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Chapter 1

Introduction

The new Facility for Antiproton and Ion Research (FAIR) facilities required
a new Control System (CS), which is currently implemented and tested as
an upgrade to the facilities of the GSI-Helmholtz Centre for Heavy Ion
Research (GSI). This document described the real-time CS, specifically the
General Machine Timing (GMT), as implemented and used in the 2019
beamtime. The primary focus lies on the Data Master (DM), which gener-
ates and distributes commands to be executed on the time-synchronised
Frontend Controller (FEC)s.

This document is both a user manual for the FAIR DM and a collection
of research and implementation documents. The latter are providing a
deeper understanding of the DM’s concepts, functions and algorithms. It
also provides material for a hands on introduction to the tools and API.
Chapter 2 is therefor written as a tutorial, meant as a quick start for any-
one who needs to adminstrate or debug a DM. The appendices contain
additional information, tables and memory layout documentation com-
plementing the doxygen documentation of the carpeDM source code.

1.1 General Machine Timing

The GMT encopmpasses all real-time (RT) aspects of controlling accelera-
tor hardware. The concept of RT itself is often misinterpreted, as the term
only means a requirement for determinism. A reaction has to occur within
a defined timeframe of a stimulus, but it does not tell anything about how
long this may take. In this context, RT will always be understood as “hard
real-time”. “Hard” means that data which has not been processed before
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its deadline is due, has no value anymore and is even considered danger-
ous. As an example, an autonomous car is a hard RT system. A distance
value from a sensor has little to no value it became available late, because
the car’s perception would be lagging behind physical reality. Likewise,
the command to activate the breaks being late would make it useless. It
would no longer fulfill the purpose of avoiding a collision.

Deadline windows in the FAIR-CS vary depending on the device and
assigned tasks, but as a rule of thumb, RT units are expected to react some-
where in between the low millisecond to low microsecond range, with an
accuracy in the nanosecond range. The RT section of the FAIR-CS is cur-
rently undergoing an upgrade from older, MIL-STD-1553 (MIL)-bus based
technology to the new White Rabbit (WR) system. With it comes a change
in paradigm, from event based to alarm based machine control.

1.1.1 New vs Old Design Philosophy

The underlying concept of the new GSI/FAIR CS was to create an alarm
based CS, as opposed to the previous event based system. The new archi-
tecture aims for accurate hard RT control of machines, not influenced by
the machine type, distance, controller form factor or interface type.

Old – event based In an event based system such as in figure 1.1 the
transmission time of an event is part of the control loop. An event is
sent and the receiving system will carry out an action upon arrival. For
multiple synchronous actions, multiple events must arrive synchronously.
This is usually achieved by matching signal propagation delays, either by
matching cable lengths or introducing delays on the faster routes. The ad-
vantage lies in simplicity and low overhead during runtime; a form time
synchronisation is not necessary. The downside lies in the network topol-
ogy (i.e., its delays) being part of the event handling. This make configura-
tion and expansion of the control network difficult, very hard to automate
and time consuming.
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Figure 1.1: Event based System, Master (M) sends events to multiple
slaves(S). Lines with lower delay (red) need to be compensated

New – alarm based In an alarm based system as shown in figure 1.2
on the other hand, all messages contain an absolute deadline (alarm), de-
scribing when they are to cause an action in the receiver. Upon reception,
messages are stored until their alarm is due and their action is executed.
For multiple synchronous actions, the lead time for message dispatch can
be roughly chosen and just needs to be greater than the maximum possi-
ble transmission delay in the network. The great advantage is the ease of
configuration due to the independence from transmission delays (temper-
ature, network traffic, change of topology). This allows very high scalabil-
ity, easy administration and very accurately synchronised actions.

The downside of an alarm based system lies in the necessary complex-
ity of senders and receivers. Clock oscillators and absolute time must be
accurately synchronised between nodes and alarm messages require more
complex protocol handling than events. This also results in a higher price
per receiver unit than an event based approach.
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Figure 1.2: Alarm based system. Master (M) sends messages to multiple
slaves(S) in advance. Line delay has no effect on timed message, node time
must be synchronised.
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1.1.2 Responsibilities

The new CS design splits responsibilities for machine control into three
distinct systems (see 1.3).

DM
Settings
Management

EP EP

a b c d e

Time

Commands
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Progression

A
m

p
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t

Set Values

Machine
Schedules

Status
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Scope of
Primary Research

EB

Sim

Figure 1.3: GSI/FAIR CS Design

Settings Management delivers sets of configuration values and curves
to machines (frequency and phase settings for Radio Frequency (RF), cur-
rent ramps for magnets, etc). This requires large amounts of data and thus
high bandwidth traffic, but the timeframe for delivery is relaxed.

Timing uses a separate, deterministic network to synchronise the local
time and clock oscillators of master units and all endpoints on site. It al-
lows a heterogenous Timing Receiver (TR) pool as well as arbitrary geo-
graphic and network topologies.

Command uses the same network as timing and delivers command mes-
sages ahead of time to endpoints. Upon arrival, their alarm is queued and
dedicated hardware modules guarantee action execution to 1 ns accuracy.
Command can either directly control output ports or select machine data
sets and order local firmware to handle execution.
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1.2 Timing System and the Datamaster
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Figure 1.4: Schematic of the DM components
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1.2.1 Control System Stack

The stack between Large Hadron Collider (LHC) Software Architecure
(LSA) and the timing network consists of a multitude of layers. The most
important ones are the schedule parser, the graph model, syntactic and
structural analysis, offline timing analysis, runtime control and valida-
tion, de/serialisation, hardware (HW) processing and network stream-
ing. Figure 1.4 shows the individual layers of the DM, going from ab-
stract to real-time from top to bottom. The high level connections to the
LSA and Director black boxes provide the input. The Generator Frontend
Software Architecture (FESA) class, CarpeDM Library and Etherbone (EB)
library all run on the DM server (x86_64), which runs a standard frontend
Linux without real-time extensions. Layers below the host system run
in programmable hardware and are real-time WR capable. By default, the
used TR is PEXARIA V Peripheral Component Interconnect express (PCIe)
board. Access to the board’s System on a Chip (SoC) is available via PCIe.
carpeDM can also be connected to remote DM hardware instead. The con-
nection can be run over WR network, over TCP, using the host platform
as a software (SW) bridge (via socat) to PCIe. The Generator FESA class
and the EB library will only briefly be described in this documentation.
EB is well documented already 123, while the Generator FESA class was
intentionally designed as a “stupid” middleware wrapper for carpeDM.
Apart from some additional logger and formatting code, all functionality
is borrowed from the carpeDM library.

1.2.2 Building Blocks

High level LSA is in essence a physics modelling framework for accel-
erators. A simplistic explanation is that models of accelerator components
(physical properties of magnets, RF cavities, power supplies. . . ) and the
desired beam properties are entered on one side, the necessary machine
settings and command sequences come out on the other. The resulting ac-
tions are supposed to run in parallel, as alternative scenarios, or linked by
a form of handshake. As described in 1.1.1, this needs both settings data,
which is usually present in form of curves and tables, and a command se-
quence at runtime, choosing which settings data set is to be used where
and how. LSA’s output to the timing system are “schedules”. These are
programs in a domain specific language, describing timing command gen-
eration, whose execution wihtin the DM results in a stream of commands
to timing receivers. Schedules are represented as graphs in carpeDM. To
make it a good match to LSA content, this graph representation needed
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to be abstract, flexible and powerful. To make the DM’s command dis-
triubution deterministic however, the data structures used on the lower
(embedded system) level needed to be simple and efficient. Lossless bidi-
rectional translation between high level and low level representation was
also a requirement.

Low level The DM HW is the embedded system in charge of creating
the stream. There is a strong separation between the actual real-time se-
quencer, which must never be disturbed from outside (no blocking calls)
and the command interface. The DM consists of multiple embedded Cen-
tral Processing Unit (CPU)s, each with their own independent Random
Access Memory (RAM). To guarantee that the host does not block the DM
HW, each RAM features two completely independent physical ports, re-
moving bus access as a bottleneck. Using techniques borrowed from inter-
thread communication models, the command module interacts with the
realtime sequencer by message boxes and flags inside the Dual Port RAM
(DPRAM).
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1.3 Language for Accelerator Control

carpeDM was designed as a domain specific language, using directed graphs
to represent machine schedules at a high level. The language is not Turing-
complete, but has distinguishing features very well suited for real-time
control. carpeDM provides timely command generation and dispatch,
conditional branches, nested loops, inter-process communication and real-
time synchronisation. It was designed for extensive parallelism. carpeDM
also allows thread and transaction safe manipulation and replacement of
partial schedules (subgraphs) at runtime. Future upgrades will include
a full a-priori worst case analysis of processors loads, bus and network
traffic to ensure proper functionality even before machine schedules are
executed.

1.3.1 Schedule Graphs

Schedule graphs are at the core of carpeDM, and this representation of
a control program comes with two advantages. The first is that graph
algorithms are a well researched field, which provides a rich set of tools
to construct, search, manipulate and verify graphs. The second advantage
is right in the name – graphs are meant to be visualised, and visualisation
helps understanding.

Figure 1.5: The same schedule graph shown in different visualiser settings.
On the left: dot, right: neato.
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Benefits of inbuilt visualisation Using the graphviz library and tools,
there is a wide range of visualiser types and styles available. Figure 1.5
shows the same graph visualised with two different sample settings. The
dot visualiser on the left with its flow-chart like representations helps show-
ing flow directions and dependencies and is well suited for debugging
flows within a single control program. Others, such as neato on the right,
provide a more organic style, reminiscent of organic structures and best
suited for large graphs. This style is best suited for seeing the extent of
wait loops, alternative scenarios and the interplay of multiple control pro-
grams and machines.

1.3.2 Look, feel and function

B_PPS

Evt_PPS0

Evt_PPS1

Figure 1.6: Visualisation of Hello World Schedule Graph

Shape and coloration are effective tools to further understanding. Let’s
have a look at the hello world example in figure 1.6. There are two dif-
ferent node shapes there, rectangles and ovals. Ovals represent timing
messages, rectangles are blocks, representing timespans and serve as deci-
sion points. The nodes are connected by directed edges (arrows), the edge
colour represents relations between nodes. For example, a red arrow de-
notes an active path, black marks an inactive alternative path, blue leads
to a communication target and so on. Likewise, node fill or frame colours
are used as a visual aid. For example, a green fill is used to indicate that
DM embedded system has processed a node at least once. This painting
of territory is often a great help in coverage tests and understanding the
taken course through a schedule. A full legend of nodes, edge types and
their appearance can be found at 2.3.

Another good example is the safe2remove module of carpeDM (see 4).
It analyses the schedule runtime and determines if a given subgraph can
safely be manipulated or removed. This is achieved by converting all ac-
tivity in time into a time-invariant equivalency graph. The underlying ver-
ification algorithm has to convert run time uncertainties into a static worst-
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case image, which is a non trivial task. Its debug outputs are therefore
complex. To just name a few examples, the analysis of the hierarchy of dy-
namic commands, found predominant paths, transformation log of inbuilt
and runtime commands, extrapolated future safe states, contracts with the
user regarding which queued commands must be preserved, safety as-
sessment base on union and difference sets . . . the list of complex (even
to developers) activity logs goes on. When a new feature is implemented,
failed test cases need to be understood to correct errors, and doing this
from a vast number of debug messages is difficult and time consuming.

Figure 1.7: Visual style for validation of runtime subgraph changes

Visualised, however, the systems’s actions and decision quickly become
tangible: All dynamic activity is converted to edges of specific colours and
pen styles. All nodes reachable from the subgraph via traversible edges
are marked in red – dangerous territory. The execution cursors are marked
in blue – important. If no blue markers are inside in red territory, manipu-
lating the subgraph has no negative impact and is allowed. If one or more
are inside, manipulation would endanger the DM embedded system and
is forbidden. Simple.

1.3.3 Graph translation for an embedded system

carpeDM uses a simplified file system in the embedded level, inside which
each graph node occupies (very small at 52 B) page in memory, avoid-
ing fragmentation while reaching near optimal memory utilisation. Such
small sizes might seem odd, but one must keep in mind that RAM in-
side an Field Programmable Gate Array (FPGA) is not like RAM inside a
normal computer. It can be used highly compartmentalized and can be
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accessed truly parallel on a HW level, but its size is extremely limited. The
current DM is limited to 4 MB.

The graph structure is converted into binary structures. Directed graphs
can easily be turned into linked lists, which work well in combination with
the lean minimal file system. All intelligence (and space) needed for mem-
ory management and transaction management is placed at the host side.
The embedded sequencer can therefore follow a very simple design. It
consists solely of a scheduler and several worker threads per CPU which
follow pointers through linked lists of memory chunks representing the
original graph. Instead of a stack, the sequencer uses local storage queues
for all dynamic change requests, one at each point of decision in the graph.
If it is be guaranteed that the communication queues are cleaned up after
decisions are revoked at runtime, this distribution of control has several
advantages. In particular, it allows fine control of subgraphs, which can
be individually added or removed during runtime. It is further possible
to link otherwise independent operations with a handshake, such as beam
acceleration in the Schwerionen Synchrotron 18 (SIS18) synchrotron rings
and extraction for storage in the Experimentier-Speicherring (ESR). The
current implementation also features a fast EB runtime interface for other
time critical devices in the control system, such as the UNILAC gateway
and Bunch-to-Bucket (BTB) control, or later, machine protection systems.
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Chapter 2

CarpeDM User Guide

carpeDM is a framework for a domain specific programming language, de-
signed to interface with both the DM and LSA. It’s purpose is to provide
a description format for accelerator schedules, manipulate the resulting
graphs and compile/decompile them for use in the DM. carpeDM vali-
dates syntax, grammar and structure for incoming graphs. It also handles
runtime commands to the DM and assures transaction safe manipulations.
It also handles DM memory management and content loading them them
back and forth between the LSA physics model and the real-time hard-
ware (HW) of the DM. carpeDM also handles data transmission to and
from the DM and manages the DM’s HW resources (memory, bandwidth,
etc.). The name carpeDM was also used for the corresponding c++ library.

Representation carpeDM uses dot graphs as defined by the graphviz or-
ganisation. Dot graphs are a generic format for directed or undirected
graphs. Each graph consists of nodes and connecting edges, as well as
style and layout parameters. Style parameters are automatically generated
into carpeDM’s output files for ease of understanding, but are ignored on
input files.

An opensource suite of tools to generate graphic representations of dot
files is freely available. For human interaction (operators) and especially
in the deployment phase, these visualisations already were of great value
to reduce the time to determine the facilities state and debug its behaviour.
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2.1 Getting Started

2.1.1 Installing carpeDM Tools

First, you will need the BEL projects sources from the GSI controls reposi-
tory. If you have not already done so, you can get the sources here:

$ git clone --recursive
https://github.com/GSI-CS-CO/bel_projects.git

$ cd bel_projects
$ git checkout master
$ ./fixgit

To build and run carpeDM, you will need the boost libraries≥ 1.5.4 (if you
build on the ASL cluster, these are already installed).

$ sudo apt-get install libboost

Next, you’ll need to build the toolchain and the carpeDM library and
tools. From the root folder of your BEL projects checkout, call

$ make
$ cd syn/gsi_pexarria5/ftm
$ make tools #To also get DM gateware, run plain make instead
$ sudo make install

This leaves you with the carpeDM library libcarpedm.so and two command
line tools, dm-sched and dm-cmd.

2.1.2 Installing Visualisation

There’s two options how to use dot visualisation. If you are interested in
viewing, navigating and searching through graphs, you’ll want the xdot
viewer. This python app is lightweight and easy to use. If you need ren-
derings of a graph for documentation or want more control over all the
render parameters, you should use the graphviz tools directly on the com-
mand line.

Installing all prerequisites First, we need to install the graphviz pack-
age, which comes with several CLI render programs (dot, neato, fdp, twopi,
circo, sfdp)

$ sudo apt-get install graphviz

It is sensible to render dot files into a vector format (pdf, svg, etc), as
bitmaps of schedules tend to get very big. The graphviz CLI tools accept
parameters for the renderer, which are grouped into graph, node and edge
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parameters. A lot of the parameters are specific to one renderer, and are
ignored if you run another. These can also be supplied in the graph itself,
however, CLI parameters always override. For example, -Grankdir=TB
will cause the dot renderer to arrange the graph top to bottom instead
of left to right. Especially the neato renderer is very useful for the large se-
quences found in schedules, but needs some extra parameters to produce
sensible results.

$ neato <a-dot-file.dot> -Goverlap=compress -Gmodel=subset

You can try adding several moree parameters to the call to refine node
distance, edge spring force, different arrangement models and so on

$ ./dotrender.sh download &

To get a live view of the DM’s content, open download.svg in a viewer
supporting auto refresh. If you have larger and more complex schedules,
you might want a different layout to get a better overview. In this case, try
the neatorender.sh script instead. It will produce a more “organic”, more
compact graph that is better suited to get the big picture.

The Xdot Viewer The second option is to use the Xdot Viewer tool. This
is a Gtk 3 based GUI viewer written in python, providing a much more
comfortable interface to schedule graphs. It is also faster than using the
CLI renderer plus an image viewer. For carpeDM, a fork has been made
of the original xdot project, adding new features.

$ sudo apt-get install python3
$ sudo apt-get install python3-setuptools
$ git clone https://github.com/GSI-CS-CO-Forks/xdot.py.git
$ cd xdot
$ git checkout xdot-gsi-dm

#Try it out
$ python3 -m xdot <a-dot-file.dot>

#Install
$ sudo python3 setup.py install --record files.txt

#Uninstall
$ cat files.txt | xargs sudo rm -rf
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2.1.3 Xdot Viewer Short Manual

Figure 2.1: Xdot Viewer

From the installation on, you can call xdot like any other program. There
are CLI option to choose the renderer and pass arguments to it. The fol-
lowing call will start xdot with a neato configured for schedule graphs:

$ xdot <a-dot-file.dot> -f neato
--filterargs="-Goverlap=compress -Gmodel=subset"

Files and Printing The File dialogue can be used to load dot files and
is pretty much self explanatory. Printing is still buggy, as it only chooses
the correct print area if the window it at its original (when opening the
program) size. Future releases should feature an SVG export

Navigation The arrow keys can be used for scrolling, as can the pressed
middle mouse button. Zooming is achieved by using<PageUp>/<PageDown>
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or using the mouse wheel. In addition, the toolbar buttons can be used to
control zoom.

Copy Name A right click on a node will copy its name to the clipboard.

Inspection Window Clicking the info button in the toolbar will open the
IW. Left clicking a node or edge will show its bundled properties. The win-
dow contains three columns, description, tag and value. Descriptions are
only available for carpeDM properties and explanatory comments. The
tag column is the actual tag in the dot file, the value is the value from the
dotfile. Note that the value can be converted. For example, time is not
shown as a integer of nanoseconds 1 003 000 ns, but as seconds in scientific
notation 1.003× 10−6 s.

Text Search The toolbar provides a text search field to search for nodes
and edges. <Enter> begins the search and will zoom/scroll in the group
of found nodes or edges. All found items are highlighted in light red. Text
search also allows the use of regular expressions. For example,

SIS18_RING_.*00.

will search for all node names starting with SIS18_RING and ending in
00x.

When the inspection window is active, text search will also search
bundled properties. They are stored internally as strings of the format
<key=value> and can be searched as such. Regular expressions are very
powerful when used as boolean connections of search criteria. For exam-
ple,

gid=300|gid=508

will search for all nodes belonging to group ID 300 or 508, while
(?=.*gid=300)(?=.*evtno=258)

will find nodes of group 300 and having an event number of 258.

2.1.4 Hello World!

We will assume that you have a freshly booted (or halted and cleared) DM
available over an EB connection. If you encounter any error messages,
especially during status check, please look at appendix 9, Troubleshooting.
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First encounter First, let’s have a look what the DM thinks it’s doing
right now The following command will give you the detailed runtime sta-
tus report.

$ dm-cmd <eb-device> status -v

The output will look something similar to the listing 2.1. Note that none of
the worker threads is running right now and none has assigned a pattern
or node to it.

DataMaster: dev/ttyUSB0 WR-Time: Tue Feb 6 17:50:44

Cpu Thr Running MsgCount Pattern Node

0 0 no 0 undefined idle
0 1 no 0 undefined idle

...
3 7 no 0 undefined idle

Listing 2.1: Output of dm-cmd status

$ dm-sched <eb-device> add helloworld.dot

carpeDM will parse and validate the dotfile, create the graph and upload
it to the DM. It then reads back the binary, transforms it into graph again,
annotes it with visualisation tags and writes it to download.dot. The result
should look similar to figure 2.2.

B_PPS

Evt_PPS0

Evt_PPS1

Figure 2.2: Visualisation of Hello World Schedule Graph

The DM yet has to be told that we wish to play the Hello World Pattern.
Dots are also used to describe runtime commands to the DM, and we shall
use prefabricated ones in this example.

$ dm-cmd <eb-device> -i helloworld_start.dot

This started the pattern execution. Let’s check the status again, this time
without the verbose flag:

$ dm-cmd <eb-device> status
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The DM is now sending two messages once every second, with an execu-
tion time 8 ns apart. If the output is connected to a TR over a WR switch,
such as an SCU, you can log into your SCU and see the events caused by
our messages coming in. For this to happen, you need to tell the saft-ctl
tool what you wish to see. In our case, we filter to show only our own
hello world events.

$ ssh root@<Your SCU’s Name>.acc.gsi.de
SCU$ saft-ctl tr0 -v -f snoop 0x0 0x0 0x0

tDeadline: 2018-02-06 17:08:10.556617664 ... EVTNO: 280 ...
tDeadline: 2018-02-06 17:08:10.556667664 ... EVTNO: 273 ...

!delayed (by 565680 ns)

Yep, there they are! Note that the second message has a comment saying
it is delayed. This is nothing to worry about. The the snooping action by
the SCU is way slower than the TR hardware, unable to process another
message only 8 ns after the first. All status reports by TR’s are explained
in detail in chapter ??.
Congratulations, you just ran your very first accelerator schedule with
carpeDM and saw the result on real hardware!

2.2 Command line tools

carpeDM comes with two command line tools, dm-sched and dm-cmd. dm-
sched is responsible for schedule upload, download and manipulation.
dm-cmd covers manual thread and flow control, status queries, runtime
diagnostics and node and queue inspection. For detailed help, call either
with the “-h” flag.

to be continued. . .

2.3 Schedules

2.3.1 Overview

carpeDM schedules use nodes of three basic types to model the control
message stream to the accelerator. These are Messages, Commands and
Blocks. All necessary management overhead is contained in nodes of a
fourth Meta type, which is by default invisible to the user.
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Message Nodes Messages, aka timing messages, provide what it says on
the box - they create messages to be broadcasted to timing receivers on the
White Rabbit (WR) network.

Block Nodes Blocks provide three functions in one. First, they carry a
timespan or period, which is added to the running time sum once they
are processed. Second, they can be outfitted with a sink for commands,
allowing dynamic actions. These could be a request to wait or changes
to the flow through the graph (alternative successor nodes). And third,
Blocks can be made to dynamically adjust their period to fit a given time
grid.

Command Nodes Command nodes use the same command interface as
Blocks do, but they are sources, not sinks. They can be used for synchroni-
sation or loops with various properties. An example would be a loop wait-
ing for an external command to continue, but terminating when reaching
a given timeout.

Processed by DM HW

Pattern Exit Point

Pattern Entry Point

Meta Node (hidden by default)

Block

Command

Timing Message

Figure 2.3: Legend for Node Visualisation

Meta Edge (hidden by default)

Dynamic Content Source Edge

Flow Cmd Destination Edge

Cmd Target Edge

Alternative Edge

Default Edge

Figure 2.4: Legend for Edge Visualisation

2.3.2 Basics
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2.4 Flow Control

Like other program languanges, carpeDM schedules support branches and
loops. There is no generic conditional conditional check when deciding
wether to take a branch though. Instead, a message inbox, the command
queue, is checked for new orders. This means that commands are queued
at the point in the graph where the change is to be made. To allow par-
rallel operation, there are as many command queues as there are points of
decision. Points of decision are always of the “block” type, but blocks are
not always points of decision.

2.4.1 Blocks and Changes during Runtime

For blocks to be used dynamically, they need to act as a sink for com-
mands. This is enabled by adding command queues to the block. Up to
three priorities are supported, forming a single priority queue. When a
block is processed, it will only ever execute a single command and will
always choose the highest priority pending.

Commands themselves are in fact command generators, each repre-
sents 0 . . . n repetions of a command. Although only certain command
type can be (sensibly) executed multiple times, all commands share the
generator trait. This means they are functions which have an internal
state (their repetition counter, aka quantity). Such a command genera-
tor will yield the same command every time it is executed until its quan-
tity reaches zero. Generators with a quantity of zero are exhausted and
popped from the queue. This behavior is required for the use of com-
mands as loop initialisers, see ??.
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BLOCK_IF

MSG_A0

BLOCK *

(a) if. . . then*

BLOCK_IF

MSG_B0

MSG_A0 BLOCK

(b) if. . . then, else

BLOCK_IF

MSG_B0

MSG_A0 BLOCK

MSG_C0

(c) case. . . with default

BLOCK_LOOP

MSG

(d) until . . . repeat

BLOCK_LOOPMSG

(e) repeat until . . .

BLOCK_LOOP

MSG

(f) while . . . do

BLOCK_LOOPMSG

(g) do while . . .

CMD_FLOW BLOCK_LOOPcmd target

flow destination

n

MSG

(h) for 0 ≤ i < n

CMD_FLOW

cmd target

flow destination

n

BLOCK_LOOPMSG

(i) for 0 ≤ i ≤ n

BLOCK_LOOP

(j) Simple wait loop

CMD_FLOW BLOCK_LOOPcmd target

flow destination

n

(k) Wait loop with timeout

Figure 2.5: Schedule cheatsheet

*Add optional blocks to achieve different durations of alternate paths
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2.4.2 Branches

TODO complete missing examples!
Using the flow command, blocks can temporarily or permanently change

their successor node. Figure 2.6 (exbranch.dot) shows a minimal example
containing two alternative branches. The default branch taken contains
the ’A’ nodes, and block BLOCK_BRANCH features a single low level
command queue (meta nodes shown for demonstration). Changing the
flow from the ’A’ to the ’B’ branch can be achieved by sending a command
to block BLOCK_BRANCH.

BLOCK_A1

BLOCK_BRANCH

BLOCK_B1

MSG_A0

MSG_B0

Figure 2.6: Example of simple branch

$ dm-sched <eb-device> add exbranch.dot
$ dm-cmd <eb-device> startpattern BRANCH
$ dm-sched <eb-device>

BLOCK_A1

BLOCK_BRANCH

BLOCK_B1

MSG_A0

MSG_B0

Figure 2.7: Default flow through ’A’ branch

1 digraph g {
2 name="BranchExample";
3 graph []
4 edge [type="defdst"]
5 node [cpu="0"];
6

7 MSG_A0 [type="tmsg", pattern="A", patentry="true", toffs = 0, fid=1, gid
=4048, evtno=1, par="0"];

8 BLOCK_A1 [type="block", pattern="A", patexit="true", tperiod=100000000];
9 MSG_B0 [type="tmsg", pattern="B", patentry="true", toffs = 0, fid=1, gid

=4048, evtno=2, par="0"];
10 BLOCK_B1 [type="block", pattern="B", patexit="true", tperiod=100000000];
11 BLOCK_BRANCH [type="block", pattern="BRANCH", patentry="true", patexit="true",

tperiod= 20000000, qlo="1", qhi="1", qil="1"];
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12

13 BLOCK_BRANCH -> MSG_A0;
14 MSG_A0 -> BLOCK_A1 -> BLOCK_BRANCH;
15 MSG_B0 -> BLOCK_B1 -> BLOCK_BRANCH;
16 BLOCK_BRANCH -> MSG_B0 [type="altdst"];
17 }

Listing 2.2: Branch

Calling dm-sched on a DM without any further parameters will auto-
matically call the status report, which will make the render script update
the graph image. The green fill in figure 2.7 shows that the DM followed
the red default edges as expected and executed the ’A’ branch at least once,
but did not enter the ’B’ branch. We can now change the flow by

$ dm-cmd <eb-device> flow BLOCK_BRANCH MSG_B0
#or
$ dm-cmd <eb-device> flowpattern BRANCH B
#followed by
$ dm-sched <eb-device>

BLOCK_A1

BLOCK_BRANCH

BLOCK_B1

MSG_A0

MSG_B0

Figure 2.8: Flow changed to ’B’ branch

We can see now that the DM changed the default path towards the ’B’
branch, the green fill showing it was executed.

2.4.3 Loops

BLOCK_A1 BLOCK_WAIT

BLOCK_B1

MSG_B0

MSG_A0

Figure 2.9: Wait Loop
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1 digraph g {
2 name="WaitLoopExample";
3 graph []
4 edge [type="defdst"]
5 node [cpu="0"];
6 MSG_A0 [type="tmsg", pattern="A", patentry="true", toffs = 0, fid=1, gid

=4048, evtno=1, par="0"];
7 BLOCK_A1 [type="block", pattern="A", patexit="true", tperiod=100000000];
8 MSG_B0 [type="tmsg", pattern="B", patentry="true", toffs = 0, fid=1, gid

=4048, evtno=2, par="0"];
9 BLOCK_B1 [type="block", pattern="B", patexit="true", tperiod=100000000];

10 BLOCK_WAIT [type="block", pattern="WAIT", patentry="true", patexit="true",
tperiod= 20000000, qlo="1"];

11

12 MSG_A0 -> BLOCK_A1 -> BLOCK_WAIT;
13 MSG_B0 -> BLOCK_B1 -> MSG_A0;
14 BLOCK_WAIT -> BLOCK_WAIT;
15 BLOCK_WAIT -> MSG_B0 [type="altdst"];
16 }

Listing 2.3: Wait Loop

The most basic example of command-controlled loop is an infinite loop.
It is executed until an incoming flow command orders the DM to leave the
loop. Figure 2.9 shows the setup. A Block with its default edge pointing
at itself is forming an infinite loop. Note that only blocks are allowed to
have themselves as a successor. The loop can be left by sending the block
a flow command, which will order the DM to the node Msg_CONTINUE.
The flow in the example is temporary, it does not change the default des-
tination. This allows the wait loop to be used again without further action
required. The period of wait loops must be chosen greater than the max-
imum time the DM’s scheduler requires to process the block. A value of
10 µs or more is recommended.

$ dm-sched <eb-device> add exwloop.dot
$ dm-cmd <eb-device> startpattern LOOP
$ dm-sched <eb-device>
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2.4.4 Default Pattern Example

BLOCK_A

MSG_A0 MSG_B0MSG_DEF

BLOCK_BBLOCK_DEF

Figure 2.10: Default pattern with two alternatives

1 digraph g {
2 name="DefPatExample";
3 graph []
4 edge [type="defdst"]
5 node [cpu="0"];
6

7 MSG_DEF [type="tmsg", pattern="DEF", patentry="true", toffs = 0, fid=1, gid
=4048, evtno=0, par="0"];

8 BLOCK_DEF [type="block", pattern="DEF", patexit="true", tperiod= 20000000, qlo=
"1"];

9 MSG_A0 [type="tmsg", pattern="A", patentry="true", toffs = 0, fid=1, gid
=4048, evtno=1, par="0"];

10 BLOCK_A [type="block", pattern="A", patexit="true", tperiod=100000000, qlo="1
"];

11 MSG_B0 [type="tmsg", pattern="B", patentry="true", toffs = 0, fid=1, gid
=4048, evtno=2, par="0"];

12 BLOCK_B [type="block", pattern="B", patexit="true", tperiod=100000000, qlo="1
"];

13

14 MSG_DEF -> BLOCK_DEF -> MSG_DEF;
15 BLOCK_DEF -> MSG_A0 [type="altdst"];
16 BLOCK_DEF -> MSG_B0 [type="altdst"];
17 MSG_A0 -> BLOCK_A -> MSG_DEF;
18 BLOCK_A -> MSG_A0 [type="altdst"];
19 BLOCK_A -> MSG_B0 [type="altdst"];
20 MSG_B0 -> BLOCK_B -> MSG_DEF;
21 BLOCK_B -> MSG_A0 [type="altdst"];
22 BLOCK_B -> MSG_B0 [type="altdst"];
23

24 }

Listing 2.4: Default pattern with two alternatives

Based on the examples of branches and simple wait loops, we can con-
struct a scenario using a default pattern and alternative patterns which
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will only be played on request. The basic principle is the same as the wait
loop, with the difference of the loop being a productive sequence. This is
a common case for FAIR, where a default pattern is played whenever no
beam requests are demanding other patterns (d-d-d-d-A-d-d-A-B . . . ).

You might have noted that we did not start the DM this time, but still
issued the flow command. It will lie in wait inside the default patterns
command queue until the block is evaluated. The command line tools also
provide a way to take a peek at the queue content. Using the following
command

$ dm-cmd <eb-device> queue BLOCK_def

Inspecting Queues of Block BLOCK_DEF
Priority 2 (prioil) Not instantiated
Priority 1 (priohi) Not instantiated
Priority 0 (priolo) RdIdx: 0 WrIdx: 1 Pending: 1
#0 pending Valid Time: 0x1523c7a1dd6e1200 CmdType: flow

Permanent: NO Qty: 1 BLOCK_DEF --> MSG_A0
#1 empty -
#2 empty -
#3 empty -

Listing 2.5: Output of dm-cmd queue inspection

carpeDM will list the content of all queues for the given block name,
the result will look similar to listing 2.5. Because the DM was not told to
run the schedule yet, we can see the flow command as still pending. We
can also see that the change is temporary (not permanent), and the last col-
umn tells us that the flow goes from the default pattern exit (BLOCK_DEF)
to the entry of pattern ’A’ (MSG_A0).

This leaves the ’valid time’ and ’Qty’ properties. The valid time of a
command specifies the WR time in ns after which a command is valid for
evaluation, meaning the DM will not process it before that time. If the ele-
ment at the front of a queue is not valid yet, no other queued elements will
be evaluated neither. This also hold down the priorities: if the high prior-
ity queue is not empty but not yet valid, the low priority queue will also
not be serviced. The repetition quantity (qty) specifies the number of times
this element will yield the command it carries before it is exhausted and
popped. In our example, the quantity is 1: the command will be executed
once, then the containing element will be popped from the queue.
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2.5 Static Commands

2.5.1 Concept

In the previous section, schedule behaviour was influenced solely from
the outside. It is also possible to integrate commands into the schedule
itself, allowing for a large number of new possibilities. This can be used
as loops with initialisers (for), executing the following sequence n times.
Another use is synchronisation, where one schedule is in a wait loop it will
exit on the command from another schedule reaching the sync point. This
approach can of course also be mixed with external commands, allowing
for example for wait loops with a timeout.

2.5.2 Access Management

Static commands introduce a possible race condition within the DM, be-
cause the 1:1 relationship between command producers and consumers is
no longer valid. There could be as as many producers per Queue as there
are DM CPUs plus the host. This means that simultaneous access to a
queue will create a conflict which must be handled. To prevent the race
condition, a locking mechanism had to be introduced.

• Host: manages, sets and removes locks

– always has priority when writing

– must lock queue before write access

– must verify DM CPUs obey set lock

– does NOT manage producer–consumer constellations!

• DM CPUs: obeys locks

– Locks are non-blocking

– treat static commands to a write-locked block as Noop

– skip queues of read-locked blocks, use default successor

Mechanism The command queue lock is a spin lock variant, using a
hitherto reserved word within the block’s data structure for lock flags and
the command queue’s read/write indices as indicators of activity. Lock-
ing of individual queues of a block is not possible, because all read or
respectively all write indices are located in a single data word. Updating
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the indices of different priorities from the host side would therefore still
access the same word and cause a race condition. Lock flags are read-
/write to the host and read only to the DM. Not all modules can be com-
bined as producers and consumers of commands when sharing a block-
/queue. There are several valid combinations which will produce orderly
behaviour. As mentioned in the above list, it is not the responsibility of the
host (ie. Generator FESA class with carpeDM library) to assign or validate
the constellation of command producers and consumers per block. This
task lies solely with schedule (LSA) and command generation (Director).
The following constellations are valid:

Producer Consumer Lock required
Host DM Cpu RD*
DM Cpu DM Cpu –
Host & DM Cpu DM Cpu RD* & WR
EB Slave (UNI-GW) DM Cpu –
EB Slave (B2B) DM Cpu –

Sequence The host sets a lock, and checks the queue indices in regular
intervals until no more changes are observed between checks. It is then
certain that all ongoing DM actions (which might have been begun before
the lock flags were visible) are concluded. The duration of host actions ms
is three to four orders of magnitude longer than DM actions (µs), so a wait
time in the low millisecond range between checks is sufficient. Once the
lock flags are certain to be visible, the DM firmware will ensure that the
locked block’s queues are not modified. After the host has written to the
queue, it clears the block’s lock flags, allowing the DM to modify queues
again.
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2.5.3 Counter Loop Example

BLOCK_LIN2

BLOCK_LOUT2
MSG_LIN1

CMD_LOUT0 MSG_LOUT1

CMD_LIN0

Figure 2.11: Counter Loop

1 digraph g {
2 name="CounterLoopExample";
3 graph []
4 edge [type="defdst"]
5 node [cpu="0"];
6 CMD_LOUT0 [type="flow", pattern="OUTER", patentry="true", toffs = 0, tvalid

=0, qty=3, prio="0"];
7 MSG_LOUT1 [type="tmsg", pattern="OUTER", toffs = 0, fid=1, gid=4048, evtno

=1, par="0"];
8 BLOCK_LOUT2 [type="block", pattern="OUTER", patexit="true", tperiod

=100000000, qlo="1"];
9 CMD_LIN0 [type="flow", pattern="INNER", toffs = 0, tvalid=0, qty=2, prio=

"0"];
10 MSG_LIN1 [type="tmsg", pattern="INNER", toffs = 0, fid=1, gid=4048, evtno

=2, par="0"];
11 BLOCK_LIN2 [type="block", pattern="INNER", tperiod=100000000, qlo="1"];
12

13 CMD_LOUT0 -> MSG_LOUT1 -> CMD_LIN0 -> MSG_LIN1 -> BLOCK_LIN2 -> BLOCK_LOUT2 ->
CMD_LOUT0; //

14 BLOCK_LOUT2 -> MSG_LOUT1 [type="altdst"];
15 CMD_LOUT0 -> BLOCK_LOUT2 [type="target"];
16 CMD_LOUT0 -> MSG_LOUT1 [type="flowdst"];
17 BLOCK_LIN2 -> MSG_LIN1 [type="altdst"];
18 CMD_LIN0 -> BLOCK_LIN2 [type="target"];
19 CMD_LIN0 -> MSG_LIN1 [type="flowdst"];
20 }

Listing 2.6: Counter Loop

As described in 2.4.4 on page 29, commands come with a repetition
quantity, specifiying how often they can be executed before they are popped
from the queue. When the command is integrated into the schedule, this
can used as a loop initialiser, similar to the head of a for-loop. Since each
block has its own counter, there is no need for a stack to keep track of
the variables. This allows nesting of several loops. The example in fig-
ure 2.11 sets up a nested loop, where the whole pattern runs infinitely,
the outer loop executes 3 times and the inner loop executes 2 times per
iteration. Line 13 nicely shows that the whole schedule is actually very
simple, stringed together by the red default destination arrows like beads
on a chain. Only once the commands get executed, there are several loops
to go through.
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It is obvious that the initialiser must only be called when there are
not more repetitions of its command left, as it would otherwise flood the
queue. This also means that you must not jump into or out of loops with-
out flushing the corresponding queues.

2.5.4 Timeout Loop Example

BLOCK_A1 CMD_WAIT_TO

BLOCK_B1MSG_A0

BLOCK_WAIT MSG_B0

Figure 2.12: Timeout Loop

1 digraph g {
2 name="TimeoutLoopExample";
3 edge [type="defdst"]
4 node [cpu="0"];
5 MSG_A0 [type="tmsg", pattern="A", patentry="true", toffs = 0, fid=1, gid

=4048, evtno=1, par="0"];
6 BLOCK_A1 [type="block", pattern="A", patexit="true", tperiod=100000000];
7 MSG_B0 [type="tmsg", pattern="B", patentry="true", toffs = 0, fid=1, gid

=4048, evtno=2, par="0"];
8 BLOCK_B1 [type="block", pattern="B", patexit="true", tperiod=100000000];
9 CMD_WAIT_TO [type="flow", pattern="WAIT", patentry="true", toffs = 0,

tvalid=0, qty=50000, prio="0"]; //50000*20us = 10s
10 BLOCK_WAIT [type="block", pattern="WAIT", patexit="true", tperiod= 20000000,

qlo="1", qhi="1"];
11

12 MSG_A0 -> BLOCK_A1 -> CMD_WAIT_TO -> BLOCK_WAIT -> MSG_B0 -> BLOCK_B1 -> MSG_A0
;

13 BLOCK_WAIT -> BLOCK_WAIT [type="altdst"];
14 CMD_WAIT_TO -> BLOCK_WAIT [type="target"];
15 CMD_WAIT_TO -> BLOCK_WAIT [type="flowdst"];
16 }

Listing 2.7: Timeout Loop

A timeout loop is similar to the wait loop from 2.4.3 on page 26, it
will exit on command, but it will also terminate after a given number of
iterations (timeout). This can be achieved by using an initialiser to set up
the time out, and then invert the exit logic: leaving the loop is now the
default behaviour. Similarily, the command to exit is different: instead
of issueing a flow command to leave the loop, we now issue a command
to make the schedule stop staying inside the loop. Therefore, sending a
flush command to the medium priority clearing the low priority (where
the static flow went) will leave the loop before the timeout. The actual
magic then happens in line 9, setting the length of the timeout to qty ·
period.
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2.5.5 Alternation with Default Pattern Example

BLOCK_LIN2

BLOCK_LOUT2
MSG_LIN1

CMD_LOUT0 MSG_LOUT1

CMD_LIN0

Figure 2.13: Alternating Counter Loop

1 digraph g {
2 name="CounterLoopExample";
3 graph []
4 edge [type="defdst"]
5 node [cpu="0"];
6 CMD_LOUT0 [type="flow", pattern="OUTER", patentry="true", toffs = 0, tvalid

=0, qty=3, prio="0"];
7 MSG_LOUT1 [type="tmsg", pattern="OUTER", toffs = 0, fid=1, gid=4048, evtno

=1, par="0"];
8 BLOCK_LOUT2 [type="block", pattern="OUTER", patexit="true", tperiod

=100000000, qlo="1"];
9 CMD_LIN0 [type="flow", pattern="INNER", toffs = 0, tvalid=0, qty=2, prio=

"0"];
10 MSG_LIN1 [type="tmsg", pattern="INNER", toffs = 0, fid=1, gid=4048, evtno

=2, par="0"];
11 BLOCK_LIN2 [type="block", pattern="INNER", tperiod=100000000, qlo="1"];
12

13 CMD_LOUT0 -> MSG_LOUT1 -> CMD_LIN0 -> MSG_LIN1 -> BLOCK_LIN2 -> BLOCK_LOUT2 ->
CMD_LOUT0; //

14 BLOCK_LOUT2 -> MSG_LOUT1 [type="altdst"];
15 CMD_LOUT0 -> BLOCK_LOUT2 [type="target"];
16 CMD_LOUT0 -> MSG_LOUT1 [type="flowdst"];
17 BLOCK_LIN2 -> MSG_LIN1 [type="altdst"];
18 CMD_LIN0 -> BLOCK_LIN2 [type="target"];
19 CMD_LIN0 -> MSG_LIN1 [type="flowdst"];
20 }

Listing 2.8: Alternating Counter Loop

While making two alternating patterns is a trival matter of setting their de-
fault destinations to each others entry points, alternating sequences mixed
with the default pattern (d-A-d-B-d-A-d-B-. . . ) are a more interesting case.
Figure 2.13 shows how to achieve this with static flow commands inside
the alternative patterns: The default pattern will run in a loop. If made to
flow to pattern A, pattern A will then send a command to the default pat-
tern to go to pattern B next. After one execution of the default pattern, B is
executed, sending a command to the default pattern with pattern A as the
successor, and so on. To leave this sequence, one would send a flush com-
mand to the default pattern at medium priority, after which the schedule
would loop the default pattern.
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Chapter 3

Offline Schedule Validation

3.1 Schedule Structure Validation

Schedules in carpeDM are built according to a given set of rules. Com-
pliance is checked whenever a schedule graph in dot format is handed to
carpeDM as a schedule action. Checks are made on different levels, such
as node (unique name, consistent and complete set of properties, etc...),
neighbourhood (types and numbers of neighbours a node can have), struc-
ture (sequences must have a terminating block, etc...)

The action a schedule comes with (add, keep, remove) is also important
as context to determine if the given schedule is valid. For example, remov-
ing pattern X from the global graphs existing pattern set of X,Y is fine, but
adding a redundant X is not. Likewise, adding the pattern Z to the set of
X,Y would be okay, removing the (not yet existing) Z from X,Y is not.

carpeDM therefore validates all given dot graphs for their purpose and
aims to give an elaborate reason in its feedback when a schedule is re-
jected. This chapter presents the details of the schedule validation scheme
and lists part of the implementation.

3.1.1 Validation on creation

Following is the list of rules carpeDM applies when validating schedules.
The ruleset is split in a part applying to “real” nodes and a part only apply-
ing to meta data nodes, which are not included in the standard schedule
output. Those nodes contain data for internal use by carpeDM.
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Rules for real nodes

• Sequences

– Real nodes are timing messages, commands and blocks

– A sequence is a set of real nodes connected by default destina-
tion edges

– Sequences can be connected to other sequences by default or
alternative destination edges

– The maximum number of alternative destinations is 9 (subject
to change in future)

– All sequences must be terminated by a block

– All real nodes except blocks must have a default successor

– Only blocks are allowed to have themselves or none (idle) as
default successor

– The shortest possible sequence is a lone block

– Sequences can form infinite loops

– Time offsets within a sequence must be in ascending order

– The max. time offset in a sequence must be less than its block’s
period

– Sequences connected by default or alternative destination edges
must reside on the same CPU

• Patterns

– Patterns must have exactly one entry and one exit point (might
be subject to change in future)

– Pattern entry points can be timing messages, commands or blocks

– Pattern exit points must be blocks

– All of a patterns nodes must reside on the same CPU (might be
subject to change in future)

• Branching

– Branching requires a block with at least one queue

– Stopping (unlinke aborting) is branching to idle

• Commands
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– Commands always target blocks, but the target can be empty

– All commands can target blocks on own or other CPUs

– Flow command destinations must either be real nodes or empty

– Flow command destinations must be on the same CPU as the
target block

– Flow commands cannot initialise a loop they are a part of

Facts about meta nodes

• Only blocks can have meta nodes, allowed are 0-3 queue buffer lists
and 0-1 destination list (subject to change in future)

• Only queue buffer lists can have queue buffers, 2 are currently manda-
tory

• Management nodes contain compressed node names, group mem-
berships and/or covenant data. Cannot be created manually

Guidelines

• To add queues, just list the priorities you want. carpeDM will handle
the overhead of meta node creation for you

• If a block has exactly one successor, don’t add queues, this saves
space

• carpeDM will automatically add a destination list to a block if any
alternative destinations are present

• When using commands in schedules, 99.9% of the time you will need
them ASAP (vabs=true, tvalid=0)

• Only define meta nodes manually if you know exactly what you are doing!
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3.1.2 Validation on change

Rules for add

• An add is a list of nodes and edges to be added and is a dotfile by
itself

• You cannot overwrite existing nodes, edges or their attributes using
add. Remove them first, then add new versions

• If the addition is connected to existing nodes, only specify the edges
to those nodes, not the nodes itself

• You cannot add outgoing edges to active schedules except alterna-
tive destinations. See chapter 4 for details on online verification

Rules for remove

• A remove is a list of nodes and edges to be removed and is a dotfile
by itself

• All nodes listed for remove must exist in the DM graph

• All edges leading in or out of removed nodes will also be removed

• You cannot remove nodes from an active schedule. See chapter 4 for
details on online verification

Rules for keep

• A keep is a list of nodes and edges to be kept and is a dotfile by itself

• A keep is a remove of the difference set of the keep set and the DM
graph

• All nodes listed for keep must exist in the DM graph

• You cannot keep edges without keeping their nodes

• All edges leading in or out of not-kept nodes will also not be kept

• You cannot not-keep nodes from an active schedule. See chapter 4
for details on online verification
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3.1.3 Intentional late message generation

It is possible to create late timing messages on purpose for debugging.
This can be achieved by specifying negative time offsets for individiual
timing messages. The negative offset must have an absolute value greater
or equal the normal (as in “fitting into the ascending sequence”) time off-
set. Such a debugging schedule is in violation of the rule set and will be
rejected by carpeDM. To force the acception, you must set the force flag in
the Generator FESA class (on CLI, run dm-sched with “-f” option).

$ dm-sched <eb-device> add -f <late-message-dot.dot>

3.1.4 Summary

The offline verification rule tables and algorithms make sure only valid
schedule data will be accepted for upload to the DM. All of the rules listed
above except the ones about active schedules in subsection 3.1.2 are inde-
pendent of current DM activity and therefore evaluated “at compile time”
of the schedule. The only exception is the use of absolute time values
within schedules, which could become obsolete before upload is achieved.
There is currently (≤ v0.27.1) no safeguard against the use of stale absolute
times. Almost all of the rules are not solely good practice, but absolutely
necessary to achieve expected behaviour of the DM firmware. However,
for certain debug cases, it is possible to bend the rules somewhat without
causing havoc in the DM hardware.
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Chapter 4

Online Schedule Modification
and Safeguards

4.1 Overview

4.1.1 Problem Definition

During runtime, schedules often need to be modified. A trim is a per-
fect example of a measuring loop, which will iteratively change schedule
data. There two systems which simultaneously access the DM’s memory
– the high level host side and the DM realtime system. Any schedule data
which is currently in use by the realtime system cannot be modified by
the host without causing undefined behaviour. It is therefore important to
determine wether and when modifying a schedule is safe.

Data basis Knowing which schedule data is actively used in the DM is
therefore of paramount importance in the decision wether a schedule can
safely be modified. Since the host system can only ever be broadly aware
what the DM RT system is executing at any given time, discerning be-
tween active and inactive schedule data is not as trivial as it might sound.
We will refer to all objects (schedules, paths, edges, nodes) that must not
be used during safe manipulation as critical.

The available data consists of the complete schedule graph, the con-
tent of all command queues and the cursor positions, which mark which
nodes of which the schedules the DM was executing. Because a lot of this
data in the DM RT system can change during processing time and even
during the data acquisiton itself, the memory image obtained by the host
is suffers from a sort of “motion blur”, which must be considered. A valid
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approach must divide the data into conditions proven to be present, con-
ditions proven not to be present and use the worst possibly outcome for
any ambiguous cases.

Testing for Safety Safety means guaranteed inactivity. In order to give
a guarantee on the basis of an inconsistent data set, all time factors (ex-
ecution times, race conditions, atomicity...) must be eliminated from the
verification process. It is easy to see that a schedule is active if a cursor is
currently pointing to one of its member nodes. Considering the “motion
blur” and our own processing time, the cursors might also already have
left the schedule in question - the case it ambiguous and the worst case to
be used is the cursor still being inside. Likewise, seeing the cursor out-
side a schedule is no guarantee for its inactivity. A cursor might well have
entered it again just after we had a look. . .

4.1.2 Possible Approaches

Several approaches to modifying a schedule safely were investigated, all
of which have pros and cons in terms of the dimensions Safety – Speed –
Low Memory Req..

• The first is the first write a new version of the schedule in question,
command the DM tw switch over to it. After assertaining the DM
has left the obsolete version, it can be removed. From a runtime
perspective, this is the safest and fastest method. However, there
are drawbacks: Because essentially a copy is created (albeit slightly
modified), twice the space of the original is required. And because
it is uncertain when the DM will have left the obsolete version (pos-
sibly hours), this requires an asynchronous garbage collector on the
host side.

• The second method is as safe as the first, more memory efficient,
but also often much slower. The DM is redirected to another (safe)
schedule, and once it is certain the DM has left the obsolete schedule
and has no possibility of re-entry, it is removed. The new version is
then written and the DM is commanded to use the new version. This
is very space efficient, but verifiying that the schedule to be removed
cannot be entered again is very challenging. Waiting for the DM to
leave areas that could reconnect to the obsolete schedule can take up
a lot of time (in the case of ESR, this could take hours). The details
are described in subsection 4.2.
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• The third method is a hybrid approach. Sacrificing some safety mar-
gins allows combining the speed of the first approach with the low
memory requirement and simple management of the second. By ex-
trapolating future DM behaviour from command queue content, it
is possible to eliminate certain static paths from considerations. This
often allows safe removal of the schedule almost immedately, but
comes at a price. The prediction will only hold true if the content of
the involved command queues is not changed. The requesting party
therefore enters a covenant with carpeDM once it removes the sched-
ule in question. The covenant contains a list of command queues and
their priorities which must not be modified or preempted, otherwise
there will be undefined behaviour. Once all critical queue content is
processed, the covenant is fulfilled. Details are described in subsec-
tion 4.3.

• The fourth method is radically different to the other three, as it mod-
ifies queues within an active pattern. To do this, lock bits are set
for the block, ordering the DM to refrain from reading or writing
queues associated with this block. This by far the the fastest method
to communicate changes to the DM in a safe manner, but also the
most invasive. The problem can be seen in the definition of “safety”.
The approach will not cause undefined behaviour, but can suppress
commands originating within the DM. 4.3.
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4.2 Equivalent Static Model

The possibility of future cursors positions being inside the critical schedule
makes it necessary to inspect all possible paths leading into the schedule
(that it, to its entry point). A time invariant representation of the sched-
ule with all of its static and dynamic links must be created and checked
against the cursor positions. If a cursor is within the schedule or if a path
from a cursor to the entry point exists, the schedule must be seen as ac-
tive which makes removal unsafe - it is not to be touched. Likewise, if
there is no cursor inside and no path to the entry point can be found, the
schedule is inactive and can thus be safely removed. To draw any kind of
usable conclusions, the director must remain silent once the verfification
is in progress, so no more commands are entering the system. Any asyn-
chronous external devices issueing commands such as the UNIPZ gate-
way must only write to their own uncritical schedules or remain silent.

Handling inconsistency in memory snapshots Reading out the data from
several processors will lead to an inconsistent image of the current DM
state. Depending on the type of objects, there are different appropriate
methods to deduce facts about the state from of the available data.

• Default Successor Edges are definite if the edge’s parent is not a block
with commmand queues. However, if that is the case, then the de-
fault successor is ambiguous and queue content must be considered.
If the default successor of the block can be changed temporarily or
permantently by its queue content, both the old and the new edge
must be used.

• Qeue Content is handled by both the DM and the host. They use
the read and write indices of the queues’ ring buffers to synchronise
their access. Only the host can write new elements and modifiy-
ing the indices is always the last action in any queue access for both
sides. When reading the verification data, the first action of the host
is always to get the current WR system time. All commands written
by the host must bear a current valid time (the moment in time af-
ter which the command is valid). This means that we can tell by the
indices which commands are definitely consumed already and by
the valid times which commands are definitely not consumed yet.
All others must be seen as “possibly consumed”, which means using
their worst possibly impact.

46



• Cursors are the most “blurry” data objects which are read during ver-
ification. A cursor therefore can be seen not as a single node, but as
a subtree of nodes originating at the observed cursor location and
spreading to all reachable nodes. If the entry point would be found
within the set of nodes formed by the cursor subtrees, it follows that
the schedule is active. This makes the approach independent of the
progress of the cursors since observation.

The used implementation is in fact the inversion of the cursor sub-
tree approach just described: a single subtree is constructed from the
entry point of the schedule backwards, intersection with any cursor
node shows the schedule is active.

4.2.1 Path Analyses

Static The most basic form of analysis considers only static (default suc-
cessor) paths, all other forms of connections are removed to simplify the
graph. The reverse tree originating at the entry of the critical schedule
is itself critical. If a cursor is inside the tree, it can reach reach the entry,
making the schedule active and thus unsafe to modify.

Dynamic Static path analysis would not yield correct results in the pres-
ence of commands changing the flow through the graph at runtime. To
cover this, the queue content must be analysed for flow commands. This
not only covers the dynamic commands actually present in queues at read-
out, but also those which can be generated by resident flow commands.
Those are flow commands which are part of the schedule.

Virtual paths To still allow the use of graph algorithms, dynamic changes
must be modeled in a way that can be handled by such methods, which
means a static equivalent graph using virtual edges. These show all pos-
sible paths resulting from commands and can be analysed for intersection
just as the static graph. However, there is a corner cases to consider, which
is resident flow commands. They also must be represented by a virtual
edge, but only if the block the virtual edge would originate from is within
the limits of nodes which can be reached by a cursor.

Iterative construction of virtual paths Dynamic links only become real
if the block is actually ever visited by a cursor. Therefore, not all queue
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content is worthy of consideration, all dynamic commands and static com-
mand generation which cannot be reached by any cursor are of no conse-
quence. To be considered as valid virtual path(s), the reverse tree originat-
ing at any block with generated commands must have a connection to at
least one cursor.

Reverse Tree and Intersection After the removal of all non-path edges
and the addition of all virtual paths, the result is a equivalent static graph
model (ESM). Using the entry point of the schedule to be removed as the
start, the reverse tree is then constructed, going against edge direction and
mapping all nodes connected by default or virtual paths. Loops in the
tree are detected. Furthermore all member nodes of the schedule to be
removed are added. This forms the complete set of nodes which have a
connection to the entry point. If there is an intersection of this set with the
set of cursors, the schedule is not safe to remove.

4.2.2 Orphaned command handling

When removing a schedule, a severe side effect can occur in inactive sched-
ules. The queued commands of inactive schedules are ignored in the safety
assessment, as they do not have an impact on the outcome. It follows
that all flow commands pointing from inactive schedules to the critical
schedule would become orphans when the critical schedule is removed,
as their destination suddenly ceases to exist. If the inactive schedule is
ever reactivated and its queue processed, this will cause undefined be-
haviour. Simply removing orphaned commands from queue buffers is not
an option though, because the ring buffers cannot contain gaps. While this
problem could be overcome by moving all other elements, there is a more
elegant solution available. By setting the repetition counter of orphaned
commands to 0, the command is no longer invalid but instead acts as a
Noop instruction. It will then be normally processed and popped from
the queue without further consequences.

4.2.3 Visual Reports

The implementation is capable of creating visual reports for the reasoning
behind a found decision. This is achieved by colorisation of all traversible
paths to entry points of the schedule to be removed in red, as unsafe.
This is handled inside the static equivalent model, the worst case scenario
where all possible future connections are treated as existent. The execution
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cursors, or rather, the last known node positions of them, are coloured in
as well. If any happens to be inside an unsafe area, the conclusion is that a
cursor could currently be inside the schedule to be removed or enter it in
the near future. This allows humans to easily follow the connections be-
tween nodes with their eyes, even in large patterns. The colorisation gives
a simple yet effective distinction of territory.

4.3 Enhanced Equivalent Static Model
(aka “crystal ball”)

4.3.1 Problem Definition

The observed trouble with the approach described in section 4.2 is the
blocking nature of the process. The resulting wait times can encompass
all schedule duration encountered before. In the case of long schedules (
T � 100 ms ), this becomes a severe hindrance for trimming, not to men-
tion the de facto freeze the ESR’s schedules with a duration of hours or
days would cause. This effect will always come into play if there are sev-
eral long schedules preceding one that is used to redirect the DM away
from the schedule to be removed. Before the command for redirection is
not consumed, there is no possibility of guaranteeing safety. An approach
to make this verification non-blocking had to be found.

4.3.2 Contextual inconsequence of default successors

If a default successor edge is a connection between a cursor and the entry
point, it is tipping the scales toward the verdict “unsafe”. The main issue
hinges on the fact that dynamic changes to default successors are executed
at the time their block is visited by a cursor. This means the change can
come into effect a long time after the corresponding command was issued,
causing the aforesaid wait times. The crucial question is therefore if the
change to the default successor edge can already be considered a fact at
the time the command is present, thus skipping the wait time to command
processing. Found optimisations are expressed in the resulting ESM by re-
moving the corresponding default edges and replacing them with dashed
auxiliary edges.

Continuous successor override A default edge can be optimised away
if the DM can never take that path. This is the case if the default successor
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is either permanently changed to a safe schedule or changed to idle. In the
latter case, permanent or temporary change type is irrelevant, as a cursor
cannot return from idle without outside intervention. We will thus also
consider idle as a permanent change.

However, there may be more than one command present in the queue(s),
and each visit by a cursor will only consume one charge of the top element.
If the default destination is never to be used, it means that it must be con-
stantly overridden by queued commands until the permanent change is
reached. Since only flow commands can override the default, it follows
that the presence of any other command type before the permanent change
forbids optimisation.

Command order of precedence The order in which commands are exe-
cuted depends on the priorities of the queues they have been written to.
Highest priority present is always emptied first, the maxmimum queue
length is 12 elements (4 x High, 4 x Mid, 4 x Low). It follows that once
an optimisation is found and deemed a contribution to a “safe” verdict,
any preemption of the containing queue is forbidden. This includes fill-
ing higher priorities with non-flow commands and the static flush option,
which allows the host to asynchronously clear a queue.

4.3.3 Finding contributing optimisations

To find the queues to be protected for a safe schedule removal, it is neces-
sary find which of the optimisations contributed to the positive outcome.
The basic assumtpion is that any path leading to the entry point containing
optimised edges can be optimised, it depends on all commands causing
the traversed optimised edges the corresponding queues must therefore
be protected. However, if such a path can be circumvented by another, the
corresponding queues is irrelevant and should not be protected. A scheme
had to be found which not only maps the optimisation depencies, but also
preferably works with the intersection set test introduced in 4.2.1.

Dependency Mapping The dependencies are the traversed optimised
edges in critical paths (as in leading to the entry point). This is ultimately
equivalent to the queues to be protected, which means the identifier of the
block at the origin of the optimised edge. Because critical paths can de-
pend on one another or be mutually exclusive, it is necessary to analyse all
paths in parallel and accumulate their dependencies. To achieve this, the
crawler once again creates the reverse tree originating from the entry point
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and propagates an individual set of dependencies along each branch, the
content depending on the encountered edges. This means each node is as-
signed a set of all depencies encountered on route from the entry point to
itself. As long as a default or virtual edge is traversed, a null identifier is
added and propagated. When an optimised edge is traversed, the identi-
fier of its source block is added to the dependency set and the propagated
value is changed to the block identifier. This means only paths which de-
pend on at least one optimisation will not carry null identifiers. If a node is
reachable over multiple paths, all propagated identifiers will accumulate
there.

Enhanced Intersection Test After the dependencies are mapped, we can
once again check for the intersection between the reverse tree and the cur-
sors. This time, however, there is an added twist to the process: Only the
tree nodes whose dependency set contains a null identifier are considered
when testing for safety, as they represent the critical paths. For all other
members of the intersection set, their individual dependency set will show
which queues must be protected in order to exploit the optimisation.

4.3.4 Covenants

The union of all dependency sets of non-critical intersections form a set of
important commands. It allows the user to immedately remove the sched-
ule in question in exchange, provided he does not preempt or delete any
of the listed commands. The list is employed as covenants with the user
(LSA / Director). Removing (by remove or keep command) the schedule
will call the safe removal verfication and seal all associated covenants on
success. Requesting verfication on its own has no lasting consequences.

Covenants contain the block identifier, the queue priority and a check-
sum of their command. They are written to the DM memory as part of
the management data and are automatically checked with each download
operation and updated with each upload. If the contained command has
been consumed, a covenant has been fulfilled and is removed. carpeDM
will reject requested operations which would break a covenant in order to
prevent undefined behaviour of the DM. Override can be forced if deemed
necessary at the user’s own peril. Like with all forced operations, the cir-
cumstances of the incident will be reported for later review.
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4.3.5 Handling cursor to queue race conditions

Validity of Commands When interpreting the DM’s memory image, we
have talked in depth about the blurriness of observed cursors. Yet another
side effect of this comes into play when using the enhanced safe2remove
alogrithm, because before now, all that was considered were worst cases.
When interpreting queue content, this meant every element could be valid
and was therefore added as an edges. This was the worst case, as the pos-
sible maximum of edges which could lead into critical areas were consid-
ered, no matter the order of execution. Since incrementing a queues read
index is atomic and always the last action executed by the DM firmware
before proceeding, it is known for certain that all elements seen as popped
are indeed consumed. There might be less unconsumed elements than
obeserved, but certainly not more, thus erring on the safe side.

Now, however, the enhanced approach goes in the other direction, try-
ing to shave something off the conservative first assessment. The question
is therefore: Under which circumstances can queue elements be ignored?

When to ignore queue elements There are some possible answers to
this, one might be that everything on lower priority than a flush command
can be treated as void, for example. This is something not currently used,
but should be investigated in the scope of future work (as of 22.10.2018).

Yet another (implemented) approach is comparing the valid-timestamp
of an element to the time at which the cursors were read. If read time is
lower than an encountered valid time, the corresponding element is not
available now and might still not be when the cursor arrives at this block.
A valid-timestamp ≤ read-time is thus a necessary condition to readjust
the conservative assessment by overriding a critical default destination.

As an example, let us assume the element at the front of the queue is a
flow command, changing the block’s critical default destination to a safe
alternative, so it would make removal of the schedule safe. But because
it’s valid time is not yet reached, the outcome is uncertain - the command
might or might not override the default destination. Because the analysis
is not to rely on execution times, this flow command cannot be used as
justification for an optimisation at this point.

4.4 Summary

A reliable means of telling if a schedule branch is inactive is a core require-
ment for safe changes to schedules during runtime. Doing such changes
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blindly on an active schedule would run into several race conditions with
severe consequences in terms of pointer errors and following memory
corruption. A verification algorithm able to tell if a schedule is inactive
and therefore safe to remove was created. The second and third approach
listed in ?? were implemented.

Equivalent static model This approach creates a time-invariant equiv-
alent model, the ESM, from the original graph. In combination with the
cursor positions in the DM, a safety assessment for the schedule removal
is possible. The ESM is obtained by stripping the original graph of all
but the default successor edges and adding virtual paths representing all
flow commands in queues. Further virtual paths are iteratively added
for all resident flow commands reachable by the current iteration of the
model. The virtual path scheme provides a representation of flow com-
mands which is independent of the time the command queues were ob-
served. In the resulting ESM, the reverse tree originating from critical
schedule’s entry point can be mapped. If an intersection with the set of
cursors is found, the schedule is active and therefore unsafe to remove.
This result is independent of the cursor’s progress since their observation
time.

The approach was proven to be valid by simulation for 3 fully con-
nected patterns (full coverage). The drawback was, as estimated, the block-
ing behaviour of the algorithm, producing possible wait times for a posi-
tive result in the dimensions of the longest pattern involved.

Enhanced Equivalent static model The enhanced verification algorithm
was based on the ESM, augmenting it by replacing critical static links in
the ESM with safe dynamic overrides. This requires a dynamic, permanent
override (flow command) to a safe alternative destination to be present at
the front of the queue or preceded by an unbroken chain of safe temporary
overrides. Either allows immediate removal of the schedule in question;
the involded queues must not be preempted until the crucial override to
safety is executed. These promises have been named covenants and are
automatically managed and enforced by carpeDM.

The algorithm was also proven to be valid by simulation for 3 fully
connected patterns (full coverage). Wait times from the first approach
were eliminated in exchange for compliance of the user with all active
covenants. This is the standard for carpeDM ≥ v0.18.0.
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Chapter 5

Offline Resource Analysis

5.1 Memory Load

5.1.1 Problem Definition

Memory is a sparse resource in the DM, as it completely resides within
the FPGA. Each CPU is assigned its own dual port memory containing all
schedules this CPU executes. CPUs can technically also execute schedules
residing outside their own memory. However, shared bus access is severe
a bottleneck and source of non determinism, so this approach should be
avoided at all costs. The consequence is that the assignment of schedules
to CPUs has to be carefully planned to maximise resource utilisation.

5.1.2 Graph Data

5.1.3 Meta Data

The overhead data present can be divided into two categories.
The first is directly linked to the schedule on a local basis and will be

called schedule meta data. Their meta data forms distinct entities per node
and can be read just like any other schedule node. These come in the
following varieties:

• Alternative destination list

• Queue buffer list

• Queue buffer

The second type contains meta data important to all schedules as a
whole and is referred to as management data. Contrary to schedule data,
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management data is compressed and the archive is spread across the linked
list of all management nodes. It can therefore not be interpreted on a per
node level. Management data follows the minimal structure of nodes(type
field, next ptr), but is only ever read by the host, never by the DM embed-
ded system. It contains the following overhead information:

• Node relationship table

– Node name

– Pattern name

– Node is entry to pattern

– Node is exit of pattern

– Beamprocess name

– Node is entry to beam process

– Node is exit of beam process

• Covenant table

5.1.4 Load Balancing

carpeDM≥ v0.16.0 does auto-balance management data, but not schedule
meta data, over all CPU RAMs. The currently is no memory load balanc-
ing for schedule data, all nodes are directly assigned to a CPU/RAM via
a tag in their definition. This will be subject to change, but requires an a
priori analysis of schedules, guaranteeing processor load to stay ≤ 100%.
Since this is not implemented yet, an automatic assignment to CPUs is not
sensible at the moment. See section 5.2 for details on network calculus
based load analysis.

5.1.5 Summary

5.2 Network Traffic

5.2.1 Problem Definition

CPU Performance

Network Performance
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5.2.2 Introduction to NC

5.2.3 Introduction to DISCO DNC

5.2.4 DM to Endpoint Model

5.2.5 Arrival Curves from Schedules

5.2.6 Verification Process

5.2.7 Load Balancing

5.2.8 Summary
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Chapter 6

Theoretical Model

6.1 Overview

6.1.1 Motivation

This chapter investigates one of the most important aspects of this CS –
the conditions under which it can be guaranteed to work deterministi-
cally. The DM is the head of an alarm based CS which provides a certain
degree of freedom when choosing a “safe” lead for transmission. There
are limiting factors though:

• Target control loop speed

• Available computing power

• Available network bandwidth

It is therefore necessary to create a model of the CS, which verifies if
a chosen set of machine schedules can be scheduled within CPU utilisa-
tion ≤ 100%, does not generate traffic > 1 Gbit s−1 (including overhead)
and does not exceed the target delay. This goal is made more difficult by
the possible need to change machine schedules during runtime. This will
happen whenever interlocks and beam requests from experiments need to
be serviced.

The purpose of the model is to provide a guarantee that a given set of
messages can be delivered on time.

6.1.2 Choice of Implementation

After a period of research in classical queuing theory yue_advances_2009,
daigle_queueing_2005 the conclusion was reached that queuing theory
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is not well suited for the task at hand. Queuing theory is very generic,
requiring a lot of the mathematical elements to model this specific problem
to be developed first. Queuing theory is also more focused on throughput
and probabilities, rather than determinism and providing delay bounds.
Attempts in modelling the DM system using queuing theory turned out to
lead into a lot of dead ends, the model never quite matched the prototype.
Without an expert level knowledge in the field, there seemed to be little
chance of accurately model a system as complex as the DM in queuing
theory.

The author’s specialisation in electrical engineering is communications,
which is probably the main reason why Network Calculus (NC) had to be
encountered at some point in the search for a suitable tool to solve this par-
ticular problem. Parts of the problem in modelling the DM were exhibiting
a striking resemblance to problems quite common in system theory. Mod-
elling machine schedules, in a way that would make their superposition
and shifting in time manageable, showed a lot of the hallmarks of signal
processing. Expressing the burstiness of a schedule over time as a function
of frequency in a spectrogram seemed natural, just as the idea to smooth
bursty flows by a filter element did.

After deeper investigations of the work of cruz_calculus_1991 (1991),
and later thiran_network_2001 (2001), NC presented itself as an ideal tool
for the problem at hand. NC is a mathematical framework to model con-
cepts from system theory in a networking context, with focus on deter-
ministic behaviour and bounds.

6.2 Introduction to Network Calculus

6.2.1 Overview

System Theory for Signal Processing Signal processing is a very impor-
tant field in electrical engineering and computer science. In most elec-
tronic devices signals must be generated, shaped, filtered or distorted.
Sheath current filters suppress low frequency humming in a sound sys-
tem, a blur effect removes the high frequencies from an image, to just name
a few examples.

Complex behaviour in system theory is modelled by the concatenation
of basic elements. These are small two-port networks, for which the signal
transfer functions can be calculated. System theory provides the neces-
sary mathematical tools to put these elements in series or parallel and so
enables the calculation of complex signal transformations.
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Computer Networks Another application of system theory would be
modelling the traffic in computer networks. Similar to signals, network
traffic can be shaped, filtered, split or joined, but the application of classi-
cal system theory is rather tedious. Specialisation within queuing theory
has evolved to deal with the flow in computer networks, focusing on op-
timising throughput.

Network calculus NC is an approach that applies system theory to de-
terministic queuing systems found in communications, such as computer
networks. Contrary to traditional system theory used for electronic cir-
cuits, NC employs a different set of algebra, the Min-Plus Dioid (addi-
tion becomes computation of the minimum, multiplication becomes addi-
tion). The approach is aimed at understanding and modelling fundamen-
tal properties of networks, such as delay or buffer requirements, schedul-
ing or window flow control. The focus of NC lies on worst case analysis
in order to provide guarantees for a communication system.

y(t) z(t)R C y(t) σ z(t)

Figure 6.1: Equivalency: System Theory Low-Pass
and NC Shaper thiran_network_2001

As an example, the similarity between an Resistor-Capacitor (RC) low
pass filter in system theory and a rate-limiting shaper node (server) in
NC is shown in figure 6.1. The two-port filter network on the left trans-
forms an incoming analogue signal by applying the convolution with the
circuit’s impulse response. In electrical engineering, a two-port network
has a transfer function, which defines the output voltage in relation to the
input voltage. In NC, input- and output-“signals” are cumulative flows.
This means the cumulative sum of units of data (bits, words, packets, etc.)
over time.

The similarity between a signal filter and a shaping node becomes more
apparent when considering a constant rate of arriving packets is equiva-
lent to a frequency of packet arrivals. It therefore follows, that a shaper im-
posing a maximum rate (frequency) is low pass filtering the packet flow
(signal).

Example NC focuses on guarantees, it shows the bounds for maximum
delay and backlog that a flow can experience. A convenient property of
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NC is the minimal effort necessary to obtain backlog and delay values.
As figure 6.2 shows, any input flow y(t) passing a node produces an out-
put flow z(t) for which z(t) ≤ y(t) holds true. At any point in time, the
current backlog can be determined by the vertical deviation of the flows.
The current delay can be determined by calculating the horizontal devia-
tion. Finding the respective maximum values by applying the supremum
is then trivial.
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Figure 6.2: Flow passing through a Shaper

6.2.2 Network Calculus Core Concepts

While flows are defined as the cumulative sum of data over time, NC de-
fines systems in terms of arrival curves and service curves. Figure 6.3
shows two related examples.

Arrival Curves Describe sets of constraints that govern the input flow’s
behaviour over time. These curves are usually piece-wise linear, concave
functions. Their slope describes the maximum allowed rates, their vertical
offset the burst tolerance.

An arrival curve could state that an incoming flow is allowed a peak
rate of no more than 500 Mbit s−1 up to an input buffer size of 256 MB,
afterwards it must fall back to a sustainable rate of 100 Mbit s−1 until the
buffer’s fill level is lower (figure 6.3a).

Service Curves These are the counterpart to arrival curves, they describe
the service a system offers to an input flow. Their horizontal offset is de-
scribing the amount of time lag packets experience, their slope describes
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the minimum rates. To again provide an example, a server’s minimum
service curve could state that it will delay packets for at least 2 ms and can
handle traffic up to a rate of 1 Gbit s−1. These curves are usually piece-wise
linear, convex functions (figure 6.3b).

One of the core constructs of NC is a node behaviour called the “leaky
bucket controller”. The analogy is simple: Consider a water bucket, able to
hold an amount of water b, leaking with a constant rate of C. It can handle
one or more of gushes of water of arbitrary volume, up to the capacity of
the bucket. Once the bucket is full, it is easy to see that there is a maximum
rate at which one can add more water without overflowing, which is r ≤ C
– a system with buffer size b, input data rate r and output data rate C.
This is equivalent to featuring an arrival curve α = υb,r = rt + b and a
minimum/maximum service curve β = λC = Ct (figure 6.3c).

256
MB

r2

100 Mbit/s

r1

b

t

500 Mbit/s

(a) Arrival Curve
2ms

C

T

t

1 Gbit/s

(b) Service Curve

C

b

r

(c) “Leaky Bucket”

Figure 6.3: NC Examples

Output Arrival Curves Arrival and service curves put constrains on in-
put and system behaviour, but to give a guaranteed flow behaviour, the
output of a system also needs to be constrained. The matching instru-
ment is called an output arrival curve. It is similar to an arrival curve, but
describes the flow after it has traversed a node, having experiencing its
service. It is used to define the input constraints for the next downstream
node. As an example, consider a periodic input flow, sending with a rate
of 1 Gbit s−1 for 20% of the time and idle otherwise. If the node provides
a service of 250 Mbit s−1, the output arrival curve would also be a periodic
flow, sending at 250 Mbit s−1 for 80% of the time.

Shaping Curves are the application of service curves to form a flow. If a
node forces a flow to conform to a specific target arrival curve, it is called
a shaper. More details on shapers can be found in subsection 6.2.4.
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Bounds The main goal of NC is to provide bounds on delay, backlog
and output, in order to give guarantees. Bounding the end-to-end delay a
flow experience is for example necessary when calculating if the lag for an
individual VoIP connection will always stay low enough not to impair a
conversation. Bounding backlog, for example, is important for calculating
the size of memory a router will need. And lastly, the necessity for bound-
ing an output flow, which is explained under “output arrival curves”.

6.2.3 Mathematical Background

Most of the theory on Network Calculus in this chapter stems from thiran_network_2001’s
text book on the subject thiran_network_2001. This introduction will fo-
cus on the application of the presented theorems and limit the formal
proof and mathematical background to the necessary minimum. After
the work of thiran_network_2001, NC has forked into the direction of
stochastic applications jiang_basic_2006. This is of no further interest to
this case study, as the CS must be deterministic. Some of the most in-
teresting advance in the field of deterministic NC, as well intriguing prob-
lems and tricks of the trade, were gathered from the post-2006 publications
of schmitt_comprehensive_2007, as well as Fidler and most recently, Bon-
dorf schmitt_comprehensive_2007, fidler_way_2006, schmitt_delay_2008,
bondorf_discodnc_2014, bondorf_improving_2016.

Min-Plus Algebra NC uses a different algebraic Dioid (similar to e.g.
Boolean algebra, which replaces arithmetic operations by logic), which
replaces addition with computation of the minimum and multiplication
with addition. The two most important equations describe the convolu-
tion operations, similar to standard system theory. They are defined as

Min-Plus Convolution f(t)⊗ g(t) = inf
0≤s≤t

{f(t− s) + g(s)}

Min-Plus Deconvolution f(t)� g(t) = sup
s≥0
{f(t+ s)− g(s)}

(6.1)

Max-Plus Algebra The corresponding max-plus operations are also listed,
not only for the sake of completeness, but because max-plus deconvolu-
tion will become useful when finding a curve providing a lower bound
to a function. The concrete application will be shown in conjunction with
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scaling operators in section 6.2.4.

Max-Plus Convolution f(t) ⊗ g(t) = sup
0≤s≤t

{f(t− s) + g(s)}

Max-Plus Deconvolution f(t) � g(t) = inf
s≥0
{f(t+ s)− g(s)}

(6.2)

Curves We will follow the convention of marking output related curves
and flows by appending an asterisk. Arrival curves (if not otherwise stated,
an upper bound) are denoted by the letter α (and therefore, α∗ denotes an
output arrival curve). For service, there exists a maximum service denoted
as γ, which is useful to calculate buffer sizes, and minimum service de-
noted β, which is used to calculate delay. Shapers are always denoted as
σ. The definitions of all introduced curve types are as follows:

Input-Output Relation R(t) ≥ R∗(t)

Max. Arrival Curve R(t)−R(s) ≤ α(t− s)

Max. Service Curve R∗ ≤ R⊗ γ

Min. Service Curve R∗ ≥ R⊗ β

Shaping Curve R∗ = R⊗ σ ≤ (R⊗ α)⊗ σ

(6.3)

Bounds The following equations concern the “three bounds”, as thiran_network_2001
called them: backlog, delay and output flow. Backlog and delay can be di-
rectly calculated from the difference between input and output flows (see
figure 6.2), as well as from arrival and service curves. It is easy to see here,
that a node with an arrival curve, of a higher continuous rate than the
service curve, cannot have bounds.

Flow Backlog b(t) = R(t)−R∗(t)

Flow Delay d(t) = inf {τ ≥ 0 : R(t) ≤ R∗(t+ τ)}

Curve Backlog b(t) = α(t)− β(t)

Curve Delay d(t) = inf {τ ≥ 0 : α(t) ≤ β(t+ τ)}

(6.4)

For all systems, an output arrival curve (that is, the arrival curve for the
following node) can be calculated by deconvolution of the input arrival
curve with the node’s service curve. If no arrival curve is known for a
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node, a minimal arrival curve can always be calculated by deconvolution
of the input flow with itself. This leads to the following expressions:

Output Arrival Curve α∗ = α� β

Minimal Arrival Curve αmin = R�R
(6.5)

Concatenation Whenever a flow passes through multiple nodes in se-
quence, it is possible to concatenate service curves into a single equivalent
node. This is similar to concatenation of transfer functions in system the-
ory. The service curve of the equivalent node is the convolution of passed
service curves:

Service Concatenation R∗ ≥ r1 ⊗ β2 ≥ (r1 ⊗ β1)⊗ β2 = R⊗ (β1 ⊗ β2)
(6.6)

In NC, there is selection of basic curve functions that are frequently en-
countered when modelling networks. More complex curves can be con-
structed from basic functions by adopting a piecewise-linear approach
(figure 6.4). A compilation of common basic functions in the context of
NC is found in figure 6.5.
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Figure 6.4: Examples of piecewise-linear Functions thiran_network_2001
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6.2.4 Elementary Building Blocks

NC uses a number of basic elements to construct network models, similar
to system theory having different types of filter, mixer and splitter nodes
as basic elements. The behaviour of a complex, composite system is then
derived from the behaviour of these basic elements.

Shaper A shaper is an element offering its shaping curve as both a mini-
mum and maximum service. As figure 6.6 shows, the convolution applies
the shaping curve simultaneously at every point of the input flow, thus
forcing the flow to have σ as its arrival curve. Whenever it would ex-
ceed the curve, data is delayed in time (moved to the right). There are
two types of shapers defined in thiran_network_2001. The first complies
to the above definition, although it is left unclear how the process is ac-
tually implemented. Focusing on the second definition, elements called
greedy shapers. A greedy shaper “delays the input bits in a buffer, whenever
sending a bit would violate the constraint σ, but outputs them as soon as possi-
ble” thiran_network_2001.
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Input Flow y(t)

Output Flow z(t)

Shaper Curve σ = rt+ b

Figure 6.6: Visualisation of the Effect of min-plus Convolution:
Shaping curve σ is enforced at every point of input flow y(t)

Packetiser A packetiser is a variable delay element with a service curve
roughly resembling a staircase (figure 6.7). It delays the output so it stays
at step level L(n− 1) until the input flow has reached L(n). Packet data is
thus only forwarded once the whole packet was received thiran_network_2001.
An element behaving in the way described is the so called “L-Packetiser”.
These are theoretical constructs, assuming instantaneous packet arrival
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and departure. It employs the indicator function 1{<expr.>}, which is de-
fined as

1{<expr.>} =

{
1 when expression is true
0 when expression is false

(6.7)

L(1)
L(2)

L(3)
L(4)

L(5)

L(1)L(2) L(3)L(4) L(5)
x

PL(x)

Figure 6.7: Definition of Function PL thiran_network_2001

The function for an L-Packetiser can be then written as eq. 6.8, x being the
current flow level (R(t)).

PL(x) = sup
n∈N

{
L(n)1{L(n)≤x}

}
(6.8)

We will now take a closer look at the step function L(n) which the packe-
tiser employs to delay data until a packet is complete. L(n) is the cumu-
lative function of packet lengths, l(n) being the length of the n-th packet.
L(n) is defined as

L(0) = 0

l(n) = L(n)− L(n− 1)

lmax = sup{l(n)}
(6.9)

For variable length packets, step values for L(n) are either delivered a-
priori or calculated iteratively from L(n − 1). If packet length is constant,
cumulative packet length can simply be written as

L(n) = n · l (6.10)

L-packetisers are a virtual construct, because no components can provide
instantaneous arrival and departure (except wires if relative times are con-
sidered). A more realistic application of the theory are Packetised Greedy
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Shaper (PGS), which, as the name suggests, model buffer delay by prefix-
ing the L-packetiser with a greedy shaper:

R∗ = PL(R⊗ σ) (6.11)

An L-Packetiser buffers a packet, the first bit of any incoming packet is
delayed until the arrival of its last bit. Assuming a constant rate shaper λC
as the bit-by-bit system, the maximum delay experienced by a packet is
the time it takes the maximum size packet, lmax

C
. The equivalent minimum

service of a packetiser can therefore be written as the concatenation of a
constant rate node and the buffering delay, a rate-latency service of the
form βC, lmax

C
.

Multiplexer Multiplexers are the most complex building elements in NC,
because their impact can vary widely depending on their inputs and pol-
icy. Aggregation of flows is a common scenario for routers, switches or
even endpoints, if they run multiple services in parallel. The multiplexer
is a node offering a total service β, which is usually a constant rate of λC ,
to all incoming flows

∑
Ri(t). Service allocation to the individual flows

is defined by a scheduling policy. The main distinction is made between
arbitrary multiplexing, which assumes no knowledge about policy, and
several other cases. The assumption of an arbitrary policy always pro-
vides correct, but usually most pessimistic bounds. The most important
other case is First In, First Out (FIFO) multiplexing, which assumes mes-
sages are served in order of their arrival. FIFO and fixed priority policies
(one input flow always preferred over another) are also handling well in
NC.

We shall give an example of a simple fixed priority setup with two
flows. The service available to the Low Priority (LP) flow is the resid-
ual service, after the preferred flow has been served. The High Priority
(HP) flow’s arrival curve is subtracted from the available service, which
amounts to the residual service for the LP flow. Because service curves are
always wide-sense increasing thiran_network_2001, so the supremum of
the difference must be used schmitt_comprehensive_2007.

Whenever the slope of the arrival curve is greater than the slope of
the service curve, the difference would be a decreasing function. This is
in effect service backlog, but service curves cannot represent this directly.
The delay this backlog causes is added instead. This is achieved through
the supremum, as it keeps the residual service at constant level when it
would be decreasing. Since no arrivals are serviced during that period, it
introduces an equivalent delay. The shorthand notation for this residual
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service is defined as

βl.o.
2 = sup

0≤s≤t
{β(s)− α1(s)} = β 	 α1 (6.12)

More explicitly, consider a multiplexer offering a constant service rate C.
The high priority flow is constrained by an affine function of maximum
rate r and a buffer size b, with r < C. It is easy to see that the rate expe-
rienced by the LP flow will be the difference between the HP rate and the
available rate in the system. Furthermore, if the HP flow has backlogged
traffic, it can completely saturate the system. This makes the LP flow wait
until all HP backlog is serviced. Thus the residual service is a rate latency
curve

βl.o. = βC 	 αr,b = βC−r, b
C−r

(6.13)

If there is more than one flow to be multiplexed, the residual service ex-
perienced by the flow of interest is calculated by summing up the arrival
curves of all interfering flows, such that

βl.o.
foi = β 	

∑
i

αi (6.14)

Depending on the system’s arbitration policy, a peculiarity can occur for
HP service. If the system operates under a FIFO policy, HP itself has a
waiting condition, due to an ongoing LP transmission (because it cannot
pre-empt the LP flow). In line with FIFO, there must exist an upper bound
for the size of such units of data, lmax. Because the length is arbitrary, this
holds for bits and whole packets alike. HP is waiting for any ongoing LP
transmissions to complete, so its minimum service is defined as

βhi
1 = β 	 lmax (6.15)

Scaler In many networks, there are nodes that compress or decompress
data (video-encoder, etc.). This is a problem in NC, because the funda-
mental criterion, that R(t) ≤ R∗(t), is violated in the case of compression.
While it is kept in the case of decompression, the relation between input
and output flow is still distorted. In both cases, horizontal and vertical de-
viation no longer correspond to delay and backlog a flow is experiencing.

Data Scaling, first introduced by fidler_way_2006, is a concept for NC
which handles this problem by application of scaling curves fidler_way_2006.
The Scaler will assign each bit of data a = R(t) a scaled image of S(a). S is
a wide-sense increasing, bijective function curve, thus an inverse function
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S−1 exists. From the perspective of the system’s ingress, delay and backlog
can then be calculated since perspective is important because RS is scaled
in relation to the ingress, but not in relation to a downstream node.

R∗S(t) = S(R(t)⊗ β(t))

b(t) = R(t)− S−1(R∗S(t))

d(t) = inf
{
τ ≥ 0 : R(t) ≤ S−1(R∗S(t+ τ))

} (6.16)

Scaling Functions and Curves Scaling functions can be directly applied
to flows. However, application to arrival and service curves is not directly
possible. Scaling curves must be derived from the function first. S is a
minimum scaling curve of S if it is less or equal to its max-plus deconvo-
lution, likewise, S is a maximum scaling curve of S if it is less or equal to
its min-plus deconvolution:

S(b) ≤ inf
a∈[0,∞)

{S(b+ a)− S(a)} = S(b) � S(b)

S(b) ≤ sup
a∈[0,∞)

{S(b+ a)− S(a)} = S(b)� S(b)
(6.17)

Inverse Scaling Curves Obtaining inverse scaling curves follows directly
from eq. 6.17 by applying the process to the inverse scaling function S−1. It
further holds that the maximum scaling curve of the inverse scaling func-
tion, S−1, is equal to the inverse of the minimum scaling curve of the scal-
ing function, S−1. and vice versa fidler_way_2006.

Scaled Servers To apply the above statements to finding an end-to-end
delay bound, it is necessary to scale servers. This means applying scaling
curves to service curves to obtain a scaled service. This may seem trivial,
but is important as a way to allow concatenation of systems in the presence
of scalers.

The core concept is the equivalency of the following systems: The min-
imum and maximum service, β and γ, of a server with scaled output (a)
and a server with scaled input (b) lead to equivalent bounds, if S is bijec-
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tive and:
βS(t) = S(β(t))

γS(t) = S(γ(t))

β(t) = S−1(βS(t))

γ(t) = S−1(γS(t))

(6.18)

6.2.5 Delay Analysis Methodology

There are many different approaches to obtain end-to-end delay bounds
for a system. The first three, Total Flow Analysis (TFA), Separate Flow Analy-
sis (SFA) and Pay Multiplexing Only Once (Analysis) (PMOO), are the “clas-
sical” approaches, solely relying on network calculus. The different meth-
ods are demonstrated on a minimal example of two nodes in tandem schmitt_comprehensive_2007,
through which two flows are multiplexed as a FIFO aggregate.

β1 β2

Rif

α2

Rfoi
α1

Figure 6.8: Minimal Network Example: 2 Nodes, 2 Flows

Total Flow Analysis This form of an end-to-end analysis adds the delays
encountered by the total flow, that is, the sum of all flows, along the path.
This is calculated per node, using the arrival curves transformed by the
node. This means using the original arrival curves α1 and α2 at the first
node, their output arrival curves α′1 and α′2 (see eq. 6.5, p. 61) at the second
node and so on. Delay is defined as horizontal deviation between input
and output flow, so the delay for TFA is calculated as

dTFA = h(α1 + α2, β1) + h
(
(α1 + α2)� β1, β2

)
(6.19)

The obtained bound is valid for both the Flow Of Interest (FOI) and the
interfering flow(s), but does not provide information about which flow it
belongs to. It is thus overly pessimistic for all but one flow. TFA tends to
produce the least tight bounds.
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Separate Flow Analysis SFA aims to obtain a tight bound for the FOI by
removing it from the system and inspecting the residual service available
to it after servicing the interfering flow(s). This is achieved by summing
up all flows except the FOI and subtracting the aggregate flow from the
total service of the system (see eq. 6.12, p. 66). The residual service is
then computed over all nodes by convolution, which equals the end-to-
end service encountered by the FOI and thus provides its delay. This can
be written as

dSFA = h
(
α1,
(
β1 	 α2

)
⊗
(
β2 	 (α2 � β1)

))
(6.20)

Because SFA includes topology information when calculating residual ser-
vice, it is proven to deliver tight bounds for all multiplexing policies. Con-
trary to TFA, SFA pays bursts only once (PBOO criterion), because residual
services are concatenated before calculating end-to-end delay.

Pay Multiplexing Only Once Analysis The downside of SFA is an overly
pessimistic accumulation of multiplexing delay at every node, even if it
is not occurring there. Consider two FIFO multiplexed flows, which can
both send at the same rate, passing through several nodes all capable of
this rate. While it is true that only one flow can send at the same time,
this only determines delay at the first node. Once the order of sending
is determined, additional nodes should not introduce more multiplexing
delay.

PMOO is a special case of SFA which tries to, as the name suggests,
avoid paying multiplexing multiple times by concatenation all encoun-
tered nodes into one equivalent node before the residual service calcula-
tion. In the example from figure 6.8, this means the convolution of β1 and
β2 before subtracting α2:

dPMOO = h
(
α1,
(
(β1 ⊗ β2)	 α2

))
(6.21)

In most cases, PMOO delivers the tightest bounds. There are some special
cases when SFA can perform better than PMOO, when the service rates
is higher at downstream nodes than at the ingress schmitt_delay_2008.
Contrary to SFA, PMOO analysis has only been proven for arbitrary mul-
tiplexing policy.

Building on NC There are known problems with the described analysis
methods when treating aggregated flows, because it can be proven schmitt_delay_2008
that even with PMOO analysis, multiplexing over multiple hops does not
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always produce the tight bounds. There were more recent advance in pro-
viding tight end-to-end delay bounds from Lencini et al. lenzini_end–end_2007
and Schmitt et al. schmitt_delay_2008(2008), employing optimisation al-
gorithms on top of network calculus. In order to obtain the minimum
delay bound, these approaches define the service curve of all traversed
nodes and then solve a linear optimisation problem for the distribution of
backlog between these.

The most recent research by bondorf_delay_2016 from 2016 shows a
very interesting development back to pure algebraic solutions. In their
publication, they prove the existence of a completely algebraic technique,
which requires much less computation than linear optimisation, but still
closely matches experimental results to within 1.16% bondorf_delay_2016.

6.3 Approach for modelling the Data Master

6.3.1 Overview

The following is the overview of the intended NC model to be used for an
end-to-end delay analysis of the DM and its environment. The first part of
the model will be the DM itself and its sub-components. The second part
will be a black box model of the WR switches, the third a model of TR.
While it would be feasible to model the switches more accurately, a white
box approach is outside the scope of this work.

The purpose of this model (and indeed of NC as a whole) is to provide
worst case bounds on delay, backlog and output flows, it does not pro-
vide exact input-output transformations. While it is technically possible
to create accurate transfer functions, the benefit of using “low-level” mod-
els would be limited to verifying the formally proven abstract modelling
techniques provided by thiran_network_2001 and Schmitt.

Naming Conventions Within the timing system, server nodes are pro-
cessing data at four different (three distinct) rates rx. These are, in de-
scending order:

r3 = 4 B · 8 ns−1 = 4 Gbit s−1

r2a = 4 B · 16 ns−1 = 2 Gbit s−1

r2b = 2 B · 8 ns−1 = 2 Gbit s−1

r1 = 1 B · 8 ns−1 = 1 Gbit s−1
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6.3.2 Machine Schedules as Flows

Before constructing a detailed service model, we shall have a closer look at
the input flows, i.e. how they originate from a collection of machine sched-
ules. All flows entering from the CPU side are of potential interest for
analysis, while the injected headers from the Etherbone Master (EBM) and
WR traffic will always be treated as interfering flows. Machine Schedules
provide content for timing messages as well as information about points
of decision, i.e., which schedules can be played next and which is the de-
fault selection. Each message within a schedule requires a dispatch time in
relation to its time offset. With these offsets and their arrival time, an Ear-
liest Deadline First (EDF) scheduler can create the corresponding message
flow, the cumulative sum of messages over time.

B:11 B:12 B:13 B:31B:21 B:22 B:24B:23 B:32 B:33
B:01  (pre)

 A:01 
A:11 A:12 A:13 A:31A:21 A:22 A:24A:23 A:32 A:33

C:02   (empty: wait only)C:01   (pre)

B:02  (post)

A:02   (post)

A:25 A:26

B:25

Accelerator A

Accelerator B

Storage Ring C

Pattern 1

chain y chain rchain b

C:11 C:12 C:14C:13 C:15

C:03  (post)

(pre)

Accelerator A

Accelerator B

Storage Ring C

B:11’ B:12’ B:13’
B:03  (pre)

A:03
A:11’ A:12’ A:13’

B:05  (post)

A:05  (post)
A:04   (empty: wait only)

B:04   (empty: wait only)

Pattern 2

chain y

B:31’ B:32’ B:33’

A:31’ A:32’ A:33’

chain r

C:04  (pre)
C:11’   C:12’   C:14’  C:13’ C:15’

C:05  (post)

(pre)

Figure ??: Machine Schedules for the Accelerator (p. ??)

Assignment of Arrival Curves It is always possible to find a minimal
arrival curve for a flow. This is obtained by the min-plus deconvolution
of the flow with itself, thus α = R � R. These arrival curves tend to be
very form-fitting to the actual flow and are therefore tedious to describe
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formally. They are also often not concave, but star-shaped. For conve-
nience (and especially for the following worst case of several schedules), it
is advantages to find an approximated arrival curve from within a certain
family of functions. A piece-wise affine function as shown in figure 6.4
tends to provide a good approximation thiran_network_2001. We will
only briefly touch the subject of a suitable approach for approximation of
arrival curves, as a full investigation is out of the scope of this work.

The solution to the problem is finding the minimax solution, that is,
minimisation of the maximum error when choosing affine segments. Apart
from least square approximation, which does not necessarily converge imamoto_recursive_2008,
there are splitting algorithms that search for segments within a certain er-
ror criterion vandewalle_calculation_1975 and also recursive approaches,
which try to find the location of the tangent pivots directly imamoto_recursive_2008.
While imamoto_recursive_2008 will find an optimal solution, the result
is only proven to be optimal for concave or convex functions. This is a
problem for minimal arrival curves: While concave functions are always
sub-additive, sub-additivity does not imply concavity. It would there-
fore be necessary to either construct the concave hull of the minimal ar-
rival curve before applying imamoto_recursive_2008, evaluate the qual-
ity of fits to sub-additive functions or choose for example the algorithm
of vandewalle_calculation_1975 vandewalle_calculation_1975, which is
applicable to arbitrary functions.

It is important to note that assignment of arrival curves needs to con-
sider the whole flow, i.e. the concatenation of machine schedules. All suc-
cessions of machine schedules in the DM are either finite or periodic for
the validity period of the analysis. Once a fitting arrival curve has been
defined, it is possible to assign service to this flow at every node it passes
through. This will allow to obtain an end-to-end delay bound for the cor-
responding flow.

As a proof of concept for this approach, an example for the generation
of a piece-wise affine arrival curve describing a periodic message flow is
given in the following paragraph.
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Figure 6.10: Generation of a piece-wise affine Arrival Curve from Flow.
The corresponding Messages are shown in the stem plot below.

The example given in figure 6.10 constructs the affine arrival curve for
a periodic flow. The corresponding message flow is visualised as a stem
plot at the bottom of the figure. Each circle signifies as a timing message
of 32 B, stacked circles show concurrent execution times. As a first step,
the flow’s vector is cloned and concatenated to the original (black curve).
Secondly, the minimal arrival curve is calculated by min-plus deconvolu-
tion of the flow with itself (red curve). Because the flow was cloned before,
the minimal arrival curve (within the flow’s interval) matches a periodic
repetition. As the third step, the concave hull of the minimal arrival curve
is constructed (blue dashed curve). All nodes not contributing to the outer
shape are removed. As the fourth step, the affine function is reduced to
the length of the flow’s period, keeping the slope it had at the end of the
interval. The resulting function is piece-wise described by affine functions
of the formm ·x+b. It has a peak rate of≈ 5 Mbit s−1 and a sustainable rate
of≈ 1 Mbit s−1, with an initial burst of 96 B. Eq. 6.22 shows the description
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of this arrival curve (burst values in bytes, rates bytes per second, time in
micro seconds):

αri,bi =


γ96, 6.5·105 0 < x < 360
γ320,1.28·105 36 ≤ x < 116
γ448,1.25·105 116 ≤ x <∞+

 (6.22)

6.3.3 Outside Interference

Worst Case for Online Flow Control Outside intervention through in-
terlocks will change the path through the machine schedule graph (see fig-
ure ??) in realtime, yet the delay analysis will be done offline. The reason
is that even if the analysis is carried out in realtime, detecting an imminent
violation of the system’s delay bound will not help containing the situa-
tion. Instead, the worst case combinatorial scenario of all possible flows
at this point must be considered by taking the supremum of all minimal
arrival curves. The supremum of sub-additive curves is also sub-additive,
preserving their property.

• Arrival curves of all involved Schedules

• Time of Points of decision

• Sets of alternative arrival curves for each Point of Decision

If this information is available, it is possible to create compound worst
case arrival curves from several individual ones by supremum of all alter-
natives. In the case of the DM, the combinatorial arrangement can only
be conducted after the first EDF scheduler in the Lattice Mico 32 Proces-
sor (LM32)’s firmware. The reason is finding the worst case combination
is only possibly with arrival curves of flows in which messages already
occupy their scheduled release times.

Relaxed case for optional Online Flow Control All requests from exper-
iments are not regarded as time-critical, they can thus be delayed without
penalty. This creates a degree of freedom in online flow control, as each
requested change to the schedule configuration, can instead be included
by re-computation of the delay analysis. If the delay bound is violated, the
change will not be executed and there are several possibilities to solve the
problem. These range from telling the operator that this change is not al-
lowed to automatically shifting the desired schedule change in time until
the system can provide a suitable service. Arrival curves thus do not need
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to cover all possible combinations of requests from experiments, only the
ones currently selected.

6.3.4 Recurring Analyses

At the time the very first analysis is undertaken, the model is representing
a system at time t = 0 and thus without history. When the analysis is
repeated during runtime on change of machine schedules, it is obvious
that the system is not in this state. There are three possible approaches to
treating case study, the first being trivial:

Clean Slate The first possibility is to halt the system completely. Because
all messages were scheduled to spend a maximum time ∆t in the system,
ceasing the input flows and waiting for ∆t will guarantee a system with
empty buffers, hence the system is equivalent to the state at t = 0. This
will initially be the preferred mode of operation for the case study.

Prepare for Everything The second possibility is accepting more loose
arrival curves for the input flows and cover all possible combinations of
machine schedules per input flow, thus never needing a second analysis.
This would work for smaller sets of schedules and can be complemented
by rare resets as described in the first approach.

Time Stop The third option involves halting time at the point of change,
calculating backlog at every node, update input flows according to the re-
quested changes, apply thiran_network_2001’s theorem thiran_network_2001
for shapers with non-empty buffers and update service curves.

6.4 Scheduler Models

Type The DM requires two layers of schedulers to sort timing messages
into chronological order by their deadlines. All schedulers are imple-
mented as packetised earliest deadline first based on delay values.

Lower Layer The lower level scheduler is implemented in hardware and
aggregates the flows from all instantiated processors. This module has
been dubbed Hardware Priority Queue (Priority Queue (PQ)) and has
been described in detail in chapter ??.

78



Upper Layer The upper level of schedulers is implemented in firmware
inside the processors, as presented in chapter ??. The scheduler would
not strictly be necessary at this point, but does allow a better utilisation
of available processing time. Machine schedules must be distributed to
individual CPUs depending on their current utilisation, as it must always
be ≤ 100%. While it is possible to aggregate all these schedules into one
big schedule per processor before running, this would be very inflexible.
Every update would require a complete stop and exchange of the whole
aggregate. Instead, software EDFs can easily aggregate individual ma-
chine schedules, each assigned to a worker thread, into a chronological
flow. Such a scheduler is thus a prerequisite to enable online update of
machine schedules and online flow control as described in ?? and 6.3.3.

6.4.1 Scheduling under Network Calculus

Both schedulers are treated here within the DM as delay based schedulers,
which means the decision for the next packet to service is done by the re-
maining delay budget per packet. A delay budget is spanning the time
from a packe’s arrival to its latest possible departure. The general schedu-
lability criterion is derived from the maximum horizontal deviation be-
tween the sum of all arrival curves and the available service β = λC . If it
is finite and not greater than the maximum allowed delay budget, the set
of arrival curves is schedulable.∑

i

αi(t− di) ≤ β
(6.23)

In the case of the DM, this presents a problem, as each packet’s delay bud-
get is referring to its execution at the endpoint, not the departure time
at that particular DM node. Each local deadline is a part of the total de-
lay budget, but it is unknown. A rough estimate can be given once all
static delays are known and subtracted. If all delays from cross traffic are
bounded as well, exact calculation is possible, but this does not provide
any additional information at this point. The scheduler equation can be
used, however, as a simple and fast instrument to detect overload by a set
of flows before attempting a full delay analysis.

6.4.2 Soft-CPU Scheduler

The input flows in CPUs are derived from timing messages in machine
schedules. It is the purpose of the CPU scheduler to chronologically sort
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and aggregate messages from all threads and send them as early as possi-
ble within the time window of Dj −∆t.

Joining Two Worlds The very first point to address is the existence of
several distinct domains within the DM: CPU, Wishbone (WB) bus and
Network. The latter two relate and are thus trivial to describe in NC, as
they only differ in bandwidth and in the network always being packe-
tised while WB is a cycle based bus. The relation between programs in a
DM CPU and bus/network activity is not trivial though and we shall start
modelling the DM with an approach for a CPU/traffic relation.

CPU Activity vs Generated Traffic An LM32 CPU can be described as an
NC node, offering a constant rate service (operations executed over time),
and a program as a flow (cumulative operations over time). The output
flow (of interest) is all bus activity downstream towards the network in-
terface. This means that a program is already an aggregate of flows. They
are flows that generate traffic downstream and flows that do not, i.e. mes-
sage and overhead flows. The composition of overhead and its impact on
message service are discussed here.

Overhead Concept Consider the following: The processor arbitrates its
computing power between a number of N threads and the scheduler it-
self. According to chapter ??, it is assumed that all tasks have a deter-
ministic execution time which is previously known. The scheduler itself
also has a deterministic execution time. So there is not only a CPU rate,
but also a message rate, the maximum rate the firmware can send mes-
sages at. While formal investigation of program execution time can be a
highly complex and computationally intensive task, measuring the maxi-
mum message rate using the CPU cycle counter or a logic analyser is triv-
ial.

The scheduler further has a dispatch function f , which transforms a
skeleton message from RAM into a timing message on the bus. Let there
be another function g which sends synchronisation messages to CPUs. The
function g does not produce messages on the timing network, and since it
uses the Message Signalled Interrupt (MSI) WB bus, it has no impact on
the normal WB traffic neither. Because the effort of preparing and send-
ing synchronisation and timing messages is very similar, f and g can be
assumed to have equal execution times.

Sync messages are part of machine schedules, all message flows there-
fore have an associated sync overhead flow. This produces the interfering
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flows in the CPU node. Sync flows are of no further interest to the anal-
ysis, as they are extracted again directly after the CPU node. Only their
effect on the CPU’s residual service curve to the messages is considered.

Overhead Flows Figure 6.11 shows the block diagram of the CPU ser-
vice node, a constant rate server used by the message flows and several
interfering overhead flows.

βcpu

∑
αi

∑
αoh
i

Figure 6.11: CPU Scheduler node

The leftover service available to all timing messages is the total service of
the CPU after per flow sync overhead αohi has been subtracted:

βcpu = λr3 	
∑
i

αoh
i (6.24)

Actual Implementation We know there exists a limit ∆t dictated by the
control loop speed, which is the end-to-end delay budget of a message.
In the present case, it signifies the minimum time before its deadline Dj a
message shall be dispatched. The actual implementation determines the
task with the minimum deadline at the very moment its predecessor was
serviced. Afterwards a separate check is run periodically if this message
is eligible for dispatch, that is, if t ≥ Dj −∆t. If it is positive, the message
is sent. The rate of this check is the same as the service rate offered to
messages by the CPU.

Simplification Representation in NC can be simplified by reordering these
steps and crafting slightly different input flows. Instead of letting new
messages arrive immediately after service, messages can be placed in ac-
cordance with their arrival times Dj − ∆t. This already takes care of the
eligibility window ∆t. Feeding such a flow through the CPU’s service
window will then introduce the same delay as in the prior case.

CPU Schedulability It is first necessary to obtain information about the
possible size of the delay budget d for the scheduler input flows. However,
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it is not possible to determine the budget in the present case. The delay
budget for EDF schedulers is defined as the maximum time between ar-
rival and departure at the server containing the scheduler. In the present case,
this partial budget is unknown - only the end-to-end budget is. A loose
approximation can be obtained by deducting the sum of all static delays∑
δ (which will be deduced in this chapter) from the end-to-end budget

∆t. Note that being schedulable is no guarantee for timely arrival with
regard to the endpoint, but unschedulable flows are guaranteed to be late.
A general schedulability criterion for each processor node is:∑

i

αi(t− d) ≤ βcpu(t)

with d = ∆t −
∑

δ

(6.25)

6.4.3 Processor Output

Since βcpu is known, the output flow of a CPU can be derived. For TFA, the
output flow and arrival curve can be calculated with the aid of the sum of
all inputs:

R∗ =
∑
i

Ri ⊗ βcpu

α∗ =
∑
i

αi � βcpu
(6.26)

The leftover service curve required for both SFA and TFA on the other
hand can be obtained from a slight variant of eq. 6.24. The overhead
caused by the scheduler, all sync flows and all interfering message flows
can be subtracted from the CPU’s service, resulting in the residual service
for the message flow of interest:

βl.o.
foi = λr3 	

(∑
i

αoh
i +

∑
i 6=foi

αi

)
(6.27)

6.4.4 Priority Queue Scheduler

We now have the processors’ outputs, which are packet flows with wide-
sense increasing deadlines. The next node on the path is the PQ, the sec-
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ond layer of EDF schedulers in the DM. Its purpose is the chronological
aggregation of all input flows into one output flow, ordered by deadlines.

PQ Schedulability The constraint is that there must be no back-pressure
to the CPU, so overflow of the input queues is not permitted. This is
necessary to keep program execution deterministic and hence maintain
the schedulability criterion. We will first derive an upper limit to the
delay budget di from the buffer capacity of the input queue. The input
queue can take in data at a rate of r3, so it offers a maximum service γr3 .
The delay di must therefore be the time it takes an incoming flow con-
strained by αi (which must be sub-additive) to fill an input queue of size
b. Since γr3 poses an upper limit on the input rate, we will convolute it
with αi, the min-plus convolution of two sub-additive functions being the
minimum thiran_network_2001 of both. This will result in the following
schedulability criterion:∑

i

αi(t− di) ≤ β(t)

with di = min{s > 0 : min(αi, γr3)(s) = b}

(6.28)

Abstract Model - Service Curves In the analysis of the abstract model
of an EDF, the maximum delay depends solely on the total flow passing
through the scheduler’s constant rate node. In this case, a service curve
containing a fixed delay Ta for evaluation of each timestamp and the im-
pact of the packetiser in each queue (β

r3,
lp
r3

) must be included, as all inputs

experience this. This can be written as

βch = δTa ⊗ βr3, lpr3 (6.29)

The complete EDF scheduler in the PQ module features M channels, each
connected to the constant rate node of the PQ.

λr3

PL

PL

...

δTa

δTa

Figure 6.12: PQ Scheduler node
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And with equation 6.29, we can finally calculate the residual service a sin-
gle flow (at the PQ, which already can be aggregates) would experience:

βl.o.
foi = λr3 	 (

∑
j 6=foi

(αj � βch)
(6.30)

6.5 Etherbone Master – Framer

The EBM is responsible for wrapping WB accesses to other systems in the
EB protocol, it creates a network packet and hands it over to the network
interface.

6.5.1 Etherbone Master Functional Recap

The EBM gathers Wishbone Bus Operations and a framer sub-module
analyses type, order and destination. It then generates appropriate EB
record headers and inserts them as required. Once dispatch of the opened
packet is requested, the EBM finalises and inserts the network header in-
formation, and starts transmission. More details can be found in chap-
ter ??. Because the EBM is controlled by the PQ in the present case, re-
quests for dispatch can be caused by reaching the size limit or by hitting a
timeout.

Following the path from the PQ downstream, we will begin by mod-
elling the framer sub-module of the EBM.

6.5.2 Input Parser

The overhead produced by the framer depends on the WB operations. In
the case of DM traffic though, only timing messages will arrive. These
follow a fixed format of 8 consecutive write operations to the same desti-
nation, which makes the introduced record overhead constant (see chap-
ter ??).

Timing messages must not be split, and therefore the payload of EB
records will be of a constant length lp. This is packetisation at message
level, and so the framer needs to contain a fixed length packetiser (see
section 6.2.4) in the payload flow. Because lp is constant, the length func-
tion L(n)p of the n-th payload packet is L(n)p = n · lp. This results in the
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following service curve for the message payload L-packetiser:

PL
p(x) = sup

n∈N

{
lpn · 1{lpn≤x}

}
(6.31)

The framer now needs a shaper prefixing the L-packetiser, which would
be a guaranteed rate node of some arbitrary rate λr. The time Ta the framer
requires to analyse the input needs to be accounted for. Because the anal-
yser is pipelined and the input format fixed, this delay can be expressed as
a simple guaranteed delay node δTa . The two nodes can be concatenated
to form a rate-latency node as the shaping curve σ:

σr,Ta = rt+ Ta (6.32)

Impact It is known from thiran_network_2001 that a packetiser offers a
minimum service described by the rate of the bit-by-bit system and the
maximum delay from packet buffering, βr, lmax

r
. The impact of payload’s

packetised greedy shaper on the system’s service is:

βp = β
r,
lp
r

⊗ δTa (6.33)

6.5.3 Header Generation

The framer must now prefix each timing message with an appropriate EB
record header of constant length lh, which will create EB records of length
lh + lp. While the header themselves are of no particular interest to an
analysis, they are necessary in terms of the system service they consume.
There are two different strategies to discuss through which injection of
overhead can be modelled.

Scaled Flow Approach Consider the knowledge about the expected in-
put and output flows. The output is obtained by injection of data of size
lh every lp in the input flow. Assuming header insertion would happen
instantaneously, gives

R∗(t) = R(t) · lp + lh
lp

(6.34)

Eq. 6.34 shows header injection to be in fact data scaling, if a bijective re-
lation between header and payload size exists. The overhead can be mod-
elled by application of a scaling function (see “Scaler”, p. 63) in the EBM
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and the inverse function in the TR. The scaling curve and its inverse are:

SR(a) = a · lp + lh
lp

S−1
R (a) = a · lp

lp + lh

(6.35)

6.5.4 Output Flow and Service Curves

Scaling is the simple and accurate representation of constant header inser-
tion into packets of constant size.

SRPM δpσr2

Figure 6.13: Block Diagram of EBM Framer Module

Figure 6.13 shows the resulting block diagram with packetiser, parser and
scaler. With eq. 6.31, 6.32, 6.33, and 6.35, the output flow and service of the
EBM framer can be modelled using the following equations:

R∗f = SR

(
PL
p (σ ⊗R)⊗ δTp

)
6.31, 6.32, 6.35 (6.36)

βf = β
r2,

lp
r2

⊗ δTp 6.33, 6.35 (6.37)

Scaling It is noteworthy that the service does not include the scaling
function SR, although the output flowR∗f does. fidler_way_2006 show fidler_way_2006
that the order of scaling and service elements is interchangeable within a
certain rule-set. In order to obtain a suitable equivalent system, it is neces-
sary to consider the complete network, not individual modules.

All scaling effects spilling over to downstream modules are therefore
ignored until reaching the analysis section 6.10. Instead only the scaling
functions and unscaled service equations are provided.

6.6 Etherbone Master – TX

The purpose of the Transceiver (TX) sub-module is to take in a variable
number of EB records and, by prefixing it with a packet header, turn them
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into network packets. The maximum packet length and how long TX
should gather EB records before producing a packet is configurable.

Header and Payload Size Let lnh be the aggregated size of all headers
for the IEEE 802.3 Ethernet (Eth), Internet Protocol Version 4 (IP), User
Datagram Protocol (UDP) and EB protocol. Let lSp be the length of a timing
message with an EB record header. The number of messages going into the
same packet has a constant upper limit given by the maximum payload
size, lmax − lnh, and a constant lower limit of one message, lSp .

6.6.1 Variable Length Function

It is clear that waiting for a full packet is not an option, since the delay
would be inversely proportional to the arriving flow. This is an undesired
effect, as incoming flows would need to be padded to reduce delay and an
equilibrium between transmission delay from the rest of the system and
waiting time in the EBM TX would have to be found.

Timeout A timeout was introduced to bound the delay, which requires
limiting the maximum waiting time for the first message to enter a packet.
This results in a variable payload length lto(t). The payload packetiser
therefore employs a length functionL(n), which provides cumulative packet
lengths with a step-size being the minimum of lmax and the level at the
timeout, lto. Since l(n) = L(n) − L(n − 1), it is possible to calculate L(n)
from L(n− 1).

The timeout starts at the first message entering a packet, which is the
case whenR′(t) (which isR(t) after the packetisers bit-by-bit system) crosses
the packet boundary (now L(n−1)). With F (t) being the flow level at time
t, we get

g(x) = inf
s∈R∗

+

{s : F (s) > x} (6.38)

The timeout occurs after a timespan T . Unfortunately, this will introduce
a problem: While R is packetised to be always multiple of lSp , it has to pass
a bit-by-bit shaper, becoming F = (R⊗ σ)(t) = R′. Therefore, R′(g(x) + T )
can return a level right in the middle of a message (eq. 6.39).

M = {k · lSp }, k ∈ N

x ∈M → F
(
g(x)

)
∈M

T ∈ R → ∃T : F
(
g(x) + T

)
/∈M

(6.39)
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To guarantee the delay bound, it is not possible to wait for a commenced
message to fully arrive. To only put complete messages into a packet, it is
necessary to round R′(t) down to the nearest multiple of lSp . This means
applying a floor function, which is equivalent to run R′(t) again through
the L-packetiser of the EBM framer:

R′′(t) =

⌊
R′(t)

lSp

⌋
· lSp = PL

f

(
(R⊗ σ)(t)

)
(6.40)

And with eq. 6.40 and F = R′′ so L-function for the network payload is:

Lnp(n) = min
{

(L(n− 1) + lmax), R′′
(
g(L(n− 1)) + T

)}
, n ∈ N

(6.41)

6.6.2 Header

The present case requires packets of variable payload length l(n), yet with
a header of fixed length lnh. As mentioned in fidler_way_2006, scaling
functions can be applied to the length function L(n) of a packetiser. L(n)
is only point-wise defined for n ∈ N though, while scaling functions must
be continuous.

PL(x) = sup
n∈N

{
L(n)1{L(n)≤x}

}
(6.42)

However, the L-packetiser function from eq. 6.42 is defined for all real
numbers thiran_network_2001, thus allowing the extension of L(n) into
the R∗+ domain by assigning each a = R(t) a value from L(n). So having
obtained a continuous scaling function, scaling curves can be derived.

Scaling Function The L-packetiser equation is modified by a scaling func-
tion for constant header insertion. This means that each packet length l(n)
must be scaled by the addition of lh, so that Sp

P (l(n)) = l(n) + lnh. With the
definition of the length function given by L(n) = L(n−1) + l(n)→ L(n) =∑n

i l(i), the point-wise defined scaling function Sp
P now becomes:

Sp
P (L(n)) =

n∑
i

(l(i) + lh) = L(n) + n · lnh

Combination with the L-packetiser equation 6.42 provides the scaling func-
tion SP defined for R, swapping the pre-factor for the indicator function
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with its condition provides the inverse:

SP(a) = sup
n∈N

{
(L(n) + n · lnh)1{L(n)≤a}

}
(6.43)

S−1
P (a) = sup

n∈N

{
L(n)1{L(n)+n·lnh≤a}

}
(6.44)

The appropriate minimum and maximum scaling curves can once again
be derived from max-plus and respectively min-plus deconvolution of the
scaling function with itself.

L(1)L(0) L(2)L(3)

L(1)
L(1) + 1h

L(2) + 2h

L(3) + 3h

L(2)

L(3)

L(1) + 1h L(2) + 2h

L(3) + 3h

L(1) L(2) L(3)

L(0)

L(1)

L(2)

L(3)

L(0) + 0h

L(0) + 0ha

S
(a

)

S(a)

a

Header insertion Header removal

Figure 6.14: Packet Header Scaling Functions

Figure 6.14 illustrates the scaling functions (thick red line) for packet header
handling. The left plot shows header insertion with eq. 6.43, the right the
removal via the inverse function, eq. 6.44. The diagonal mirror axis is
sketched in to demonstrate function inversion.

6.6.3 Finding Limits for Payload Length and Timeout

With the presented scaling curve, it is possible to calculate the exact intro-
duced overhead at any given point in time for a specific flow. However,
by careful choice of the payload limit and timeout value of the packetiser,
it is possible to constrain the setting in a way that allows simplification of
the scaling curve to a constant factor.

Impact of Payload Length The behaviour of the TX module is governed
by two parameters, the allowed payload length Φ and the timeout T . Band-
width utilisation depends on the overhead to payload ratio, the larger the
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payload, the better. As Φ approaches lmax − lnh, that is, maximum possi-
ble packet length (1500 B) without the header, bandwidth utilisation is at
its optimum with r2

Φ
lmax

. Lowering Φ splits the payload into more pack-
ets, which generates more overhead and therefore directly consumes extra
bandwidth. Because latency in a packetiser is determined by the maxi-
mum packet length over rate, lowering Φ also lowers latency.

Impact of Timeout The necessity of T ≥ Φ
r2

immediately becomes obvi-
ous. If T was less, the packetiser could never reach Φ before hitting the
timeout and so a lower limit for T has been found. We shall now establish
a sensible upper boundary for T .

A packet size l processed over a timespan T is an expression of band-
width. Φ being set, we can now employ T to choose the bandwidth. Be-
cause the DM is the only source of high priority traffic, unused bandwidth
is equivalent to bandwidth lost to overhead. The proposition is therefore
that it is allowable to introduce additional overhead without changing
maximum throughput, as long as the combined traffic does not exceed
the maximum bandwidth at the system’s bottleneck.

The bottleneck is encountered at the WR network, the switches having
the lowest rate at r1. This is in turn down scaled by a factor S−1

F because, as
discussed in section 6.7, forward error correction will introduce further re-
dundancy. The resulting bandwidth is denoted as the system’s sustainable
rate rs. This can be used to propose the limits for T :

Φ

r2

≤ T ≤ Φ + lnh
rs

(6.45)

The reason is that if a maximum sized payload plus its header can be pro-
cessed at the systems sustainable rate within the timeout, any reduction
in payload flow will create more overhead. However, if the sum stays
within the sustainable rate, backlog from overhead cannot accumulate. So
T = Φ+lnh

rs
would ensue an optimal bandwidth utilisation. In the absence

of any other high priority source, eq. 6.43 and 6.44 can be simplified to:

SPs(a) =
Φ + lnh

Φ
(6.46)

S−1
Ps (a) =

Φ

Φ + lnh
(6.47)

If any lower latency is required, it can be obtained at the loss of band-
width to overhead by decreasing Ttx.
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Absolute Figures The total delay budget for the system was given as
∆t = 500 µs, so it is interesting whether to test the obtained boundaries
chosen for T actually fit within this frame.

Tmin =
Φ

r2

=
1440 B

2 Gbit s−1 = 5.76 µs (6.48)

Tmax =
Φ + lnh

S−1
F (r1)

=
1496 B

0.25 · 1 Gbit s−1 = 47.78 µs (6.49)

At 1.2% of the total delay budget, we can assume Tmin to be a safe choice.
Tmax however, at 9.5%, should be examined again in the final analysis.

SPPL
Pσr2

Figure 6.15: Block Diagram of EBM TX Module

Service The minimum (and because of the fixed timeout also maximum)
service curve for the TX module is that of a standard packetiser, but the de-
lay is solely determined by T . Note that scaling is applied last and there-
fore not part of the service curve of this module. The resulting curve is
thus very straightforward:

βtx = βr2,Ttx (6.50)

6.7 FEC

Context and Necessity The CS ultimately needs a central instance (sepa-
rate, but synchronised instances are just an equivalent model) which com-
municates that servers providing the physical calculations to control the
accelerator. This again means that there must be a fan-out from the CS’s
DM to numerous endpoints, placing it as the root node of one or more
networks of a tree topology.

The concept of the current CS relies on treating the whole system and
timing network as lossless. If it was not, commands would need to be
re-sent if they did not arrive at their destination, which adds the need for
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feedback from the endpoints. Due to the tree topology, this is already a
problem because the bottleneck on the way up to the root node is get-
ting ever tighter and a reason to avoid re-transmission. The second rea-
son is that an upper bound on control loop delay is only possible if re-
transmission does not need to be considered.

Application The chances of packet loss has to be reduced to a level at
which, for all practical purposes, the system can be treated as lossless.
The way to achieve this involves both increasing the system’s mean-time-
between-failure and employing forward error correction algorithms. The
purpose of the latter is to protect both network packets and their meta in-
formation against bit errors, more details can be found in the work of prados_boda_fec_2010, prados_boda_fec_2010.

Impact on the Model In the scope of this work, the Forward Error Cor-
rection (FEC) will be treated as a black box system. The observable effect
is the creation of k interleaved packets from one incoming packet after a
packetisation and encoding delay.

6.7.1 FEC Encoding

The FEC re-packetises to the length set in the EBM TX modules, then starts
the encoding process, buffers the resulting encoded packets and finally
sends the encoded (scaled) data.

Packetiser Because the packets are of variable size, the first packetiser
does introduce a delay equal to lmax

r2
. After encoding, the second packetiser

has to deal with the scaled version of the packets, thus adding a delay of
k · lmax

r2
.

Encoding Time We will assume a constant encoding time in the FEC, in-
troducing a delay of Te, which already includes the introduced k− 1 inter-
frame gaps between the generated packets. Additionally it is assumed that
a time Td ≥ Te is required to decode the information again in the TR.

Scaling Data will be scaled up to mimic the FECs introduction of redun-
dant data. Similar to the EBM framer in 6.5, this can be described by the
application of a scaling curve for the FEC, SF , which multiplies packet size
by k, the number of packets generated.
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The resulting sub-system, packetiser, delay and scaler and output pack-
etiser, is shown in figure 6.16.

SFPL
F δTe

PLS

F

Figure 6.16: Block Diagram of FEC Module

The resulting scaling functions are:

SF(a) = k · a

S−1
F (a) =

1

k
· a

(6.51)

Service The rightmost packetiser in figure 6.16 is expecting the scaled
data. We can therefore apply the scaling function to the maximum packet
size and obtain the following service curve for the FEC:

βF1 = βr2, lmaxr2

⊗ δTe ⊗ βr2,SF (lmax)

r2

(6.52)

6.7.2 TR

FEC Decoding Interest lies in determining an end-to-end delay bound for
the timing system. In the present case, the decoding happens in the timing
endpoint, which is why it is necessary to also model this part of the TR in
some detail.

Gathering Packets and Decoding Time For forward error correction,
only a part of the packets belonging to one transmission need to arrive.
It is necessary to assume the worst case though, which means waiting for
the last packet to arrive. The first step is therefore re-packetising all arriv-
ing packets from one transmission into one big packet. Afterwards, the
packets are decoded, which makes the whole decoder use the same equa-
tion as the encoder. The service curve is similar to eq. 6.52.

Symmetric Scaling As already presented in section 6.2.4, a symmetric
scaling variant is applied, which requires the corresponding decoder to
apply the inverse of the original scaling function.
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S−1
FPLS

F δTd
PL
F

Figure 6.17: Block Diagram of the decoder Module

βF2 = β
r2,

SF (lmax)

r2

⊗ δTd ⊗ βr2, lmaxr2

(6.53)

6.8 Etherbone Slave and Event-Condition-Action
Unit

Demultiplexing Removal of the packet header happens instantaneous
at the inverse scaler. So the EBS Receiver (RX) block diagram looks like
a mirrored version of the EBM TX (see figure 6.15 and 6.18). The EBS
de-framer does not work the same way as the EBM framer, it removes
the EB record header and adds a delay, but does not re-packetise. This
can therefore be described as an inverse scaler followed by a rate-latency
system (see lower right of figure 6.18, “EBS Deframer”).

This finally leaves the Event Condition Action unit (ECA) unit (see ??).
Being one of the most complex logic cores in the system, it can nevertheless
be described as a simple black box model. ECA is responsible to schedule
actions originating from arriving messages to be executed at the times-
tamp they carry. To sort arrivals, ECA adds a bounded delay of 4 µs.

This would be followed by an EDF scheduler, which is not modelled.
The reason is that all messages are dispatched ∆t = 500 µs before they are
due. For all messages that arrive on time, the EDF would hold them back
until their execution time. This would hide the leftover delay budget from
the analysis.

6.9 White Rabbit Network Model

6.9.1 Interference at Network Integrated Controller (NIC)

Origin At the network interface, the DM’s flow is multiplexed with flows
from the WR timing core. WR uses Precision Time Protocol (PTP) pack-
ets to synchronise the Coordinated Universal Time (UTC) time between
TRs/switches. In addition, there are other services spuriously sending
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packets, like the Address Resolution Protocol (ARP), Dynamic Host Con-
figuration Protocol (DHCP) or Simple Network Management Protocol (SNMP).

Approach for DM HP Service DM traffic has the highest priority of all
services. However, pre-emption is not allowed, so the minimum service
to the DM has to consider waiting for transmission of the longest possi-
ble low priority packet. Packet lengths of lower priority services can be
described as l<name> supn∈N{l<name>(n)}. The longest possible low priority
packet is thus llomax = max{lptp, larp, ldhcp, lsnmp}, resulting in the DM a mini-
mum service of

βN = βr1 	 llomax (6.54)

Improving WR PTP performance WR PTP periodically has to send pack-
ets to synchronise UTC time to counter long term drift against the time
reference (Global Positioning System (GPS) receiver). It is questionable if
a system with only two priorities is a good design choice because a con-
tinued starvation of WR PTP service would lead long periods of uncom-
pensated clock drift in all downstream timing switches and receivers. It
would therefore be sensible to introduce another priority level between
DM and background for WR PTP, and allocating a minimum service rate
for clock synchronisation.

PTP needs periodic adjustment, so it is assumed that all WR PTP flows
are periodic. The corresponding staircase functions are sufficient to model
the arrival curves thiran_network_2001. The presented approach models
the mutual influence on service by application of one shaper per flow. This
limits the influence of the interfering flow to its maximum allocated rate.
Assuming a fraction of the total rate k is assigned, with k ∈ N∗, to WR
traffic. It would then be forced to obey σptp = λ r1

k
, making sure αptp (as

an interfering flow) does not exceed this rate in the presence of DM traffic.
It follows that the shaper for the DM traffic must guarantee the agreed
minimum rate to WR, which leads to σdm = λr1· k−1

k
. The shaping curves are

the guaranteed service for each flow, and λr1 ≥ σptp + σdm. The maximum
length packet to be considered in the delay equation differs for WR and
DM flows, as DM is of highest priority, WR of second highest and all others
of lowest priority. The leftover service for each of the higher priority flows
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can be calculated as:

αptp = lptp · υTptp,0 = lptp ·
⌈
t+ 0

Tptp

⌉
= γ lptp

Tptp
,lptp

(6.55)

βnic = λr1 	 (αptp � σptp)⊗ δ lmax
r1

(6.56)

6.9.2 WR Switches

The DM is connected via a tree topology to 2000+ TRs. WR switches fea-
ture 18 ports each, which means a fanout of 1-17. This indicates a mini-
mum of k = dlog17 2000e = 3 layers of switches. The topology is adjusted
for geographical reasons though, so the actual size is likely to be 5 lay-
ers. WR switches are treated as black boxes. The delay they introduce has
been removed from traffic measurements and is represented in a simpli-
fied model.

Switch Properties All switches treat traffic from the DM as high priority.
The switches feature cut-through for low latency. This means HP packets
are passed on as soon as possible, sending the first bits before their last bits
have arrived. The switches are non-preemptive, meaning they must buffer
(introduce a delay) if a lower priority packet is currently being transfered.

The switches are therefore modelled as a small constant delay Ts repre-
senting the time it takes to inspect the packet header and apply the switch-
ing matrix. Following this is the multiplexer, a constant rate node operat-
ing at r1. Because the switch can be busy with a low priority packet, there
is another delay of llomax

r1
in its minimum service. Because LP traffic is partly

point-to-point and originates at all switches, it cannot be assumed multi-
plexing is applied only at the first switch. The service of a WR switch is
therefore defined as:

βsw = δTs ⊗ (βr1 	 llomax) (6.57)

6.10 End-to-End Delay Analysis

All sub-components of the CS have been modelled and an end-to-end de-
lay analysis of the complete system can now be conducted. We will per-
form the necessary preparation for a PMOO analysis, as it (in most cases)
leads to the tightest delay bounds. In the scope of this thesis, PMOO

96



also has the benefit that the required reduction of the system into a sin-
gle equivalent node allows a clearer visualisation.

For ease of representation, the system is split into four parts. The first is
the sink tree posed by CPUs, aggregating flows from their threads, and the
PQ, aggregating flows from CPUs. The second is the single-path section
of the DM without the NIC, the third are the NICs of DM and TR as well
as all WR switches. The fourth and last is the TR.

Packetisers in the Big Picture To reduce the size of the figures, all pack-
etiser blocks in the following diagrams show not just L-packetisers, but
already PGS, a combination of a bit-by-bit system and an L-packetiser (see
figure 6.13, 6.15). Furthermore, a substitution of L-packetiser functions
was applied. Packetiser PM1 has a maximum packet size of lp = 32 B.
Afterwards, EB record headers are added, the packets are scaled. PP1 col-
lects EB records, which is a timing message scaled with SR. It has max-
imum packet (payload) size of lnp = k · SR(lp) = SR(klp). FEC input
collects payloads plus network header, which means scaling them by SP

so maximum packet size is ln = SP (SR(klp)). The encoder outputs en-
coded packets, means scaled by SF , which equals a maximum packet size
of lf = SF (SP (SR(klp))). All three L-packetisers can therefore be expressed
by the same L-packetiser and a scaling function. In the block diagram, all
L-packetiser scaling is noted above the PGS’ name and any scaling apply-
ing to the bit-by-bit system below the PGS’ name.

Network Tunnel Because flows of timing messages are aggregated into
network packets and separated at the endpoints EBS, they intermittently
become a single flow in the model. This is called a trunk or tunnelled
connection and is marked in grey in the following overview figure 6.18.
More details can be found under subsection 6.10.5.

6.10.1 EDF Sink Tree

Depending on whether the flow of interest for PMOO analysis is defined
as all timing message input flows or a single one, different service and
arrival curves for CPU and PQ have to be used. We shall designate a flow
of interest with ingress at the CPU level as Rxy, being the x-th flow at CPU
y.

Sum of all Timing Flows If the intention is finding the delay bound for
any and all of the timing flows, the arrival curves of all flows must be
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aggregated and the service of the PQ’s constant rate note is concatenated
with the single path section of the system, denoted as βsp. The incoming
flow at the PQ node is then defined by

αpq =
N−1∑
j

M−1∑
i

(
αij � (βCPU ⊗ βq ⊗ δa)

)
(6.58)
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Single Flow of Interest The delay bound for a single timing message
flow can be obtained by calculating the leftover service at both the CPU at
which the FOI originates and the PQ. We shall start by modifying eq. 6.58
to include only the flows originating at other CPUs by replacing the limits
of the first sum by j ∈ [0, N) − {y}, with y being the index of the origin
CPU of the FOI.

α∗−y =
N−1∑
j 6=y

M−1∑
i

(
αij � (βCPU ⊗ βq ⊗ δa)

)
(6.59)

We then need to add all flows originating at CPU y, except for the FOI
x, and calculate the matching output arrival curve by feeding the aggre-
gate flow through the CPUs leftover service, after serving the FOI:

βl.o.
−xy =

(
βCPU 	

(
M−1∑

i

αoh
i + αxy

))
⊗ βq ⊗ δa (6.60)

α∗−xy =
∑
i 6=x

αiy � βl.o.
−xy (6.61)

This leaves concatenating the leftover service the FOI experienced at both
CPU and PQ level. The leftover service for the FOI at CPU level is given
by eq. 6.27 on p. 79. Combined with eq. 6.59 and 6.61, the leftover service
in the sink tree is

βl.o.
st = λr3 	 (α∗−y + α∗−xy) (6.62)

6.10.2 Equivalent Circuit for WR Network

The WR network consists of several layers of WR switches for which an
equivalent node needs to be created. The NIC nodes of DM and TR are
also to be combined into the equivalent system, because they also carry the
interfering WR background flows (PTP, DHCP, ARP, SNMP). The middle
row in figure 6.18 shows the structure of the WR system. An equivalent
node is therefore the leftover service in the concatenation of all involved
nodes. Since DM traffic is high priority and non-preemptive, all nodes
must allow for a maximum length low priority packet to complete. For
the WR switches 6.57 and the NICs 6.54, this is already included.

It is noteworthy that the calculation of leftover service in the present
case does pay for multiplexing several times. This is done on purpose, be-
cause WR background traffic is generated at all switch levels and the NICs.
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Therefore, multiplexing does happen at each node again. The equivalent
service for all WR network nodes can be written as

βwr = βN1 ⊗
⊗

1≤i≤k

βsw ⊗ βN2 (6.63)

6.10.3 Data Master to Timing Endpoint

Concatenation and Scalers The presence of scalers in the system (all
Sx blocks in figure 6.18) prevents direct analysis. Nodes separated by a
scalers cannot be concatenated by standard NC, so the scalers need to be
removed. This can be achieved by one of three ways:

• Move all scalers to ingress

• Move all scalers to egress

• Move symmetric scalers to their inverse

PLSS

PL S

βSS

β S

a.)

b.)

Figure 6.19: Equivalent Circuits for Scalers

Moving Scalers The present case has symmetric scalers, so it is possible
to move them towards their respective inverse functions (Sx adjacent to
S−1
x ) so they cancel each other out. Moving a scaler is achieved by replac-

ing it with its equivalent circuit from figure 6.19. The replacement follows
the rules for scaled service on p. 67 in section 6.2.4, the same principle
holds for L-packetisers and their scaling functions.

The tightness of the achieved bounds depends on the chosen equiva-
lent circuits. The best choice differs for backlog, output and delay bounds.
fidler_way_2006 states that for delay analysis, a system in the a.) row of
figure 6.19 should stay unchanged, and a system from the b.) row can be
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changed to a.). This means the three scalers SR, SP and SF in the DM are to
be moved downstream until they reach S−1

R , S−1
P and S−1

F and cancel each
other out.

Step-by-Step Removal While the presented method removes the scaler
blocks, it is clear that their influence on other components remains. The
removal process is described using the notation for packetisers and their
bit-by-bit systems from p. 93.
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6.10.4 Equivalent Service of Packetised Greedy Shapers

Moving a scaler downstream past a packetised greedy shaper will influ-
ence both the L-packetiser and the bit-by-bit system. Thus, it will trans-
form a system of the form σ, PLS into an equivalent circuit of S−1(σ), PL.

Iterative Scaling Because the minimal scaling curve (max-plus deconvo-
lution) of scaling functions are defined to represent less or equal service,
it follows that iterative use drives the curves towards pessimistic service
representations, so

(SX � SX)((SY � SY )(a)) ≤ SX(SY (A)) � SX(SY (a))

Therefore the process followed is to firstly apply all scaling functions, i.e.
SX(SY (SZ(a)) . . . , then apply the deconvolution operator. Because the
scaling functions are bijective, the order is of no consequence. To provide
a more readable representation, the following notation is used:

S1(a) = SR(a)

S2(a) = SR(SP (a))

S3(a) = SR(SP (SF (a)))

Using these shortforms, the equivalent service of all packetisers in block
diagram 6.23 is given by the following equations:

PM1 = PM2 → β
r2,

lp
r2

(6.64)

PP1 = PP6 → S−1
1 (βP ) ≤ β

S−1
1 (r2),

klp

S−1
1 (r2)

(6.65)

PP2 = PP5 → S−1
2 (βP ) ≤ β

S−1
2 (r2),

klp

S−1
2 (r2)

(6.66)

PP3 = PP4 → S−1
3 (βP ) ≤ β

S−1
3 (r2),

klp

S−1
3 (r2)

(6.67)

For the sake of completeness, a shorthand scaled version of the WR service
reads

βwrs = S−1
3 (βwr) (6.68)

6.10.5 Aggregate Scheduling

The system has been modelled in terms of its service, but there is a hith-
erto unconsidered constraint on flows traversing the system. When flows
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of timing messages are multiplexed on the DM’s WB bus, this follows a
standard NC model. Between the DM and the endpoint however, this be-
comes an Ethernet based network connection.

Aggregation From the EB TX module to the EB RX module, messages
are bundled into network packets (grey area in figure 6.18). This wrap-
ping is called aggregate scheduling, or in more general networking terms,
a tunnelled connection. There is a significant difference in the multiplex-
ing behaviour, because the multiple timing message flows become one sin-
gle flow of network packages while they are in the tunnel. Message flows
are no longer running as cross traffic to each other and thus cannot de-
lay each other. The resulting single flow only has the WR services as its
cross traffic and because DM traffic is treated as HP without pre-emption
within the WR network, only the processing times for maximum length
LP traffic accumulate as latency. As a result, the latency for traversing the
tunnel, and therefore the end-to-end delay, strongly decreases (compare
chapter ??, figure ?? and ??).

For TFA, this is of no consequence, as it operates on the assumption
that all incoming flows are aggregated (added) before analysis. For SFA
and PMOO however, the ingress, the tunnel and the egress must be anal-
ysed as separate cases. The transition between the ingress and the tunnel
is trivial, because the arrival curve entering the tunnel is the aggregate, i.e.
sum of all the ingress’s output arrival curves:

αt =
∑

α∗ini (6.69)

Regaining Individual Flows Once the tunnel ends at the EB RX module
though, a problem presents itself. The output aggregate flow constrained
by αt must now be split up again into the original number of flows, which
is not as trivial as it might seem. For the demonstration cases in chapter ??,
the problem can be circumvented because all incoming flows were chosen
to be equal. Thus, the output arrival curve of the last node in the tunnel
can be divided by the number of original flows. Finding a generic solu-
tion for the corresponding residual service curves is not trivial and still
work in progress in the beginning of 2017 (see chapter ??). However, there
exists usable workaround for the present case. bondorf_improving_2016
proved in bondorf_improving_2016 that the maximum backlog encoun-
tered in a TFA at a given node is also the maximum backlog any other
form of analysis can encounter, thus capping the backlog. Furthermore,
the sustainable rates of the individual flows cannot have increased inside
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the tunnel. If one consequently assigns the rates of the ingress’s output
arrival curves α∗ini to αouti and sets their initial burst to the TFA bounded
burst value of the aggregate output arrival curve α∗t , all αouti are defined
by valid arrival curves. From the rate and burst limits, it follows that the
resulting arrival curves must be greater or equal to the tight arrival bound,
which means they are still valid constraints to their flows.

This allows to obtain an end-to-end delay by adding the individual
delay for ingress, tunnel and egress. The calculated difference in latency
between assigning the best case (zero burstiness) and the worst case (ag-
gregate burstiness) to any or all output arrival curves causes latency dif-
ferences in the single digit microsecond range in the DM simulation. The
approach was therefore considered an acceptable intermediate solution for
the present case.

6.10.6 Summary

In this chapter, it has been shown that NC is applicable to the case study
and how its peculiarities can be handled. Additionally, it has been shown
that machine schedules, which control accelerator components in the FAIR
case study, can be modelled as network flows. Changing flows can be ex-
pressed by using suprema of alternative arrival curves or recurring analy-
ses with non-empty buffers.

The model has been further enhanced to show how the trinity of Pro-
gram, Cycle based Bus and packet based Network of the SoC System can
be modelled in NC. All sub-modules have been discussed in detail and
service representations have been deduced. The findings were then com-
bined to produce a single equivalent service, which can be used to calcu-
late the maximum delay for a particular flow of interest or the sum of all
flows.

In the evaluation in chapter ??, the results obtained by simulating the
model in the Disco DNC v2 simulator bondorf_discodnc_2014 will be rep-
resented and the results, as far as feasibly possible, compared with tests of
the prototype system.
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Chapter 7

Memory Maps

Lorem ipsum dolor sit amet... blabla
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DM RO, Host RW
DM RW, Host RW

Figure 7.1: Color Legend for Memory Layout
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Figure 7.3: Timing Message Memory Layout
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Figure 7.9: Queue Buffer List Memory Layout
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Figure 7.10: Queue Buffer Memory Layout
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Figure 7.12: Control Register Groups (space not to scale)
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Chapter 8

Quick Reference
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Node Attributes

beamproc The name of the beamprocess this node belongs to. Currently
not supported.

bpentry If true, this node is an entry point to the beamprocess it be-
longs to. Currently not supported.

bpexit If true, this node is an exit point from the beamprocess it be-
longs to. Currently not supported.

cpu Index of the CPU core this Node will reside in. To be replaced
by auto-balancer algorithm.

flags Aggregation of certain node flags, internal use only.
id Addresses the 64b ID field of a timing event. Sub-Id fields can

be used instead, see id.
node_id Tag of the node’s name. Internal use only.
par Transparent parameter field, part of a timing message. Is

passed through to a listening ECA channel in timing receiver.
patentry If true, this node is an entry point to the pattern it belongs to.
patexit If true, this node is an exit point from the pattern it belongs to.
pattern The name of thepattern this node belongs to.
permanent If true, the corresponding flow command will permanently

change the default destination of the target block, else the
change lasts only during the execution of the command.

prio Chooses the command queue level this command will be writ-
ten to at the target block. (0 (lo), 1(mid), 2(hi) ).

qhi Block attribute, generates a command queue of priority Mid if
true.

qil Block attribute, generates a command queue of priority High
if true.

qlo Block attribute, generates a command queue of priority Low if
true.

qty Repetition quantity of a command(-node). The generated
command will be executed until qty reaches 0.
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tef Fractional (sub-nanosecond) time extension field, part of a
timing message. Currently not interpreted by ECA).

thread Index of the thread core this Node will be handled by. To be
replaced by auto-balancer algorithm.

toffs The time offset ns relative to the block start at which this node
is executed. Negative offsets can be used for debugging to
force late events.

tperiod The duration of a block. Amount of time in ns it adds to the
current time sum when processed.

tvalid Time in ns at/after which this command will be valid (exe-
cutable), can be absolute or relative depending on vabs flag.

twait Timespan in ns a wait command is goid to wait. Can absolute
or relative to current time, depending on flag.

type Determines the type of this node (e.g. block, tmsg, etc.).
block Fixed length block. Terminates a sequence of

nodes and defines the sequence’s length in time.
See tperiod.

blockalign Alignment block. Extends its own length so the
time sum will become a multiple of the time grid
(currently 10 µs). See tperiod, block.

flow Causes one or more repetitions of a flow command
to be written to the target block’s queue, changing
it’s default successor (e.g. branch, loop, etc).

flush Causes a flush command to be written to the target
block’s queue, emptying any selected queues. Can
optionally also override the default successor.

nop Causes one or more No Operation command(s) to
be written to the target block’s queue. No direct
effect, but can together with flow create a sequence
of default and alternative successors.

tmsg Timing Message. Causes a message to be broad-
casted to all timing receivers.

wait Causes a wait command to be written to the target
block’s queue, temporarily stretching it’s length in
time.

vabs Chooses whether tvalid is interpreted as absolute value or an
offset to current time sum. When using this as a loop initialiser
head, always use vabs=true and tvalid=0!.

121



Timing ID sub fields

beamin Marks this node as an exit point to beamprocess X. A node
can belong to only one beamprocess, part of the ID field of a
timing event..

bpid ID of the beamprocess this timing event belongs to.
evtno The event number this timing event belongs to.
fid Format this timing event ID follows. Currently only format 1

is supported.
gid Group ID this timing event belongs to.
id The whole ID field of a timing event. Can be used instead of

the subid fields (evtno, gid, etc).
reqnobeam Flag allowing requesting to run this event without beam.
sid ID of the sequence this timing event belongs to.
vacc Virtual accelerator descriptor field.
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Director Command Attributes

dest Name of the destination node, equivalent to target of
defdst edge in cmdule..

destbeamproc Name of the destination beamprocess. Equivalent to dest
to the beamproccess’ entry node..

destpattern Name of the destination pattern. Equivalent to dest to the
patterns eentry node..

pattern See Target Block.
permanent If true, the flow command will permanently change the de-

fault destination of the target block, else the change lasts
only during the execution of the command..

prio Chooses the queue priority level this command will be
written to at the target block (0 (lo), 1(mid), 2(hi)).

qhi Flush queue selection, flushes mid priority queue if true.
qil Flush queue selection, flushes high priority queue if true.
qlo Flush queue selection, flushes low priority queue if true.
qty Repetition quantity of a command. The sent command will

be executed until qty reaches 0.
target Name of the destination node, equivalent to target of

defdst edge in cmdule..
tvalid Time after which this command will be valid (executable),

can be absolute or relative depending on vabs flag.
twait Timespan a wait command is going to wait. Can absolute

or relative to current time, depending on flag.
vabs Chooses whether tvalid is interpreted as absolute value or

an offset to current time sum..
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Acronyms

ACM Association for Computing Machinery.
ADC Analogue-to-Digital Converter.
ADEV Allan Deviation.
AES Advanced Encryption Standard.
ARP Address Resolution Protocol.
ASIC Application Specific Integrated Circuit.
B2B Bunch to Bucket transfer.
BP Beam Process.
BPC Beam Production Chain.
BTB Bunch-to-Bucket.
CB CrossBar.
CERN European Centre for Nuclear Research.
CMD-Q Command Queue.
CNF Conjunctive Normal Form.
CORBA Common Object Request Broker Architecture.
CPLD Complex Programmable Logic Device.
CPU Central Processing Unit.
CRC Cyclic Redundancy Check.
CS Control System.
DAC Digital-to-Analogue Converter.
DC Direct Current.
DDS Direct Digital Synthesis.
DESY Deutsches Elektronen Synchrotron (German Electron Syn-

chrotron).
DHCP Dynamic Host Configuration Protocol.
DM Data Master.
DNF Disjunctive Normal Form.
DPRAM Dual Port RAM.
DSP Digital Signal Processor.
EB Etherbone.
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EBM Etherbone Master.
EBS Etherbone Slave.
ECA Event Condition Action unit.
EDF Earliest Deadline First.
EPICS Experimental Physics and Industrial Control System.
ESR Experimentier-Speicherring.
Eth IEEE 802.3 Ethernet.
FAIR Facility for Antiproton and Ion Research.
FEC Forward Error Correction.
FEC Frontend Controller.
FESA Frontend Software Architecture.
FH University of Applied Sciences.
FIFO First In, First Out.
FOI Flow Of Interest.
FPGA Field Programmable Gate Array.
FSM Finite State Machine.
GbE Gigabit Ethernet.
GMT Greenwich Mean Time.
GMT General Machine Timing.
GPS Global Positioning System.
GSI GSI-Helmholtz Centre for Heavy Ion Research.
HDL Hardware Description Language.
HP High Priority.
HW hardware.
IEEE Institute of Electrical and Electronics Engineers.
IETF Internet Engineering Task Force.
IO Input/Output.
IP Internet Protocol Version 4.
IRIG Inter Range Instrumentation Group.
ITU International Telecommunication Union.
JTAG Joint Test Action Group.
LHC Large Hadron Collider.
LINAC Linear Accelerator.
LM32 Lattice Mico 32 Processor.
lo left over service.
LP Low Priority.
LSA LHC Software Architecure.
LVDS Low Voltage Differential Signalling.
MCU Microcontroller Unit.
MIL MIL-STD-1553.
MSI Message Signalled Interrupt.

125



MTS Minimal Test System.
MUX Multiplexer.
NC Network Calculus.
NCO Numerically Controlled Oscillator.
NIC Network Integrated Controller.
NTP Network Timing Protocol.
NW Network.
OSI Open Systems Interconnection Model.
PAL Programmable Array Logic.
PBOO Pay Burst Only Once.
PCIe Peripheral Component Interconnect express.
PGS Packetised Greedy Shaper.
PHY Physical interface.
PLA Programmable Logic Array.
PLC Programmable Logic Controller.
PLL Phase Locked Loop.
PMOO Pay Multiplexing Only Once (Analysis).
PPS Pulse Per Second.
PQ Priority Queue.
PSCED Packetised Scheduler, Earliest Deadline First.
PTP Precision Time Protocol.
QoS Quality of Service.
RAM Random Access Memory.
RC Resistor-Capacitor.
RDMA Remote Direct Memory Access.
RF Radio Frequency.
RR Round Robin.
RT real-time.
RTC Realtime Clock.
RTOS Realtime Operating System.
RTS Realtime System.
RX Receiver.
SCPU Soft Central Processing Unit.
SDB Self Describing Bus.
SDH Synchronous Digital Hierarchy.
SERDES SERialiser / DESerialiser.
SFA Separate Flow Analysis.
SI International System of Units.
SIS100 Schwerionen Synchrotron 100.
SIS18 Schwerionen Synchrotron 18.
SIS300 Schwerionen Synchrotron 300.
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SNMP Simple Network Management Protocol.
SOAP Simple Object Access Protocol.
SoC System on a Chip.
SONET Synchronous Optical Networking.
SSL Secure Socket Layer.
ST Standard Time.
SW software.
SyncE Synchronous Ethernet.
TAI International Atomic Time.
TCP Transmission Control Protocol.
TDC Time to Digital Converter.
TFA Total Flow Analysis.
TLU Timestamp Latch Unit.
TR Timing Receiver.
TS Timestamp.
TTF Timing Test Facility.
TX Transceiver.
UDP User Datagram Protocol.
USB Universal Serial Bus.
UT Universal Time.
UTC Coordinated Universal Time.
VAT Virtual Address Table.
VC(X)O Voltage Controlled (Crystal) Oscillator.
VME Versa Module Eurocard-bus.
WB Wishbone.
WBM Wishbone Slave.
WBS Wishbone Master.
WR White Rabbit.
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Table 8.1: Schedule – Applicable attributes per node type

Attribute
Schedule Node Type

tmsg noop flow flush wait block blockalign
cpu X X X X X X X

thread X X X X X X X

patentry X X X X X X X

patexit – – – – – X X

pattern X X X X X X X

bpentry X X X X X X X

bpexit – – – – – X X

beamproc X X X X X X X

tperiod – – – – – X X

qil – – X – – X –
qhi – – X – – X –
qlo – – X – – X –
toffs X X X X X – –
id X – – – – – –
tvalid – X X X X – –
vabs X X X X – – –
prio X X X X – – –
qty X X – – – – –
twait – – – X – – –
permanent – – X X – – –
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Table 8.2: Command – Applicable attributes per node type

Attribute Cmd Node Type I
start stop noop flow flush wait

cpu X X X X X X

thread X X X X X X

target X X X X X X

pattern X X X X X X

beamproc X X X X X X

dest – – – X X –
destpattern – – – X X –
destbeamproc – – – X X –
qil – – – – X –
qhi – – – – X –
qlo – – – – X –
tvalid – – X X X X

vabs – – X X X X

prio – – X X X X

qty – – X – – –
twait – – – – X –
permanent – – – X X –
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Table 8.3: Command – Applicable attributes per node type (continued)

Attribute Cmd Node Type II
staticflush lock unlock asyncclear

cpu X X X X

thread X X X X

target X X X X

pattern X X X X

beamproc X X X X

dest X – – –
destpattern X – – –
destbeamproc X – – –
qil X – – –
qhi X – – –
qlo X – – –
tvalid – – – –
vabs – – – –
prio – – – –
qty – – – –
twait – – – –
permanent – – – –
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Table 8.4: Schedule – Valid edge types per node type

Edge Type Node Type
tmsg noop flow flush wait lock unlock asyncclear block blockalign

defdst X X X X X X X X X X

altdst – – – – – – – – X X

target – X X X X X X X – –
flowdst – – X – – – – – – –
flushovr – – – X – – – – – –
dynid x X – – – – – – – – –
dynpar0 X – – – – – – – – –
dynpar1 X – – – – – – – – –
dyntef X – – – – – – – – –
dynres X – – – – – – – – –
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Chapter 9

Troubleshooting

(ToDo)
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Appendix I

Attached Documents

None.
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Document Information

II.1 Document History

Version Date Description Author Review / Approval
0.1.0 01. Feb. 2018 created M. Kreider Pending
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