBl_Il

B_POLICE_QBl_Lo

Evt_POLICE0

B_POLICE_Qb_Il0 B_POLICE_Qb_Il1

B_POLICE_Qb_Lo0

B_POLICE_Qb_Lo1

Block0

Cmd_CALL_FIREF
Cmd_CALL_POLICE

Evt0

Evt_FIREF1

Evt_POLICE1

Figure 2.8: Flip between two sequences of timing events

16

B_A
B_B

B_MAIN

Ori_T1_A

Evt_A

Evt_B

Evt_MAIN

Ori_T2_A

Ori_T3_B

StThrT1

StThrT2

StThrT3

Figure 2.9: Schedule for test of origin and startthread with three threads,
originated by three origin nodes

17

BOOST_REQ_000

BOOST_REQ_001 BOOST_REQ_002

BOOST_REQ_003

BOOST_REQ_004

BOOST_REQ_005

BOOST_REQ_008

BOOST_REQ_010_DMBlk_WaitLoop

BOOST_REQ_006

BOOST_REQ_007_DMBlk_InjectionThreadEnd

BOOST_REQ_009_DMBlk_InjectionThreadOrigin

BOOST_REQ_010

BOOST_REQ_010_DMBlk_BReq

BOOST_REQ_010_DMCmd_Wait1s

BOOST_REQ_013

BOOST_REQ_010_DMBlk_WaitLoop_QBl_Il

BOOST_REQ_010_DMBlk_WaitLoop_QBl_Hi

BOOST_REQ_010_DMBlk_WaitLoop_QBl_Lo

BOOST_REQ_010_DMBlk_WaitLoop_ListDst

BOOST_REQ_011

BOOST_REQ_012_DMBlk_InjectionThreadEnd

BOOST_REQ_014_DMBlk_InjectionThreadOrigin

BOOST_REQ_015

BOOST_REQ_018

BOOST_REQ_016

BOOST_REQ_017_DMBlk_InjectionThreadEnd

BOOST_REQ_019_DMBlk_InjectionThreadOrigin

BOOST_REQ_020

BOOST_REQ_023

BOOST_REQ_021

BOOST_REQ_022_DMBlk_InjectionThreadEnd

BOOST_REQ_024_DMBlk_InjectionThreadOrigin

BOOST_REQ_025
BOOST_REQ_026_DMBlk_InjectionEnd

BOOST_REQ_026

BOOST_REQ_027

BOOST_REQ_026_DMBlk_InjectionEnd_QBl_Il

BOOST_REQ_026_DMBlk_InjectionEnd_QBl_Hi

BOOST_REQ_026_DMBlk_InjectionEnd_QBl_Lo

BOOST_REQ_026_DMBlk_InjectionEnd_ListDst

BOOST_REQ_028

BOOST_REQ_029

BOOST_REQ_030

BOOST_REQ_031

BOOST_REQ_032

BOOST_REQ_BLOCK

BOOST_REQ_ALIGN

BOOST_REQ_REPCOUNT_FLOW

BOOST_REQ_REPCOUNT_BLOCK

BOOST_REQ_ENTRY

BOOST_REQ_EXIT

BOOST_REQ_EXIT_QBl_Lo

BOOST_REQ_EXIT_ListDst

BOOST_REQ_REPCOUNT_BLOCK_QBl_Lo

BOOST_REQ_REPCOUNT_BLOCK_ListDst

BOOST_REQ_010_DMBlk_WaitLoop_Qb_Il0

BOOST_REQ_010_DMBlk_WaitLoop_Qb_Il1

BOOST_REQ_010_DMBlk_WaitLoop_Qb_Hi0

BOOST_REQ_010_DMBlk_WaitLoop_Qb_Hi1

BOOST_REQ_010_DMBlk_WaitLoop_Qb_Lo0

BOOST_REQ_010_DMBlk_WaitLoop_Qb_Lo1

BOOST_REQ_026_DMBlk_InjectionEnd_Qb_Il0

BOOST_REQ_026_DMBlk_InjectionEnd_Qb_Il1

BOOST_REQ_026_DMBlk_InjectionEnd_Qb_Hi0

BOOST_REQ_026_DMBlk_InjectionEnd_Qb_Hi1

BOOST_REQ_026_DMBlk_InjectionEnd_Qb_Lo0

BOOST_REQ_026_DMBlk_InjectionEnd_Qb_Lo1

BOOST_REQ_EXIT_Qb_Lo0

BOOST_REQ_EXIT_Qb_Lo1

BOOST_REQ_REPCOUNT_BLOCK_Qb_Lo0

BOOST_REQ_REPCOUNT_BLOCK_Qb_Lo1

Figure 2.10: Schedule for test of origin with thread 1

2. test threeThreads1 Use schedule booster startthread-1.dot

(see 2.10) to test origin nodes. The test starts pattern BOOST REQ
and snoops timing messages for two seconds. The result is checked for
the event numbers 0x0100 (more than 7), 0x0200 (at least one), 0x0102
(exactly one), 0x0103 (exactly one), 0x0160 (at least one).

3. test threeThreads2 Use schedule booster startthread-2.dot

(see 2.11) to test origin nodes. The test starts pattern BOOST REQ
and snoops timing messages for three seconds. The result is checked
for the event numbers 0x0100 (more than 7), 0x0200 (at least one),
0x0102 (exactly one), 0x0103 (exactly one), 0x0160 (at least one).

4. test threeThreads3 Use schedule booster startthread-3.dot

18

BOOST_REQ_000

BOOST_REQ_001 BOOST_REQ_002

BOOST_REQ_003

BOOST_REQ_004

BOOST_REQ_005

BOOST_REQ_008

BOOST_REQ_010_DMBlk_WaitLoop

BOOST_REQ_006

BOOST_REQ_007_DMBlk_InjectionThreadEnd

BOOST_REQ_009_DMBlk_InjectionThreadOrigin

BOOST_REQ_010

BOOST_REQ_010_DMBlk_BReq

BOOST_REQ_010_DMCmd_Wait1s

BOOST_REQ_013

BOOST_REQ_010_DMBlk_WaitLoop_QBl_Il

BOOST_REQ_010_DMBlk_WaitLoop_QBl_Hi

BOOST_REQ_010_DMBlk_WaitLoop_QBl_Lo

BOOST_REQ_010_DMBlk_WaitLoop_ListDst

BOOST_REQ_011

BOOST_REQ_012_DMBlk_InjectionThreadEnd

BOOST_REQ_014_DMBlk_InjectionThreadOrigin

BOOST_REQ_015

BOOST_REQ_018

BOOST_REQ_016

BOOST_REQ_017_DMBlk_InjectionThreadEnd

BOOST_REQ_019_DMBlk_InjectionThreadOrigin

BOOST_REQ_020

BOOST_REQ_023

BOOST_REQ_021

BOOST_REQ_022_DMBlk_InjectionThreadEnd

BOOST_REQ_024_DMBlk_InjectionThreadOrigin

BOOST_REQ_025
BOOST_REQ_026_DMBlk_InjectionEnd

BOOST_REQ_026

BOOST_REQ_027

BOOST_REQ_026_DMBlk_InjectionEnd_QBl_Il

BOOST_REQ_026_DMBlk_InjectionEnd_QBl_Hi

BOOST_REQ_026_DMBlk_InjectionEnd_QBl_Lo

BOOST_REQ_026_DMBlk_InjectionEnd_ListDst

BOOST_REQ_028

BOOST_REQ_029

BOOST_REQ_030

BOOST_REQ_031

BOOST_REQ_032

BOOST_REQ_BLOCK

BOOST_REQ_ALIGN

BOOST_REQ_REPCOUNT_FLOW

BOOST_REQ_REPCOUNT_BLOCK

BOOST_REQ_ENTRY

BOOST_REQ_EXIT

BOOST_REQ_EXIT_QBl_Lo

BOOST_REQ_EXIT_ListDst

BOOST_REQ_REPCOUNT_BLOCK_QBl_Lo

BOOST_REQ_REPCOUNT_BLOCK_ListDst

BOOST_REQ_010_DMBlk_WaitLoop_Qb_Il0

BOOST_REQ_010_DMBlk_WaitLoop_Qb_Il1

BOOST_REQ_010_DMBlk_WaitLoop_Qb_Hi0

BOOST_REQ_010_DMBlk_WaitLoop_Qb_Hi1

BOOST_REQ_010_DMBlk_WaitLoop_Qb_Lo0

BOOST_REQ_010_DMBlk_WaitLoop_Qb_Lo1

BOOST_REQ_026_DMBlk_InjectionEnd_Qb_Il0

BOOST_REQ_026_DMBlk_InjectionEnd_Qb_Il1

BOOST_REQ_026_DMBlk_InjectionEnd_Qb_Hi0

BOOST_REQ_026_DMBlk_InjectionEnd_Qb_Hi1

BOOST_REQ_026_DMBlk_InjectionEnd_Qb_Lo0

BOOST_REQ_026_DMBlk_InjectionEnd_Qb_Lo1

BOOST_REQ_EXIT_Qb_Lo0

BOOST_REQ_EXIT_Qb_Lo1

BOOST_REQ_REPCOUNT_BLOCK_Qb_Lo0

BOOST_REQ_REPCOUNT_BLOCK_Qb_Lo1

Figure 2.11: Schedule for test of origin with thread 1

19

(see 2.12), to test origin and startthread nodes. The test starts pat-
tern MAIN and snoops timing messages for three seconds. The re-
sult is checked for the event numbers 0x0001 (at least one), 0x0002
(at least one), and 0x0003 (at least one). Event number 0x0001 indi-
cates thread 1, event number 0x0002 indicates thread 2, Event number
0x0003 indicates thread 3. With saft-ctl snoop there are 4 timing mes-
sages each second after starting pattern MAIN. First a message with
evtno=0x0003, then two messages with evtno=0x0002 1µs later, one
of these is delayed. 20µs later we get a message with evtno=0x0001.
tperiod=1s in block B MAIN defines the tact of one second. tperiod of
the blocks B A and B B are not relevant. The delay of evtno=0x0002
with 1µs is defined by toffs=1000. The delay of evtno=0x0001 is de-
fined by toffs=20000. What is the effect of toffs and startoffs defined
in the three startthread nodes?

5. test booster all threads Use schedule booster-all-threads.dot

(see 2.13), which has one pattern MAIN. The pattern runs on CPU
0, thread 0 and starts threads 1 to 7 on CPU 0. MAIN has a timing
message and a block in a loop. One timing message every 0.1 sec.

6. test booster thread 0 loop Use schedule
booster-thread-0-loop.dot (see 2.14), which has one pattern MAIN
and starts thread 0 in a loop. This is a theoretical setup to test that
starting a running thread again does not crash.

7. test booster thread 0 The schedule consists of three nodes: a start-
thread for thread 0 (CPU 0), a timing message with EVTNO 1, and a
block with length 0.1 seconds. The thread 0 starts every 0.001 seconds
again, thus producing timing messages with 1kHz. The test asserts
that there are more than 2990 tmsg in 3 seconds with EVTNO 0x0001.
Use schedule booster-thread-0.dot (see 2.15), which has one pattern
MAIN.

8. test booster 8 loops The schedule consists mainly in a loop with
origin nodes and startthread nodes for threads 1 to 7. This loop runs
in thread 0 with a block of length 0.1 seconds and a timing message
with EVTNO 0, which helps to control that the test is working. Each
of the origin nodes is the origin of a sequence of a block, a timing
message, and a block (no loop). The startthread nodes start threads 1
to 7, repectively. Since the EVTNO of the timing messages correspond
to the thread numbers, the test can check that the thread is started.
Since there is no loop for thread 1 to 7 each of these threads runs to

20

B_A

Evt_A B_A_QBl_LoB_A_ListDst

B_B

Evt_B

B_B_QBl_LoB_B_ListDst

B_MAIN

Ori_T1_A

B_MAIN_QBl_Lo B_MAIN_ListDst

Evt_MAIN

Ori_T2_A

Ori_T3_B

StThrT1

StThrT2

StThrT3

B_A_Qb_Lo0B_A_Qb_Lo1

B_B_Qb_Lo0B_B_Qb_Lo1

B_MAIN_Qb_Lo0 B_MAIN_Qb_Lo1

Figure 2.12: Schedule for test of origin and startthread

21

B_MAIN

StThrT1

B_MAIN_QBl_Lo

B_MAIN_ListDst

Evt_MAIN

StThrT2

StThrT3

StThrT4

StThrT5

StThrT6

StThrT7

B_MAIN_Qb_Lo0

B_MAIN_Qb_Lo1

Figure 2.13: Schedule for test of origin and startthread with all 8 threads of
CPU 0

22

B_MAIN

StThrT0

B_MAIN_QBl_Lo

B_MAIN_ListDst

Evt_MAIN

B_MAIN_Qb_Lo0
B_MAIN_Qb_Lo1

Figure 2.14: Schedule for startthread in a loop

23

B_MAIN

B_MAIN_QBl_Lo B_MAIN_ListDst

Evt_MAIN

StThrT0

B_MAIN_Qb_Lo0 B_MAIN_Qb_Lo1

Figure 2.15: Schedule for starting thread 0 once every 0.001 seconds

idle. The threads are started once every 0.1 second from the main loop
in thread 0. Thus we have a frequency of 10Hz for the messages of each
thread. This is checked with a snoop for 2 seconds. Use schedule
booster-8-loops.dot (see 2.16).

2.11 test bpcStart.py

test bpcStart.py tests the implementation of the beam process chain start
flag in libcarpedm. The test schedule sends two timing messages with
bpcstart=True and bpcstart=1. With saft-ctl snoop it is checked that
the timing messages contain the correct setting. In addition with dm-sched

the dumped schedule is checked for the bpcstart flag.

2.12 test coupling.py

This test was full test/dynamic/coupling.

1. Purpose of Test

24

B_MAIN

Evt_MAIN

Block1

Evt1

Block1a

Block2

Evt2

Block2a

Block3

Evt3

Block3a

Block4

Evt4

Block4a

Block5

Evt5

Block5a

Block6

Evt6

Block6a

Block7 Evt7
Block7a

Origin_T1
Startthread_T1

Origin_T2

Startthread_T2

Origin_T3

Startthread_T3

Origin_T4

Startthread_T4

Origin_T5

Startthread_T5

Origin_T6

Startthread_T6

Origin_T7

Startthread_T7

Figure 2.16: Schedule for starting threads 0 to 7 in a main loop

25

This test enlarges an existing pattern with a second pattern with edges
into the first pattern. See Figure 2.17 for the test patterns.

2. Test Actions

First, a pattern with three nodes is added. In a second step a pattern
with additional three nodes is added. This pattern contains edges into
the first pattern.

3. Success Criteria

After adding the two patterns the status is checked with dm-sched

status. The resulting download.dot is compared to an expected dot-
file.

2.13 test dmCmd.py

test dmCmd.py contains Python unit tests for the tool dm-cmd. Each unit
test calls dm-cmd with commands and options and checks the result with the
output on stdout and stderr. There are also negative tests with an invalid
command line. These tests are successful when the response is the correct
error message and not a core dump.

There are five tests for the stop command. The test cases are

1. Test with existing block with low prio queue: result ok.

2. Test with existing block without low prio queue: result fail.

3. Test with existing timing event: result fail.

4. Test with non-existing block: result fail.

5. Test with no target name: result fail.

There are tests for dm-cmd reset and for dm-cmd reset all. These two
tests check for return code 0, but not the status of the datamaster.

2.14 test dmCmdAbort.py

test dmCmdAbort.py tests dm-cmd <datamaster> abort for different CPUs
and threads. Mainly tests the options -c and -t.

1. testAbortSingleThreadDecimal tests this for each CPU and each thread,
given as decimal numbers.

26

A_BLOCK

A_FL A_M

A_BLOCK

A_FL

A_M

B_BLOCK

B_SWB_M

Figure 2.17: Pattern for the static coupling test before and after coupling27

2. testAbortSingleThreadHex tests this for each CPU and each thread,
given as hexadecimal numbers.

3. testAbortRunningThreads runs schedules on all threads and aborts for
CPU 0 and 1 the threads 1, 3, 5, 7.

2.15 test dmCmdAsyncclear.py

test dmCmdAsyncclear.py tests dm-cmd <datamaster> asyncclear for dif-
ferent CPUs and threads. Send the command noop to Block0b. Since the
schedules send a message every second, this command is in the queue for a
second. The asyncclear clears this command in the queue. This is checked
with dm-cmd <datamaster> queue Block0b. Before asyncclear the com-
mand is in the queue, afterwards the queue is empty.

2.16 test dmCmdClearcpudiag.py

test dmCmdClearcpudiag.py tests the command dm-cmd <datamaster>
clearcpudiag for different CPUs and threads. Run clearCPUdiag for CPU
0 and 1 and for the threads 1, 3, 5, 7. Check the result with dm-cmd

<datamaster> diag.

2.17 test dmCmdCursor.py

test dmCmdCursor.py tests dm-cmd <datamaster> cursor for two CPUs
and four threads. Run dm-cmd <datamaster> cursor for CPU 0 and 1 and
for the threads 1, 3, 5, 7. Check for the correct number of output lines.

2.18 test dmCmdDeadlinePreptimeStarttime.py

test dmCmdDeadlinePreptimeStarttime.py tests the five commands
dm-cmd <datamaster> origin,
dm-cmd <datamaster> cursor,
dm-cmd <datamaster> deadline,
dm-cmd <datamaster> preptime, and
dm-cmd <datamaster> startline

for different CPUs and threads. Tests the commands origin, cursor,

starttime, preptime, and deadline for different combinations of threads.
With preptime, all combinations for the threadbits between 0 and 255 ist

28

tested. This is every subset of a set of 8 threads. In addition, invalid thread
masks and thread numbers out of range are tested.

2.19 test dmCmdForce.py

test dmCmdForce.py tests the command dm-cmd <datamaster> force for
different CPUs and threads. Run force for CPU 0 and 1 and for the threads
1, 3, 5, 7. Check for the correct number of output lines.

2.20 test dmCmdHeap.py

test dmCmdHeap.py tests dm-cmd <datamaster> heap for different CPUs
and threads.

1. testHeapSingleThreadDecimal tests this for each CPU and each thread,
given as decimal numbers.

2. testHeapSingleThreadHex tests this for each CPU and each thread,
given as hexadecimal numbers.

3. testInspectHeap run heap for CPU 0 and 1 and for the threads 1, 3,
5, 7. Check for the correct number of output lines. Run heap for each
thread on each CPU.

2.21 test dmCmdHex.py

test dmCmdHex.py tests dm-cmd <datamaster> hex for the nodes Block0a
and Block0a ListDst 0. This is done on a pps pattern on CPU0. The output
is different for 8 and 32 threads. The output is checked.

2.22 test dmCmdNoop.py

test dmCmdNoop.py tests dm-cmd <datamaster> noop for different CPUs
and threads. Check with dm-cmd <datamaster> queue Block0b that the
queue of Block0b is empty. Send the command noop to Block0b. Check with
dm-cmd <datamaster> queue Block0b that the command noop is in the
queue of Block0b.

29

2.23 test dmCmdOrigin.py

test dmCmdOrigin.py tests dm-cmd <datamaster> origin for two CPUs
and four threads. Run origin for CPU 0 and 1 and for the threads 1, 3, 5,
7. Check for the correct number of output lines.

2.24 test dmSched.py

test dmSched.py contains 8 unit tests for the tool dm-sched. Each unit test
calls dm-sched with commands and options and checks the result with the
output on stdout and stderr.

1. dm-sched <datamaster> -h: check for correct usage message.

2. dm-sched <datamaster>: check for default operation (same as sta-
tus).

3. dm-sched <datamaster> status: check for printig the datamaster
status.

4. dm-sched <datamaster> dump: check that the current schedule is
dumped to file download.dot (the default file name).

5. dm-sched <datamaster> dump -o dump.dot: check that the current
schedule is dumped to file dump.dot.

6. dm-sched <datamaster> clear: check the clear command.

7. dm-sched <datamaster> rawvisited: check the rawvisited command.

8. dm-sched <datamaster> add pps.dot: check for adding a schedule.

2.25 test dmTestbench.py

1. Purpose of Test

Tests the method analyseFrequencyFromCsv which is in the module
dm testbench.py.

2. Test Actions

Run 8 tests for the different check syntax of this method with the file
other/snoop test analyseFrequencyFromCsv.csv.

3. Success Criteria

Use the assertions in method analyseFrequencyFromCsv.

30

2.26 test dmThreads.py

test dmThreads.py tests the firmware with up to 8 threads and up to 4
CPUs. For each thread a pattern with one block and one timing message per
second is loaded and started. To check that the thread is running, dm-cmd
is used two times with a delay of one second. The number of messages is
extracted from stdout and this number must increase for test success.

There are 8 tests with 1 to 8 threads on CPU 0. In addition, one test runs
the schedules one 4 CPUs, each with 8 threads. This produces 32 messages
per second.

2.27 test environment.py

test environment.py checks the test environment. The test is ok if and only
if dm-cmd and dm-sched are from folder ../bin and libcarpedm is loaded from
../lib. This is checked with ldd.

2.28 test fid.py

test fid.py tests timing messages with different values of fid.

1. test fid7 tests the fix for the format id 7 bug. This bug was: under
some conditions an illegal format id 7 was in the message. The test
checks that ony format id 1 is in the snooped messages.

2. test fid0 tests with fid 0, which results in 19 fields in the timing
messages.

3. test fid1 tests the standard format of the timing messages.

2.29 test flow.py

This test is based on full test/dynamic/branch/single, using flow instead
of flowcommand.

1. Purpose of Test

Test that the flow command switches from one block to another.

See Figure 2.18 for the test pattern.

31

BLOCK_A BLOCK_B

BLOCK_IN0

Figure 2.18: Pattern for the dynamic branch single test

2. Test Actions

Add a schedule, start the pattern ’IN C0’. After checking that nodes
’BLOCK IN0’ and ’BLOCK A’ are visited, change the flow with the
flow command at pattern ’IN C0’ from ’A’ to ’B’. Check that the
flow command is in the low priority queue and then start the pat-
tern ’IN C0’. Check that the flow command is processed in the low
priority queue and node ’BLOCK B’ is visited.

Test the four combinations of relative VTIME, absolute VTIME and
immediate vs. delayed (one second) execution.

3. Success Criteria

Changing flow from ’BLOCK A’ to ’BLOCK B’ works.

2.30 test flowpattern.py

This test is based on full test/dynamic/branch/single.

1. Purpose of Test

32

Test that the flow command switches from one block to another.

See Figure 2.18 for the test pattern.

2. Test Actions

Add a schedule, start the pattern ’IN C0’. After checking that nodes
’BLOCK IN0’ and ’BLOCK A’ are visited, change the flow with the
flowpattern command at pattern ’IN C0’ from ’A’ to ’B’. Check that
the flowpattern command is in the low priority queue and then start
the pattern ’IN C0’. Check that the flowpattern command is processed
in the low priority queue and node ’BLOCK B’ is visited.

Test the four combinations of relative VTIME, absolute VTIME and
immediate vs. delayed (one second) execution.

3. Success Criteria

Changing flow from ’BLOCK A’ to ’BLOCK B’ works.

2.31 test flush.py

Tests various variants of the flush command. The schedules use timing mes-
sages, flow and flush commands, and blocks. The flow commands are used
to fill the command queues of the block. They switch to different timing
messages, which differ in the parameter value.

Naming of the tests: test flow flushX prioY, where X are the queues
to flush. Allowed values: None, 0, 1, 2, 01, 02, 12, 123. Y is the priority
of the flush. Allowed values: 0, 1, 2. Naming of patterns: P-queueX-prioY,
where X and Y as described above.

Schedules used:
schedules/flush-queue01-prio0.dot
schedules/flush-queue01-prio1.dot
schedules/flush-queue01-prio2.dot
schedules/flush-queue23-prio0.dot
schedules/flush-queue23-prio1.dot
schedules/flush-queue23-prio2.dot

Structure of each test: add the schedule, start the pattern twice. The sec-
ond startpattern executes the commands which are written to the queues on
first startpattern. Check for flushed queues and the executed flush command
after a delay of 0.1 seconds. Four tests use the same schedule to minimize
the numer of schedules. Each schedule uses 4 CPUs.

33

BLOCK_A BLOCK_LOOP BLOCK_EXIT

MSG_A

INIT_A0

INIT_B0 INIT_B1

Figure 2.19: Pattern for the dynamic loop test

2.32 test loop.py

This test was full test/dynamic/loop.

1. Purpose of Test

Test loop with flow initializer.

See Figure 2.19 for the test pattern.

2. Test Actions

Add a schedule and start pattern ’IN A’. Check the visited nodes.
Nodes ’INIT A0’, ’BLOCK LOOP’, and ’BLOCK EXIT’ should be vis-
ited. Start pattern ’IN B’ and check the visited nodes. All nodes should
be visited.

34

3. Success Criteria

In the end all blocks are visited.

2.33 test lzma.py

There is a bug in the lzma decompression methods. The memory is not
correctly allocated. This occurs with large schedules and long pattern names.
The large schedule contains a loop of timing messages connected to one block.

OK test (test large patternname ok): use a schedule with 862 mes-
sages and a pattern name of 30 chars. This works without an exception,
including start of pattern.

Fail test: use a schedule with 1000 messages and a pattern name of 30
chars. This does not work. Ends with SEGV (return code -11).

2.34 test memory.py

There are 15 tests to tet the correct memory consumption of the schedules.
Oversized schedules schuld be rejected to prevent the datamaster being cor-
rupted.

Four tests add two large schedule into the datamaster. This works fine.
Then a third schedule is loaded, in each test for a different CPU. This should
fail with return code 250.

Four additional tests check the memory limit more precisely. These tests
use generated schedules just with a given nuber of blocks. Each block has its
own pattern. A test with the theoretical limit of 1874 blocks fails. A similar
test with 1869 blocks is Ok, while a test with one further block detects a
failure. Also, a test with 1875 blocks detects a failure. These four tests use
CPU 0.

Two tests check the memory limit for all 4 CPUs. The OK-test loads
1869 blocks into CPU 0, 1, 2 and 1675 blocks into CPU 3. The Fail-test uses
one additional block on CPU 3.

A group of five tests (test memory full msg *) test the memory with
schedules with timing messages in a loop. Due to validation checks there are
1000 messages in one loop allowed. The generator for the schedules splits
the timing messages into two loops when there are more than 1000 nodes.
test memory full msg small uses 10 timing messages to test the generator.
test memory full msg half uses 900 timing messages for the test.
test memory full msg ok uses 1867 timing messages, which is the maximal
number of nodes allowed.

35

test memory full msg infinite loop ok uses 1000 timing messages. This
is added and started.
test memory full msg infinite loop fail uses 1001 timing messages.
This schedule is rejected and not added.

2.35 test originStartthread.py

1. test threadsStartStop

Thread 0 assigns Tmsg{1,2,3} and Block{1,2,3} to thread 1,2,3 and
starts these threads. The test then starts pattern D (Tmsg4 and
Block4) to show that this does not stop the other threads. The test
stops pattern A which stops thread 1. The test stops pattern C which
stops thread 3. The test stops node Block2 which stops thread 2. See
Figure 2.20 for the schedule. For the Tmsg and the Blocks the diagram
shows the threads. There is no command to stop a thread.

2. test nodeInTwoThreads

This test demonstrates that a node can exist in two threads. Tmsg1
ist in thread 1, Tmsg2 is in thread 2. Successor for both is Tmsg3.
Thus we have a timing message from Tmsg3 for each timing message
from Tmsg1 and Tmsg2. The loop in thread 0 (nodes Tmsg0, OriginN,
StartthreadN, Block0) starts thread 1 and 2 every 10ms. Thread 1 and
2 end with Block3. See Figure 2.21 for the schedule.

3. test startStopAllThreads

Run a pps pattern on all threads and all CPUs. Halt all threads and
check this state. Then start four threads 0,1,2,3 on all CPUs and check.
For more than 8 threads: Then start four threads 8,9,10,11 on all CPUs
and check. Then start four threads 16,17,18,19 on all CPUs and check.
Then start four threads 24,25,26,27 on all CPUs and check.

4. test startStopBlocks

Run a pps pattern on all threads of CPU 0. Stop block Block0b four
times and check the result. This block is on thread 1, and for more
than 8 threads also on thread 9, 17, 25. Thus we check that one of
these threads is stopped for more than 8 threads.

2.36 test originTwothreads.py

1. Purpose of Test

36

Block0
(Thread 0)

Block1
(Thread 1)

Tmsg1
(Thread 1)

Block2
(Thread 2)

Tmsg2
(Thread 2)

Block3
(Thread 3)

Tmsg3
(Thread 3)

Block4
(Thread 0)

Origin1

Startthread1
(starts Thread 1)

Origin2

Startthread2
(starts Thread 2)

Origin3

Startthread3
(starts Thread 3)

Tmsg0
(Thread 0)

Tmsg4
(Thread 0)

Figure 2.20: Schedule which assigns origins and then starts threads with
these origins. This is used in test originStartthread.py

37

Block0

Tmsg0

Block3

Origin1

Startthread1

Tmsg1 Origin2

Startthread2Tmsg2

Tmsg3

Figure 2.21: Schedule with a node in two threads. This is used in
test originStartthread.py

38

This test shows that an origin node and a startthread node work.

2. Test Actions

Origin and Start are in pattern B. Pattern B is started and produces
with Tmsg1 events with parameter 1. Tmsg2 produces events with
parameter 2. The node Start starts thread 1 and is the origin for this
thread. Thus, thread 1 is started every 50 ms by itself. There is a
snoop action for 1 s.

3. Success Criteria

The result of the snoop should get at least 15 events with parameter 1
and one message with parameter 2.

2.37 test overwrite.py

1. testOverwrite1 Load and start pattern A, a loop of a message and a
block. Stop the pattern and overwrite the block with a blockalign.
Analyse the timing messages with the parameter field.

2. testOverwrite2 Load a schedule with a switch. Executing the switch
interchanges the defdst to EvtA with the altdst to EvtB. Then the
schedule loops over EvtB. Overwrite the schedule with the original
schedule changes the edges back to defdst to EvtA and altdst to EvtB.
Then the switch is executed again. Analyse the timing messages with
the parameter field.

3. testOverwrite3 Load a schedule with a switch. Executing the switch
interchanges the defdst to EvtA with the altdst to EvtB. Then the
schedule loops over EvtB. Overwrite the schedule with a smiliar sched-
ule which replaces the switch with a flow and the switchdst edge with
a flowdst edge. Analyse the timing messages with the parameter field.

2.38 test overwriteQueue.py

The test test overwriteSchedules overwrites a block with a low priority
queue with a block that has a low and a high priority queue. The low priority
queue is always needed to stop the pattern PPS Q. The test is successful
when the downloaded schedules are isomorphic to the expected schedules
with the meta nodes. The messages are checked for the appropriate number
of messages.

39

Block1

Tmsg1 Tmsg2

Block2

Origin

Start

Figure 2.22: Schedule with two threads used in test originTwothreads.py

40

BlockA

EvtA

BlockA

EvtA

BlockA

EvtA

Figure 2.23: Schedules for testOverwrite1 (test overwrite.py). The first
schedule consists of a block and an event. The parameter of the messages is
1, which is checked in the snooped messages. This pattern runs for a second.
It is overwritten with the second schedule containing a blockalign and an
event. This event sends parameter 2, which is also checked in the snooped
messages. The third schedule is the result.

41

BlockA

EvtA EvtB

SwitchS

BlockA

EvtA EvtB

SwitchS

BlockA

EvtA EvtB

SwitchS

Figure 2.24: Schedules for testOverwrite2 (test overwrite.py). The first
schedule shows the defdst to EvtA and the altdst to EvtB. After execut-
ing the switch, the second schedule shows the defdst to EvtB and the altdst
to EvtA. Overwritting with the original scheulde results in the third sched-
ule.

42

BlockA

EvtA EvtB

SwitchS

BlockA

EvtA EvtB

SwitchS

BlockA

EvtA EvtB

SwitchS

BlockA

EvtA EvtB

FlowF

BlockA

EvtA EvtB

FlowF

Figure 2.25: Schedules for testOverwrite3 (test overwrite.py). The first
schedule contains a switch. The second schedule is the check before exe-
cuting the switch. The third schedule is the check after executing the switch.
The fourth schedule overwrites the first with a flow node. The fifth schedule
is the result.

43

B_PPS

EVT_PPS1

EVT_PPS2

B_PPS

EVT_PPS1

EVT_PPS2

B_PPS

EVT_PPS1 B_PPS_QBl_Lo

EVT_PPS2 B_PPS_Qb_Lo0 B_PPS_Qb_Lo1

B_PPS_ListDst_0

B_PPS

EVT_PPS1

EVT_PPS2

B_PPS

EVT_PPS1 B_PPS_QBl_Lo

EVT_PPS2 B_PPS_Qb_Lo0 B_PPS_Qb_Lo1

B_PPS_ListDst_0

Figure 2.26: Schedules for test overwriteSchedules (test overwriteQueue.py).
The first schedule contains a block with no queue. The second overwrites
this with a low priority queue. The result is the third schedule. The fourth
schedule overwrites this with a block with two queues. The result is the fifth
schedule.

44

A1

BlockA

A2 A3

B1

BlockB

B2 B3

C1

BlockC

C2 C3

D1

BlockD

D2 D3

Figure 2.27: Schedule for test parallelBranch.py.

2.39 test parallelBranch.py

Use schedule branch1.dot to test branching with flow commands with abso-
lute time offset. The checks use snoop for specific event numbers. The four
tests are for CPU 0, CPU 0 and 1, CPU 0, 1, and 2, all 4 CPUs. Each of
these pattern A, B, C, D runs on a different CPU.

2.40 test patternStartStop.py

The test test startStopPattern runs a pps pattern on all threads of CPU
0. Stop pattern Block0b which should fail, since not a pattern name. Stop
pattern PPS0b which is OK. This pattern runs on threads 1, 9, 17, 25 (the
last three for 32 threads). Check which thread is stopped. Start pattern
Block0b which should fail, since not a pattern name. Start pattern PPS0b
on the thread, which was stopped before. The start is OK. Check that all
threads (8 or 32) are running.

2.41 test pps.py

test pps.py (pps: pulse per second) is a collection of tests based on sched-
ules with a simple loop of a timing message and a block.

1. test pps is a basic test with a schedule which sends two timing mes-
sages every second. The test checks with saft-ctl snoop the timing
messages.

45

EVT_01

B_00

Figure 2.28: Pattern for test ppsAdd.

2. test ppsAdd is a basic test with a schedule which sends one timing mes-
sage every second. The test checks with saft-ctl snoop the timing
messages. Download the schedule with dm-sched status and compare
with the uploaded schedule with scheduleCompare. The two schedules
should be isomorphic.

3. testPpsAdd0 Add two schedules. The first schedule contains two nodes
and an edge. The second adds some edges to the first schedule. Start
pattern A and use a flow command to trigger messages. The sta-
tus of the schedules is compared against known schedule files with
scheduleCompare. The messages are snooped and checked. During
snoop start pattern A. This produces 1 message. Pattern A finishes.
Download the schedule for later compare. Add a schedule which con-
tains two edges. Queue a flow command with quantity 10 to block B A.
Again start pattern A. The flow command triggers the next messages.
At the end, 12 messages are produced and the pattern loops in block
B A.

4. testPpsAdd1 Add two schedules. The first schedule contains pattern
A with two nodes and an edge. The second adds a similar pattern B.
The messages are snooped and checked.

5. testPpsAdd2 Test that the validation for nodes connected by defdst or
altdst on the same CPU works. Add a first schedule. Try to add a
second schedule. This fails due to an edge from CPU 0 to CPU 1. Add
a third schedule with a target edge from CPU 0 to CPU 1. This works.

46

Evt_A

B_A

Evt_A

B_A

Figure 2.29: Schedules for testPpsAdd0 (test pps.py). The first produces
one timing message. The second is the result after adding more edges.

Evt_A

B_A B_A

Evt_A

B_B

Evt_B

Figure 2.30: Schedules for testPpsAdd1 (test pps.py).

47

6. testPpsAdd3 Test with five schedules. Add two schedules, remove the
third, add the fourth, remove the fifth.

7. testPpsAdd4 Test removing a pattern which is running. This is rejected
as expected. Then stop the pattern A and remove it. Check that the
appropriate number of messages is produced.

8. testPpsAdd5 Test removing a pattern which is running. This is rejected
as expected. When pattern A has finished, remove it. Check that the
appropriate number of messages is produced.

9. testPpsAdd6 Test adding a node which changes the pattern entry.
Check that the appropriate number of messages is produced.

10. testPpsAdd8 Test adding a schedule with a node with name ending
in ListDst 3. This fails, because this name is generated during upload
and a collision happens. Second attempt is to add a similar schedule
with the name Block0 0 ListDst 6. This works. The generated nodes
have the names Block0 0 ListDst x with x from 0 to 5. Download the
schedule including meta nodes and compare it to the expected one with
scheduleCompare.

2.42 test prioAndType.py

This test was full test/static/prio and type.

1. Purpose of Test

The test checks the relative and the absolute time values for two nodes
in a four node pattern. See Figure 2.42 for the test pattern and 2.43
for the test pattern with meta nodes, displaying the priority queues.

2. Test Actions

Add the pattern, check the relative time values. Clear the datamaster.
Add the pattern again and check the absolute time values.

3. Success Criteria

Two checks of the time values with dm-cmd rawqueue.

48

Evt_A

B_A

Evt_B

B_B

B_A
Evt_A

B_A

Evt_A

B_A

W_A

B_C B_B

Figure 2.31: Schedules for testPpsAdd2 (test pps.py). The upper part of the
figure shows the first schedule on the left. Try to add the middle schedule.
This fails, since block B A is on CPU 0 but Evt B and B B are on CPU 1.
The schedule on the right is the result. The lower part of the figure shows
the result after adding a wait node W A with two blocks B B and B C to
the original schedule of Evt A and B A.

49

B_0

Evt_A

Evt_0

B_A B_B

Evt_0

B_C

Evt_B Evt_C

B_0

B_0

Evt_A Evt_B Evt_C

B_A

Evt_0

B_B B_C

Figure 2.32: Schedules for testPpsAdd3 (test pps.py), first step. Starting
with the upper left schedule, adding the upper right schedule results in the
schedule in the lower part of the figure.

50

Evt_B

B_B

B_0

Evt_A Evt_C

B_A

Evt_0

B_C

Figure 2.33: Schedules for testPpsAdd3 (test pps.py), second step. Remove
the schedule with Evt B and B B results in the second schedule.

51

B_D

Evt_0

Evt_D

B_0
B_0

Evt_A Evt_C Evt_D

B_A

Evt_0

B_C B_D

Figure 2.34: Schedules for testPpsAdd3 (test pps.py), third step. Add the
schedule with Evt D and B D results in the second schedule.

52

B_0

Evt_A Evt_C

Evt_0

B_A B_C

B_D

Evt_D

Figure 2.35: Schedules for testPpsAdd3 (test pps.py), fourth step. Remove
the first schedule results in the schedule with Evt D and B D.

53

Evt_A

B_A

Evt_B

B_B

Evt_A

B_A

B_C

Evt_A

B_A

Evt_B

B_B

Figure 2.36: Schedules for testPpsAdd4 (test pps.py), first part. Removing
the three nodes Evt A, B A, and B C from the first schedule fails since
pattern A is running. The resulting schedule in the lower part is the same
as the first schedule.

54

Evt_A

B_A

B_B

Evt_B

Figure 2.37: Schedules for testPpsAdd4 (test pps.py), second part. After
stopping pattern A, nodes Evt A and B A are removed and the result is the
last schedule.

55

Evt_A

B_A

Evt_B

B_B

Evt_B

B_B

Evt_A

B_A

Evt_B

B_B

Evt_A

B_A

Figure 2.38: Schedules for testPpsAdd5 (test pps.py). From the left upper
schedule remove nodes Evt B and B B while pattern A is running. This fails
with return code 250. Pattern A finishes. Trying to remove Evt B and B B
again results in the lower right schedule with nodes Evt A and B A.

56

EvtA

BlockA

EvtA

BlockA

EvtA

BlockA

EvtA

BlockA

Figure 2.39: Schedules for testPpsAdd6 (test pps.py), first part. Start pat-
tern A in the upper left schedule. The result is the upper right schedule.
Overwrite the schedule with an altdst edge from BlockA to EvtA and no
pattern entry. Result is the lower right schedule. Cannot start pattern, be-
cause entry is missing.

57

EvtB

EvtA

BlockA EvtA

BlockA

EvtB

Figure 2.40: Schedules for testPpsAdd6 (test pps.py), second part. Add the
left schedule with EvtB as pattern entry. Then start pattern A. This results
in the right schedule.

Block0_0

Msg0_0000 Msg0_0001 Msg0_0002 Msg0_0003 Msg0_0004 Msg0_0005 Msg0_0006 Msg0_0007 Msg0_0008 Msg0_0009 Msg0_0010 Msg0_0011 Msg0_0012 Msg0_0013 Msg0_0014 Msg0_0015 Msg0_0016 Msg0_0017 Msg0_0018 Msg0_0019 Msg0_0020 Msg0_0021 Msg0_0022 Msg0_0023 Msg0_0024 Msg0_0025 Msg0_0026 Msg0_0027 Msg0_0028 Msg0_0029 Msg0_0030 Msg0_0031 Msg0_0032 Msg0_0033 Msg0_0034 Msg0_0035 Msg0_0036 Msg0_0037 Msg0_0038 Msg0_0039 Msg0_0040 Msg0_0041 Msg0_0042 Msg0_0043 Msg0_0044 Msg0_0045 Msg0_0046 Msg0_0047 Msg0_0048 Msg0_0049

Block0_0_ListDst_3

Block0_0

Msg0_0000 Msg0_0001 Msg0_0002 Msg0_0003 Msg0_0004 Msg0_0005 Msg0_0006 Msg0_0007 Msg0_0008 Msg0_0009 Msg0_0010 Msg0_0011 Msg0_0012 Msg0_0013 Msg0_0014 Msg0_0015 Msg0_0016 Msg0_0017 Msg0_0018 Msg0_0019 Msg0_0020 Msg0_0021 Msg0_0022 Msg0_0023 Msg0_0024 Msg0_0025 Msg0_0026 Msg0_0027 Msg0_0028 Msg0_0029 Msg0_0030 Msg0_0031 Msg0_0032 Msg0_0033 Msg0_0034 Msg0_0035 Msg0_0036 Msg0_0037 Msg0_0038 Msg0_0039 Msg0_0040 Msg0_0041 Msg0_0042 Msg0_0043 Msg0_0044 Msg0_0045 Msg0_0046 Msg0_0047 Msg0_0048 Msg0_0049

Block0_0_ListDst_6

Block0_0

Msg0_0000 Msg0_0001 Msg0_0002 Msg0_0003 Msg0_0004 Msg0_0005 Msg0_0006 Msg0_0007 Msg0_0008 Msg0_0009 Msg0_0010 Msg0_0011 Msg0_0012 Msg0_0013 Msg0_0014 Msg0_0015 Msg0_0016 Msg0_0017 Msg0_0018 Msg0_0019 Msg0_0020 Msg0_0021 Msg0_0022 Msg0_0023 Msg0_0024 Msg0_0025 Msg0_0026 Msg0_0027 Msg0_0028 Msg0_0029 Msg0_0030 Msg0_0031 Msg0_0032 Msg0_0033 Msg0_0034 Msg0_0035 Msg0_0036 Msg0_0037 Msg0_0038 Msg0_0039 Msg0_0040 Msg0_0041 Msg0_0042 Msg0_0043 Msg0_0044 Msg0_0045 Msg0_0046 Msg0_0047 Msg0_0048 Msg0_0049 Block0_0_QBl_Lo

Block0_0_ListDst_6

Block0_0_Qb_Lo0 Block0_0_Qb_Lo1

Block0_0_ListDst_0 Block0_0_ListDst_1 Block0_0_ListDst_2 Block0_0_ListDst_3 Block0_0_ListDst_4 Block0_0_ListDst_5

Figure 2.41: Schedules for testPpsAdd8 (test pps.py). The first one fails to
load. The second is added successfully. Compare it with the third schedule.

58

BLOCK_A BLOCK_B

BLOCK_IN0 BLOCK_IN1

Figure 2.42: Pattern for the static priority and type test

2.43 test priorityQueue.py

test priorityQueue.py tests the execution of priority queues.
Generate a schedule with 5 or 6 altdst edges to a central block. These

edges connect this central block with tmsg nodes. The tmsg nodes have a
defdst edge to the central block.

With a generated schedule test altdst. Use a loop over all tmsg nodes to
switch the destinations such that the schedule flow from the central block
switches through all tmsg nodes. See Figure 2.44

2.44 test referenceEdges.py

test referenceEdges.py tests that reference edges work. At most three
reference edges are allowed for a node. testReferenceEdgeLoop1 uses 1
reference edge. testReferenceEdgeLoop3 uses 3 reference edges. testRef-
erenceEdgeLoop4 uses 4 reference edges, which is forbidden.

1. testReferenceEdgeSimple Use a schedule with an edge of type reference
between two loops (a block and a tmsg). The loops run with 10Hz.
Check for the correct parameter value when using the reference.

59

BLOCK_A BLOCK_B

BLOCK_IN0

BLOCK_IN0_QBl_Il BLOCK_IN0_QBl_Hi

BLOCK_IN0_QBl_LoBLOCK_IN0_ListDst

BLOCK_IN1

BLOCK_IN1_QBl_Il BLOCK_IN1_QBl_Hi

BLOCK_IN1_QBl_LoBLOCK_IN1_ListDst

BLOCK_IN0_Qb_Il0

BLOCK_IN0_Qb_Il1 BLOCK_IN0_Qb_Hi0

BLOCK_IN0_Qb_Hi1

BLOCK_IN0_Qb_Lo0

BLOCK_IN0_Qb_Lo1

BLOCK_IN1_Qb_Il0

BLOCK_IN1_Qb_Il1 BLOCK_IN1_Qb_Hi0

BLOCK_IN1_Qb_Hi1

BLOCK_IN1_Qb_Lo0

BLOCK_IN1_Qb_Lo1

Figure 2.43: Pattern for the static priority and type test with meta nodes

60

Block0

Msg0_0000 Msg0_0001 Msg0_0002 Msg0_0003 Msg0_0004 Block0_QBl_Lo

Block0_Qb_Lo0 Block0_Qb_Lo1

Block0_ListDst_0

Figure 2.44: Pattern for the priority queue tests

2. testReferenceEdgeLoop1 Use a schedule with a loop of a block and two
tmsg. The loops run with 1Hz. There is a reference between the two
tmsg nodes. Check for the correct gid value in the timing messages.
Check for the correct parameter value when using the reference.

3. testReferenceEdgeLoop3 Use a schedule with a loop of a block and
four tmsg. The loops run with 1Hz. There is are references between
the tmsg nodes. Check for the correct gid value in the timing messages.
Check for the correct parameter value when using the reference. See
Figure 2.45.

4. testReferenceEdgeLoop4 Use a schedule with a loop of a block and five
tmsg and four references. This is not allowed. Adding the schedule
fails.

2.45 test remove.py

1. testRemove1 Load and during snoop start pattern A, a loop of a mes-
sage and a block. This produces messages with 10Hz. Download the
schedule for later compare. Stop the pattern and remove the pattern
which is nearly the same, but the block has no type. The result is a
schedule with only the block.

2. testRemove2 Load and start pattern A, a loop of a message and a block.
Stop the pattern and remove parts of the pattern which is nearly the
same, but the block has no type and a different event node EvtC.
Remove fails, because EvtC is unknown in the existing schedule.

61

Block0

Msg1

Msg2

Msg3

Msg4

Figure 2.45: Schedule for testReferenceEdgeLoop3 (test referenceEdges.py).

62

BlockA

EvtA

BlockA

EvtA

BlockA

Figure 2.46: Schedules for testRemove1 (test remove.py). The first schedule
is the loop. The second schedule is removed from the first, resulting in the
third schedule.

63

The difference to testRemove1 is that the schedule for removal contains
EvtC instead of EvtA.

3. testRemove3 Load and start pattern A, a loop of message EvtA and
block BlockA. Stop the pattern and remove the pattern which is nearly
the same, but the block BlockA has no type. The remove command
fails.

The difference to testRemove1 is that the schedule for removal contains
EvtA without a type. Thus, the remove command tries to remove
BlockA, which would leave EvtA childless.

4. testRemove4 Load and start pattern A, a loop of message EvtA and
block BlockA. Stop the pattern and remove EvtA. The result is a sched-
ule with only the block. Then add node EvtA of type switch and block
BlockB. Thus, EvtA changes the type.

2.46 test runAllSingle.py

This test was full test/dynamic/basics/run all single.

1. Purpose of Test

Run a very basic schedule on all four CPUs.

See Figure 2.51 for the test pattern.

2. Test Actions

Add a schedule with four blocks to the datamaster. For each CPU,
check that no block is visited. Then start a pattern for one CPU and
check that the block specific for this pattern is visited.

3. Success Criteria

For each pattern the correct CPU is used.

2.47 test runCpu0Single.py

This test was full test/dynamic/basics/run cpu0 single.

1. Purpose of Test

Add the test schedule to the datamaster, start patterns and check which
nodes were visited.

See Figure 2.52 for the test pattern.

64

BlockA

EvtA

BlockA

EvtC

BlockA

EvtA

Figure 2.47: Schedules for testRemove2 (test remove.py). The first schedule
is the loop. The second schedule is removed from the first, resulting in the
third schedule.

65

BlockA

EvtA

BlockA

EvtA

BlockA

EvtA

Figure 2.48: Schedules for testRemove3 (test remove.py). The first schedule
is the loop. The second schedule is removed from the first, resulting in the
third schedule.

66

BlockA

EvtA EvtA

BlockA

Figure 2.49: Schedules for testRemove4 (test remove.py). First part. First
schedule consists of EvtA and BlockA. Remove the second schedule and get
the third schedule as result.

67

EvtA

BlockB BlockA

BlockA BlockB

EvtA

Figure 2.50: Schedules for testRemove4 (test remove.py). Second part. Add
the first schedule with EvtA as a switch node. The result is the second
schedule.

68

BLOCK_IN_C0

BLOCK_IN_C1

BLOCK_IN_C2

BLOCK_IN_C3

Figure 2.51: Pattern for the dynamic run all test

69

BLOCK_A BLOCK_B

BLOCK_IN0 BLOCK_IN1

Figure 2.52: Pattern for the dynamic run CPU 0 single test

2. Test Actions

First check that no block is visited. Start pattern ’IN0’. Check that
’BLOCK A’ and ’BLOCK IN0’ are visited. Start pattern ’IN1’. Check
that in addition ’BLOCK B’ and ’BLOCK IN1’ are visited.

3. Success Criteria

In the end all blocks are visited.

2.48 test safe2remove.py

test safe2remove.py tests to remove a pattern from a running schedule.
Test steps:

1. Clear datamaster

2. Add schedule

3. Start pattern ’G1 P1’

4. Check removal of one pattern, should fail while pattern is running.

70

5. Abort pattern ’G1 P1’

6. Check removal of this pattern, should be valid, since pattern is not
running.

7. Remove this pattern.

8. Check status of remaining schedule.

These test steps are applied to a bunch of schedules. The schedules use 1 to
4 CPUs whith 1, 2, 4, and 9 pattern beside the default pattern. There are
1, 10, or 150 blocks per pattern.

2.49 test schedules.py

test schedules.py collects schedules from INT or PROD. All patterns are
started. The tests need 4 CPUs. Tests that the schedules are compiled and
loaded. This includes two schedules from INT and PROD as of 2024-10-02.

2.50 test simultaneousThreads.py

test simultaneousThreads.py tests that startthread nodes can start a num-
ber of threads simultaneously. In Figure 2.53 StartThread (runs in thread
0) starts threads 1, 2, and 3. To check that the threads are running, each
threads produces timing messages with the thread number as parameter. The
tests run for two threads (0 and 1), four threads (0, 1, 2, 3) and all threads
(8 or 32).

71

B_01

B_02

B_03

B_MAIN

B_VARI

Evt_01

Evt_02

Evt_03

StartThread

Evt_MAIN

Ori_T01

Ori_T02

Ori_T03

Figure 2.53: Pattern for the simultaneous start of threads

72

2.51 singleEdgeTest

singleEdgeTest tests the validation of combinations of node types and edge
types. This uses libcarpedm in a special version, called dmtest. There are all
private methods of libcarpedm accessible in dmtest. There are 2873 schedules
with at least one edge and two nodes tested. Some schedule are enlarged with
meta nodes. 209 schedules of the 2873 schedules are valid. All other schedules
include a forbidden edge type or a forbidden child type.

Build process: when building the test object libcarpedm / dmtest, start
with make clean to build a consitent test object.

singleEdgeTest has a mode which does not generate meta nodes. This is
used to generate schedules for the pytest tests. The meta nodes are needed for
the validation tests, but they are not allowed for tests which upload schedule
to the lm32 firmware.

For this, the combinations of a node and an outgoing edge and, respec-
tively, a node and an incoming edge.

The tables are compiled from source validation.cpp.
Classification of nodes:

1. Meta nodes: qinfo, qbuf, listdst

2. Event nodes: tmsg, switch, flow, flush, noop, waits

3. Command nodes: flow, flush, noop, wait

The last row combines all edge types and show the maximal number of
outgoing edges.

1. the check for childless nodes (events and qinfo must have childs),

2. the sum of min and max cardinalities for the detailed edge types.

Open questions:

1. Is the list of node types complete?

2. Is the list of edge types complete?

3. Node type listdst: no rules for in- or out-edges defined. Is this correct?
With release 9.0.0 of the firmware, listdst nodes have exactly one edge
of type defdst to a block.

4. Edge types dynid x, dyntef, dynres: are these edge types used?

5. How to distinguish edge types target (Switch) and target (Command)?

73

Table 2.1: Schedule – Valid edge types per node type

Edge
Type

Node Type - Out-Edge, first node

b
lo

ck

b
lo

ck
al

ig
n

fl
ow

fl
u
sh

li
st

d
st

n
o
op

or
ig

in

q
b
u
f

q
in

fo

st
ar

tt
h
re

ad

sw
it

ch

tm
sg

w
ai

t

defdst 0..1 0..1 0..1 1 – 0..1 0..1 – – 0..1 0..1 1 0..1
altdst 0..9 0..9 – – – – – – – – – – –
listdst 0..1 0..1 – – – – – – – – – – –
baddefdst – – – – – – – – – – – – –
target
(Switch)

– – – – – – – – – – 0..1 – –

target
(Command)

– – 0..1 0..1 – 0..1 – – – – – – 0..1

flowdst – – 0..1 – – – – – – – – – –
flushovr – – – 0..1 – – – – – – – – –
switchdst – – – – – – – – – – 0..1 – –
meta – – – – – – – – 2 – – – –
origindst – – – – – – 1 – – – – – –
priolo 0..1 0..1 – – – – – – – – – – –
priohi 0..1 0..1 – – – – – – – – – – –
prioil 0..1 0..1 – – – – – – – – – – –
dynid x – – – – – – – – – – – – –
dynpar0 – – – – – – – – – – – 0..1 –
dynpar1 – – – – – – – – – – – 0..1 –
dyntef – – – – – – – – – – – – –
dynres – – – – – – – – – – – – –
sum 0..14 0..14 1..3 1..3 0.. 1..2 1..2 0.. 2 0..1 1..3 1..3 1..2

74

Table 2.2: Schedule – Valid edge types per node type

Edge
Type

Node Type - In-Edge, second node

b
lo

ck

b
lo

ck
al

ig
n

fl
ow

fl
u
sh

li
st

d
st

n
o
op

or
ig

in

q
b
u
f

q
in

fo

st
ar

tt
h
re

ad

sw
it

ch

tm
sg

w
ai

t

defdst 0.. 0.. 0.. 0.. – 0.. 0.. – – 0.. 0.. 0.. 0..
altdst 0.. 0.. 0.. 0.. – 0.. 0.. – – 0.. 0.. 0.. 0..
listdst 0..1 0..1 – – – – – – – – – – –
baddefdst – – – – – – – – – – – – –
target
(Switch)

0.. 0.. – – – – – – – – – – –

target
(Command)

0.. 0.. – – – – – – – – – – –

flowdst 0.. 0.. 0.. 0.. – 0.. 0.. – – 0.. 0.. 0.. 0..
flushovr 0.. 0.. 0.. 0.. – 0.. 0.. – – 0.. 0.. 0.. 0..
switchdst 0.. 0.. 0.. 0.. – 0.. 0.. – – 0.. 0.. 0.. 0..
meta – – – – – – – 1 – – – – –
origindst 0.. 0.. 0.. 0.. – 0.. 0.. – – 0.. 0.. 0.. 0..
priolo – – – – – – – – 0..1 – – – –
priohi – – – – – – – – 0..1 – – – –
prioil – – – – – – – – 0..1 – – – –
dynid x – – – – – – – – – – – – –
dynpar0 0..1 0..1 0..1 0..1 – 0..1 0..1 – – 0..1 0..1 0..1 0..1
dynpar1 0..1 0..1 0..1 0..1 – 0..1 0..1 – – 0..1 0..1 0..1 0..1
dyntef – – – – – – – – – – – – –
dynres – – – – – – – – – – – – –
any edge 0.. 0.. 0.. 0.. 0 0.. 0.. 1 0..1 0.. 0.. 0.. 0..

The upper bounds for the number of in-edges may be incorrect. In theory,
there is no upper bound for the incomming edges.
The last row of the table is in most cases the sum of the lower bounds and
a sum of the upper bounds. Exception is qinfo, where one of the edge types
priolo, priohi, prioil comes in.

75

6. Node type flush and flow: these nodes may have priority queues (lo, hi,
il). Why are the queues allowed? There are no meta nodes generated
for these queues. Why?

7. The rules allow two edges from a block to a bufferlist with edge types
priolo and priohi. Should the rules be fixed for this invalid schedule?

8. Is an edge of type defdst necessary for a node of type flow? For node
type flush it is necessary.

9. There are no ConstellationRules for nodes of type listdst and qbuf. Is
this correct? Yes! Node types must be childless.

10. Node type qbuf must be childless.

11. Node type listdst has one defdst to a block. This node type is auto-
matically generated by libcarpedm.

76

BLOCK_A

MSG_IN_C0_EN

BLOCK_IN_C0_EX

BLOCK_IN_C0_MID

Figure 2.54: Pattern for the dynamic start stop abort test

2.52 test startStopAbort.py

This test was full test/dynamic/basics/start stop abort.

1. Purpose of Test

First part: Start and abort a pattern. Second part: Start and stop a
pattern.

See Figure 2.54 for the test pattern.

2. Test Actions

Add a schedule, check that CPU 0 is idle and then start pattern ’IN C0’.
Check that the pattern is running. Abort the pattern ’IN C0’. Check
the visited nodes for the pattern. The second part is similar. Add the
same schedule, check that CPU 0 is idle and then start pattern ’IN C0’.
Check that the pattern is running. Stop the pattern ’IN C0’. Check
the visited nodes for the pattern.

3. Success Criteria

Check that pattern is correctly aborted (rawstatus RUN is 0 imme-
diately) or stopped (rawstatus RUN is 1 immediately, but 0 after 1.5
seconds).

77

2.53 test switch.py

This test was full test/dynamic/switch. The schedule
dynamic-switch-schedule.dot is used.

1. Purpose of Test

Test the switch command.

2. Test Actions

After loading the schedule check with ’dm-sched rawvisited’ that no
node is visited. Then start pattern IN0. Check the visited nodes.
Then start pattern IN1 and check the visited nodes. Use a command
schedule to switch to destination pattern B and check again the visited
nodes.

3. Success Criteria

The correct nodes are visited after each step.

2.54 test unilac.py

There are three tests with the same structure. The tests work with message
rates of 5 kHz, 45kHz, 90 kHz.

1. Purpose of Test

This test is used to ensure that the datamaster can handle the amount
of timming messages needed to control UNILAC. This should be at
least 600 messages in a 20 msec intervall. This is a message rate of 30
kHz.

2. Test Actions The schedule consists of two series of timing messages
which are numbered by evtno and parameter. At the end of the first
series a flow command directs the flow to the second series of timing
messages. The block has a length of 10 msec, so it is executed with 100
Hz.

3. Success Criteria

Mesages with parameter 1 are received by saft-ctl snoop with 50 Hz.

78

Block0_0

Msg0_0000

Msg0_0050

Flow0_0

Msg0_0001

Msg0_0002

Msg0_0003

Msg0_0004

Msg0_0005

Msg0_0006

Msg0_0007
Msg0_0008 Msg0_0009

Msg0_0010

Msg0_0011

Msg0_0012

Msg0_0013

Msg0_0014

Msg0_0015

Msg0_0016

Msg0_0017

Msg0_0018

Msg0_0019

Msg0_0020

Msg0_0021

Msg0_0022

Msg0_0023

Msg0_0024

Msg0_0025

Msg0_0026

Msg0_0027

Msg0_0028

Msg0_0029

Msg0_0030

Msg0_0031

Msg0_0032
Msg0_0033Msg0_0034

Msg0_0035

Msg0_0036

Msg0_0037

Msg0_0038

Msg0_0039

Msg0_0040

Msg0_0041

Msg0_0042

Msg0_0043

Msg0_0044

Msg0_0045

Msg0_0046

Msg0_0047

Msg0_0048

Msg0_0049

Msg0_0051

Msg0_0052

Msg0_0053

Msg0_0054

Msg0_0055

Msg0_0056

Msg0_0057

Msg0_0058

Msg0_0059

Msg0_0060

Msg0_0061

Msg0_0062

Msg0_0063

Msg0_0064

Msg0_0065
Msg0_0066Msg0_0067

Msg0_0068

Msg0_0069

Msg0_0070

Msg0_0071

Msg0_0072

Msg0_0073

Msg0_0074

Msg0_0075

Msg0_0076

Msg0_0077

Msg0_0078

Msg0_0079

Msg0_0080

Msg0_0081

Msg0_0082

Msg0_0083

Msg0_0084

Msg0_0085

Msg0_0086

Msg0_0087

Msg0_0088

Msg0_0089

Msg0_0090
Msg0_0091 Msg0_0092

Msg0_0093

Msg0_0094

Msg0_0095

Msg0_0096

Msg0_0097

Msg0_0098

Msg0_0099

Figure 2.55: Schedule to test the message rate for the UNILAC

2.55 test waitloopFlush.py

test waitloopFlush.py uses a schedule with a wait loop to check the cor-
rectness of the flush command. The schedule contains BLOCK LOOP with
a low prio queue and a high prio queue. On pattern start, a flow command is
queue in the low prio queue with quantity 10,000. This redirects the pattern
to BLOCK LOOP such that this block is executed 10,000 times in a loop.
Also on start of pattern, a flush command is queued in the high prio queue
with a relative valid time of 0.5 seconds. Since BLOCK LOOP has a period
of 100 µs, the flush command breaks the loop after 5011 executions.

The test checks after 0.1 seconds that the flush is not executed, but after
1 second it is executed. The timeline of the checks is not precise enough to
check exactly after 0.5 seconds the execution.

2.56 test zzzFinish.py

test pps.py (pps: pulse per second) is a basic test with a schedule which
sends two timing messages every second. The test checks with ’saft-ctl snoop’
the timing messages. This test should be the last in the whole test suite to
leave the datamaster with a defined schedule.

79

Chapter 3

Common Components - The
Testbench

3.1 dm testbench.py

dm testbench.py is a collection of Python functions for use in other test
scripts.

1. setUpClass(self)

Read environment variables for the datamaster and the test binaries.

• TEST BINARY DM CMD sets the binary for dm-cmd. Default
is just dm-cmd, the installed tool.

• TEST BINARY DM SCHED sets the binary for dm-sched. De-
fault is just dm-sched, the installed tool.

• DATAMASTER set the datamaster device. Example: dev/wbm0

or tcp/fel0069.acc. There is no default. This method stops
with a KeyError if the environment variable DATAMASTER is
not set.

• TEST SCHEDULES set the folder for schedules. Default is
schedules/.

• SNOOP COMMAND set the snoop command. Default is
saft-ctl tr0 -xv snoop 0 0 0.

Usually the binaries for dm-cmd and dm-sched together with the lib-
carpedm are used from the build of the test repository in folders
modules/ftm/bin and modules/ftm/lib. This is configured in the
Makefile.

80

Set the thread quantity (read from the lm32 firmware with eb-info) and
set the CPU quantity to 4.

2. setUp(self)

Call self.initDatamaster().

3. initDatamaster(self)

The datamaster is halted, cleared, and statistics is reset with dm-cmd

reset all.

4. addSchedule(self, scheduleFile)

Add the scheduleFile to the datamaster with the command dm-sched

DATAMASTER add scheduleFile. Does not start a pattern.

5. startPattern(self, scheduleFile)

Connect to the given datamaster and load the schedule file (dot format).
Search for the first pattern in the datamaster with ’dm-sched’ and start
it.

6. startPattern(self, scheduleFile, pattern=”)

Add the scheduleFile to the datamaster with the command dm-sched

DATAMASTER add scheduleFile. Start the given pattern. The default
for the pattern name is empty.

7. startAllPattern(self, scheduleFile, pattern=”, onePattern=False,
start=True)

Connect to the given datamaster and load the schedule file (dot format).
If a pattern is given, start this pattern. Otherwise, scan the output of
dm-sched for pattern names and start the first pattern (onePattern =
True) or all pattern (onePattern = False). All calls to dm-cmd and
dm-sched are checked for the return code. The method stops of the
return code is not 0.

8. startAndCheckSubprocess(self, argumentsList, expectedReturnCode =
[0], linesCout=-1, linesCerr=-1)

Start a subprocess and check the return code and the lines of stdout
and stderr. The output on stdout or stderr is lost.

(a) argumentsList

The command itself with arguments as a list.

81

(b) expectedReturnCode = [0]

The list of expected return codes. The default is 0 which is suc-
cessful return.

(c) linesCout=-1

The expected lines of stdout. If linesCout = -1 (default), this is
not checked.

(d) linesCerr=-1

The expected lines of stderr. If linesCerr = -1 (default), this is
not checked.

Examples for calls of this method are in dm testbench.py.

9. startAndGetSubprocessStdout(self, argumentsList,
expectedReturnCode = [0], linesCout=-1, linesCerr=-1)

Start a subprocess and check the return code and the lines of stdout
and stderr. Return stdout as a list of lines.

(a) argumentsList

The command itself with arguments as a list.

(b) expectedReturnCode = [0]

The list of expected return codes. The default is 0 which is suc-
cessful return.

(c) linesCout=-1

The expected lines of stdout. If linesCout = -1 (default), this is
not checked.

(d) linesCerr=-1

The expected lines of stderr. If linesCerr = -1 (default), this is
not checked.

10. startAndGetSubprocessOutput(self, argumentsList,
expectedReturnCode = [-1], linesCout=-1, linesCerr=-1)

Start a subprocess and check the return code and the lines of stdout
and stderr. The output on stdout or stderr is return as a list of two
lists of lines.

(a) argumentsList

The command itself with arguments as a list.

82

(b) expectedReturnCode = [0]

The list of expected return codes. The default is 0 which is suc-
cessful return.

(c) linesCout=-1

The expected lines of stdout. If linesCout = -1 (default), this is
not checked.

(d) linesCerr=-1

The expected lines of stderr. If linesCerr = -1 (default), this is
not checked.

11. removePaintedFlags(self, dotLines)

From the dotLines remove all which indicates that a node is visited.
This ist needed for the comparison with expected output. In the flags
attribute, flags=”0xnnnnn1nn” is replaced by flags=”0xnnnnn0nn”. In
addition, fillcolor green ist replaced by white and other layout attributes
are deleted. dotLines is created from ’dm-sched -o output-file’. Method
is used by compareExpectedResult and compareExpectedOutput.

12. compareExpectedResult(self, fileCurrent, fileExpected, exclude=”)

Compare two dot files. fileCurrent is the file from the current test run.
fileExpected is the file with the expected result. exclude may contain
a word. If this word occures in a line of the current file, this line is
removed before the comparison. Next step is to remove the ’painted
flag’ from the current file. Assert that a unified diff has no lines.

13. compareExpectedOutput(self, output, fileExpected, exclude=”,
excludeField=”, delete=[])

Compare the output from the current test run with the fileExpected
which is the file with the expected result. exclude may contain a word.
If this word occures in a line of the current file, this line is removed
before the comparison. Next step is to remove the lines numbered in
the list ’delete’ from the current output and the expected file. Next
step is to remove the rest of the line when ’excludeField’ is found in a
line. This is used to remove timestamps from the current output and
the expected file. Last step is to remove the ’painted flag’ from the
current output. Assert that a unified diff has no lines.

14. getSnoopCommand(self, duration)

Get the snoop command with the duration given in seconds.

83

15. getResetCommand(self)

Get the eb-reset command. If eb-reset exists in the repository or
workspace, this file name is returned. Otherwise ’eb-reset’ is returned,
which assumes that eb-reset is installed.

16. snoopToCsv(self, csvFileName, duration=1)

Run the snoop command for duration seconds and store the output
in csvFileName. Since the duration of saft-ctl snoop is measured in
seconds, but not fractions of a second, the duration is an integer.

17. snoopToCsvWithAction(self, csvFileName, action, duration=1)

Run the snoop command for duration seconds and store the output
in csvFileName. Since the duration of saft-ctl snoop is measured in
seconds, but not fractions of a second, the duration is an integer.

While snoop runs in a separate thread, the method ’action’ is called.
This method should return before snoop ends.

18. analyseFrequencyFromCsv(self, csvFileName, column = 20, printTable
= True, checkValues = dict())

Analyse a file output of ’saft-ctl snoop’ as a csv file.

(a) csvFileName

The file name of the csv file.

(b) column

The number of the column to analyse. Default column is 20 (pa-
rameter of the timing message). Column for EVTNO is 8.

(c) printTable

If True, the occurrences of all values in ’column’ are printed.

(d) checkValues

checkValues is a dictionary of key-value pairs to check. Key is a
value in the column and value is the required frequency. The value
can be ’>n’, ’<n’, ’=n’, ’n’ (which is the same as ’=n’), ’=0’. The
syntax ’<n’ fails if there are no occurrences. Checks for intevalls
are not possible since checkValues is a dictionary and keys occur
at most once. Example: column=8 and checkValues=(’0x0001’,
62) checks that EVTNO 0x0001 occurs in 62 lines of the file to
analyse. Example: column=8 and checkValues=(’0x0002’, ’>0’)
checks that EVTNO 0x0002 occurs at least once in the file to
analyse. Example: column=4 and checkValues=’0x7’: ’=0’ checks
that FID 0x7 does NOT occur in the file to analyse.

84

19. analyseDmCmdOutput(self, threadsToCheck=0)

Run ’dm-cmd’ with default action which shows the running threads
and the message counts. threadsToCheck is a string of 0 and 1. For 8
threads and 4 CPUs, the string is 32 chars long. For 32 threads and 4
CPUs, the string is 128 chars long. A thread is considered running if
the output line for that thread contains ’yes’. A list of (key, message
counts) is returned. Keys of this list are numbers xy, where x is the
CPU number, y is the thread number, both single digits. If a thread
hangs, dm-cmd may show ’yes’ for this thread running, but the thread
is in undefined status. To avoid this, use the method ’checkRunningTh-
readsCmd’.

20. checkRunningThreadsCmd(self, messageInterval=1.0)

Use analyseDmCmdOutput twice with a delay of messageInterval in
between. Assert that the message counts increase with the second call
and are greater than 0 on the first call.

21. getQuantity(self, line) Get the quantity of command executions from
the output line of ’dm-cmd <datamaster> queue -v <block name>’.
Search for ’Qty: ’ in the line and parse the number.

22. checkQueueFlushed(self, queuesToFlush, blockName, flushPrio, check-
Flush=True) Check that a flush command is executed and the defined
queues are flushed.

(a) queuesToFlush: binary value between 0 and 7 for the queues to
flush.

(b) blockName: name of the block with the queues to check.

(c) flushPrio: priority of the flush command. Defines the queue where
to look for the flush command. Priority queues higher than the
flushPrio are not affected by the flush command since these queues
are empty when a flush command with lower priority is executed.
Therefore queuesToFlush is changed for

(d) flushprio = 0, 1. The check for the executed flush command and
the checks for the flushed queues are independant. All checks are
done in one parse run of the output of ’dm-cmd <datamaster> -v
queue <blockName>’. Flags and counters are used to signal the
section inside the output.

(e) checkFlush = False means: check that no flush is executed.

85

Block0a

Evt0a

Block0b

Evt0b

Block0c

Evt0c

Block0d

Evt0d

Block0e

Evt0e

Block0f

Evt0f

Block0g

Evt0g

Block0h

Evt0h

Figure 3.1: Schedule with 8 PPS pattern to run 8 threads on one CPU used
in method prepareRunThreads

23. delay(self, duration)

Sleep for ’duration’ seconds. ’duration’ is a float.

24. runThreadXCommand(self, cpu, thread, command)

Test for one CPU and one thread with ’command’. Check the return
code of 0 for success and one line of output on stdout.

25. prepareRunThreads(self, cpus=15):

Check that no thread runs on the CPUs given by ’cpus’ (bit mask).
Load schedules (see 3.1) into datamaster, one for each CPU and start
all threads. Check that these are running. By default cpus=15, all
CPUs are used.

26. deleteFile(self, fileName)

Delete the file with name ’fileName’.

27. resetAllCpus(self):

Reset each CPU (loop over all lm32 CPUs). Use eb-reset <datamaster>
cpureset <cpu>.

28. listFromBits(self, bits, quantity) − > list

Convert ’bits’, given as a string or an int, into a list of int items.
quantity is the maximal int + 1.

29. bitCount(self, bits, quantity) − > int

Count how many bits are 1 in the number ’bits’. This is the number
of items enabled in ’bits’.

30. printStdOutStdErr(self, lines)

Print the lines of stdout and stderr. This is given as a list of two lists
of lines.

86

31. getThreadQuantityFromFirmware(self) − > int

This class method uses ’eb-info -w’ to get the thread quantity from the
lm32 firmware. This method is used once in the set up of a class by
setUpClass.

32. logToFile(self, text, fileName)

This class method logs a text to a fileName. The text is prefixed by
the current test name. This is appended to the file.

33. checkRunningThreads(self, lines, masks) − > str

Check the hex numbers describing the running threads. Since in some
cases it is not determined which thread is used for a command, we have
to check the lines against multiple masks.

(a) lines is a list of lines, describes the running threads.

(b) masks is a list (not a set!) of hex numbers as strings.

Each number describes an allowed pattern of running threads.

3.2 Structure of Description

1. Purpose of Test

What is the objective of this test?

2. Prerequisites of Test

What is the setting of the test?

3. Test Actions

List the actions of the test. This includes the graphs of the test pattern.

4. Success Criteria

What is checked to state a successful test?

87

