Data Access Layer Plug Implementation

Data Access Layer Plug Implementation

Project: DESY-CSS
Document Owner: Igor Kriznar
Status: Released
Creation: 2006-04-24 (Igor Kriznar)
Revision: 1.0

Copyright © 2001-2006 by Cosylab d.o.o. All Rights Reserved.

Audience

This document is intended for all interested in DataAccessLayer API implementation.

Scope

The intent of this document is to describe how to write plug implementation for DAL
most effectively.

Document History

Revision

Date

Author

Section

Modification

1.0

2006-04-24

Igor Kriznar

All

Created.

1.1

2006-05-11

Igor Kriznar

2.4,2.5,2.7

Device implementation added.

1.2

2006-05-15

Igor Kriznar

3, L.

API updated.

1.3

2006-06-19

Igor Kriznar

4, L.

Directory added, API updated.

1.4

2006-06-22

Klemen Zagar|4.1

Directory proposal added.

References

ID

Author

Reference

Revision

Date

Publisher

1

Igor Kriznar

Data Access Layer API Proposal

1.1

2006-04-18

Cosylab

Gasper Tkacik

Data Access Layer Feature Requests
http://epics-
office.desy.de/content/e14/e193/e194/
e196/CSFR.pdf

Cosylab

Sun

Java 5 Generics

http://java.sun.com/j2se/1.5.0/docs/gui
de/language/generics.html

Sun

Sun

Java Naming and Directory Interfaces

http://java.sun.com/products/jndi/

Sun

EPICS
Community

EPICS V4 Name Server

http://aps.anl.gov/epics/wiki/index.php
[V4 Name Server

ANL - ASP

DeDiSys

Dependable Distributed Systems

(DeDiSys) http://www.dedisys.org

DeDiSys

1

http://epics-office.desy.de/content/e14/e193/e194/e196/CSFR.pdf
http://epics-office.desy.de/content/e14/e193/e194/e196/CSFR.pdf
http://epics-office.desy.de/content/e14/e193/e194/e196/CSFR.pdf
http://www.dedisys.org/
http://aps.anl.gov/epics/wiki/index.php/V4_Name_Server
http://aps.anl.gov/epics/wiki/index.php/V4_Name_Server
http://java.sun.com/products/jndi/
http://java.sun.com/j2se/1.5.0/docs/guide/language/generics.html
http://java.sun.com/j2se/1.5.0/docs/guide/language/generics.html

Data Access Layer Plug Implementation

ID Author Reference Revision Date Publisher

7 |T. Howes The String Representation of LDAP - December |Netscape
Search Filters 1997 Communica
http://www.fags.org/rfcs/rfc2254.html tions Corp.

Table of Contents

1.Data ACCESS Layer APL......oe et 2
1.1 DAL Implementation from ScratCh............ooiiiiiii s 3
1.2 DAL Implementation through Plug COmmoONS..........cceiuiiiiiiiiiiiieeieieieeieeieeneenns 3
1.3 Other Plug Implementation ASPECES.......ciuiiiiiiiiiiiii e 4

2.Plug Implementation 0n COMINONS.........ciuiiiiiiiiiieiei ettt eeee et e eaeanererneanaes 4
2.1 Simulation Implementation...........coooiiiiiiii s 4
2.2 Implementation Entry POInts.........coooiiiiiiiiiii e 4
2.3 Property Implementation.......ccoiiiiiiinin e 5

2.3.1 PrOXy MeEthOdS.cuiiiiiiiiiie ettt e e e e e e e e e e e e 5
2.3.2 PropertyProxy Methods.........couuiiiiiiiiiie e 6
2.3.3 SyncPropertyProxy MethodsS.........coouiiiiiiiiiiiiii e 8
2.3.4 MonitorProxXy Methods........vvuiiiiiiieiie e e 9
2.3.5 DirectoryProxy MethodsS.......cc.ciiiiiiiec e 11
2.4 Device Implementation. ..o 12
2.4.1 DeviceProxy and DirectoryProxy Methods..........ccccoveiiiiiiiiiiniiiiniieen, 12
2.4.2 COMMANAPTOXYiuuiiniiieiieiiee et et et et e e et e et et et eaean e s esnaeaaeanesneaneans 14
2.5 AbstractPlug Implementation........c..cviuiiiiiiiiii e 14
2.6 PropertyFactory Implementation............cccouiiiiiiiiiiiiiin e 18
2.7 DeviceFactory Implementation..........c..ooiiiiiiiiiiiiiie e 20

3.Loading Different Plug Implementations..........cccoviviiiiniiiiiiiiir e, 22

4.Directory Service ANA DAL.......couiiiiiiii e e e e e et aaaaas 23
4.1 EPICS Directory Proposal........ccceiiiiiiiiiiiiiii e 26

[.Appendix — PropertyProxy and DirectoryProxy Interfaces.........cc.cccooviiiiiniininnnn.. 28

1. Data Access Layer API

Data Access Layer (DAL) prescribes a consistent set of interfaces for access to
control system's dynamic and configuration data. More about DAL API is available in
document Data Access Layer API Proposal (see ref. 1). We may call an
implementation of DAL API a plug. Purpose of plug is to provide glue code between
particular control system protocol and DAL API. DAL API uses interfaces rather than
abstract classes wherever possible, so the plug may use it “s own object or extend
already existing control system object in order to keep memory consumption low.

DAL design is object oriented “wide” interface with addition of “narrow” style
generic capabilities. DAL is programmer oriented and objects are “wide”. As
consequence they have many methods. Most of the operations can be to
accomplished by simply invoking right method on right object, while most of the
“inconvenient” stuff is hidden behind API. This approach is friendly to programmer
and visual composition editors, but not so friendly to DAL implementors, because
they have many methods to implement. Most of the methods are there only for
convenience or they are slightly different version of some other method so
optimization is possible.

In order to reduce effort necessary to implement DAL API some commong glue code
can be defined, which connects DAL API to DAL plug interfaces. Plug API contains

2

http://www.faqs.org/rfcs/rfc2254.html

Data Access Layer Plug Implementation

minimum of necessary methods to implement. Glue between simplified plug API and
DAL API would consist code, which handles convenience implementation. Most of the
glue part has to be implemented by first plug implementor anyway. All subsequent
plug implementions can use same common glue code.

This section will explain that there are two ways to write plug for DAL. The first one
is to implement whole DAL API from scratch. The other one is to use common plug
implementation support classes. Both will be presented in following sections.

1.1 DAL Implementation from Scratch

Most obvious benefit is that implementor has full control over all aspects of
implementation and can make best performance optimization. The main disadvantage
is that it takes more time and effort to write plug that is DAL API compliant.

1.2 DAL Implementation through Plug Commons
There are several benefits:
® Plug writing is easier, requires less documentation and learning.
® It is easier to ensure DAL compliance.

® It is easier to write simple plug from the beginning with limited set of features
working right away and later add full implementation or optimize
implementation for performance.

e If the first plug is written consciously with consideration for common classes
then minimal additional work is necessary for next plug.

There are also risks, which are listed and described below (with strategies to
minimize their influence) :

® Lack of flexibility. This means that common classes allows only one way to
implement DAL and if communication layer is not compatible with plug design.
Therefor it is hard to implement such plug because it may have problems with
performance and stability due to excessive code.

® Heavy common code dragging down performance.

All of these risks can be addressed with following plug commons design
requirements:

® Code is thin and minimalistic as possible: better performance and less
maintenance.

® Avoiding any heavy frameworks, same reasons as above. Few well choose
programming patterns should solve all problems.

® Any common glue code must be replaceable with own code, if circumstances
demands it. This enables flexibility. Plug implementation can start as simple
extension of common code can be later enhanced to implement special features
or performance improvements not provided by commons.

Bottom line is that there is not one way to write plugs but a smooth transition from
easier to more complex implementation.

Data Access Layer Plug Implementation

1.3 Other Plug Implementation Aspects

® To ensure DAL API compliance set of JUnit tests should be written and should
be used to test any implementations to ensure that it is 100% compatible with
DAL design. In fact it is easier to ensure compliance with empiric tests than
with written document that is probably never throughly read.

® Simulation is required for several reasons: with simulations DAL concepts can
be tested and demonstrated, it can be used for quick testing and
demonstrating control system applications offline or before real plug
implementation or control system capabilities are even build, which speeds up
development process.

2. Plug Implementation on Commons

For testing and demonstration purposes DAL package already contains outline of
plug commons and simple implementation of simulation plug. It does not implement
all functionality and it focuses only on implementation of dynamic value properties
(or channels in EPICS notation), but it does define basic interfaces and design
decisions. Plug writing will be explained based on this simple implementation, which
will be used as demonstration of concepts.

Asynchronous operations are prefered in plug before synchronous operations.
Assumption is that asynchronous operation tend to perform faster, specially when
certain tasks must be executed on large amount of properties or remote objects.
Another reason is that asynchronous communication is a basic type of communication
and it is supported on most communication protocols.

Common plug implementation has three parts:

® DAL API with some default implementation as support classes. Code is in
located in following packages: com.cosylab.datatypes,
com.cosylab.datatypes.commands, com.cosylab.datatypes.context,
com.cosylab.datatypes.device, com.cosylab.datatypes.group,
com.cosylab.datatypes.spi.

® Plug API, which in intended to be implemented by plug implementors. Code is
in package com.cosylab.datatypes.proxy.

e Common plug code (or glue code). This code is a bridge between plug API and
DAL API. This code in intended to be thin and contains stubs of main interfaces
declared in DAL API. At the moment this part is not finished. Non-trivial part of
common plug code is still missing but the missing parts are well defined on one
side with DAL API and on the other with common plug classes API.

2.1 Simulation Implementation

For purposes of this document and testing of design simple simulation
implementation has already been written. Simulation implementation is located in
package com.cosylab.datatypes.simulation and consist of minimal implementation
necessary for DAL to work. Code snippets from simulation will be used further in
document as illustration of recommended DAL implementation.

2.2 Implementation Entry Points

Table of interfaces and classes that must be implemented if programmer wants to

4

Data Access Layer Plug Implementation
implement DAL properties with minimal effort can be found below.

Class or Interface Description

com.cosylab.datatypes.proxy.PropertyProxy |Implement this interface to provide connection
to communication layer.

com.cosylab.datatypes.proxy.DeviceProxy Implement this interface if your system
provides device representation or you want to
simulate devices on logical level.

com.cosylab.datatypes.proxy.DirectoryProxy | Implement this interface to provide
introspection data for property.

com.cosylab.datatypes.proxy.AbstractPlug |Extend this abstract class to provide creation
of Proxy classes.

com.cosylab.datatypes.spi.PropertyFactory |Implement this interface that creates instances
of dynamic value properties and binds them
with Proxy classes from plug.

Each interface is in more detail explained in following sections.

2.3 Property Implementation

PropertyProxy and DirectoryProxy interfaces are representing connection to
communication layer for single DynamicValueProperty. Both interfaces can be
implemented with same or with different classes. Class that implements
PropertyProxy represents single connection to remote property object. Each of
proxies belongs to one unige remote name and all methods and requests are relative
to this name or remote property.

For each DynamicValueProperty interface there must be corresponding property
proxy implementation. Best is to implement as many different property proxies as
there are different connection types in communication layer.

Full interfaces are in appendix I. List of methods with sample simulation code as
implementation suggestion can be found below.

2.3.1 Proxy Methods

This is common proxy interface, which is shared between PropertyProxy, DeviceProxy
and DirectoryProxy.

Method

|pub| ic String getUni queNane();

Explanation

Unique name is name of remote property or data channel.

Code sample from Simulation

public String getUni queNane() {
return nane;
}

where name is obtained from constructor.

Method

public void destroy();

Data Access Layer Plug Implementation

Method

Explanation

If during proxy creation any remote resource or connection has been made, now is the time
to destroy it. This method can be called only from plug object.

Code sample from Simulation

N/A

Method

public void addProxyLi stener (ProxyLi stener |);
public void renoveProxylLi stener (ProxyListener |);

Explanation

Listener should receive event, whenever connection or condition status of proxy changes.

Code sample from Simulation

public voi d addProxyLi stener (ProxyListener I) {
i f (proxyListeners==null) {
proxyLi st eners= new Li st enerLi st (ProxyLi stener. cl ass);
}

proxyLi steners. add(l);

Method

|pub| i c ConnectionState get ConnectionState();

Explanation

Connection state signals condition of connection to remote object.

Code sample from Simulation

publ i ¢ ConnectionState get ConnectionState() {
return connectionSt at e;

protected void set Connecti onSt at e(ConnectionState s) {
connecti onSt at e=s;
fireConnectionState();

}
protected void fireConnectionState() {
ProxyLi stener[] |= (ProxyListener[])proxyListeners.toArray();
for (int i =0; i <l.length; i++) {
try {
I[i].connectionStateChange(this,connectionState);
} catch (Exception e) {
e. print StackTrace();
}
}
}

2.3.2 PropertyProxy Methods

Method

publ i ¢ Request get Val ueAsync(Responseli stener call back) throws
Dat aExchangeExcepti on;

publ i ¢ Request setVal ueAsync(T val ue, ResponselLi stener callback) throws

6

Data Access Layer Plug Implementation

Method

|Dat aExchangeExcepti on;

Explanation

Asynchronous set and get of remote value. This is basic access to value. ResponseListener
implementation is callback, which receives response objects. Each response must have

reference to request object (same as returned by these methods), which initiated the
response.

Code sample from Simulation

publ i ¢ Request get Val ueAsync(ResponselLi stener call back)
t hr ows Dat aExchangeException {
Request I npl r= new Request | nmpl (this, call back);
r. addResponse(new
Responsel mpl (t hi s, r, val ue, "val ue", true, null, condition,true));
return r;

publ i c Request setVal ueAsync(T val ue, ResponselListener cal | back)
t hr ows Dat aExchangeExcepti on {
set Val ueSync(val ue);
Request I npl r= new Request| npl (this, call back);
r. addResponse(new Responsel npl (this, r,value,"",true, null,condition,true));
return r;

}

Where com.cosylab.datatypes.impl.RequestImpl and
com.cosylab.datatypes.impl.Responselmpl are default implementations of Request and
Response interfaces. Fancier version of simulator would use different thread to return
response to callback (by calling r.addResponse(...)).

Method

publ i ¢ bool ean isSettable();

Explanation

Returns true if remote property accepts set.

Code sample from Simulation

It is always true in simulations.

Method

publ i ¢ MonitorProxy createMnitor(ResponselLi stener callback) throws
Renot eExcepti on;

Explanation

This is how value subscription is made to proxy. Implementation should create new instance

of MonitorProxy and callback should receive value events. More about this will be explained
with MonitorProxy.

Code sample from Simulation

publ i ¢ MonitorProxy createMonitor(ResponselLi stener call back)
t hrows Renot eException {
Moni t or Proxyl npl n= new Mbni t or Proxyl mpl (t hi s, cal | back) ;
nonitors. add(m ;
return m

}

Where MonitorProxylmpl is simulated monitor proxy. Will be explained later on.

Data Access Layer Plug Implementation

Method

| publ i ¢ Enunfet <Dynamni cVal ueSt at e> get Condi ti on();

Explanation

Condition enum is set of distinctive states, which informs users about remote value quality
(such as alarms, timeouts, etc.).

Code sample from Simulation

publ i ¢ EnunfSet <Dynami cVal ueSt at e> get Condi ti on() {
return condition;
}

protected voi d set Condi ti on(EnunfSet <Dynami cVal ueSt ate> s) {
condi ti on=s;
fireCondition();

protected void fireCondition() {
ProxyLi stener[] |= (ProxyListener[])proxyListeners.toArray();

for (int i =0; i <l.length; i++) {
try {
ITi].dynam cVal ueCondi ti onChange(this, condition);
} catch (Exception e) {
e.printStackTrace();
}

2.3.3 SyncPropertyProxy Methods

This interface is optional. PropertyProxy implementation may decide to implement
this interface as well. Basic value access is asynchronous. If this interface is not

implemented, then common plug properties asynchronous versions of methods
automatically.

Method

public T getVal ueSync() throws DataExchangeExcepti on;
public void setVal ueSync(T val ue) throws DataExchangeExcepti on;

Explanation

Synchronous set and get of remote value.

Code sample from Simulation

public T getVal ueSync() {
return val ue;

public void setVal ueSync(T val ue) {
this.val ue = val ue;
Moni t or Proxyl npl [] mF noni tors. toArray(new
Moni t or Proxyl npl [nonitors. size()]);
for (int i =0; i < mlength; i++) {
ni].fireVal ueChange();

}

Use of monitor proxy will be explained later.

Data Access Layer Plug Implementation

2.3.4 MonitorProxy Methods

MonitorProxy implementation should control value subscription. Real life
implementation should register remote callback or listener for value update events.
Simulation example just fires events in local thread on specified timer trigger.

Method

| publ i c Request get Request();

Explanation

Only method that differs from SimpleMonitor interface. It returns request object which
identifies all responses from this monitor. All other methods are reflected directly on DAL
API.

Best illustration that MonitorProxy should do is simply to observe simulation
implementation and comment it.

package com cosyl ab. dat at ypes. si nul ati on;

i mport com cosyl ab. dat at ypes. Dat aExchangeExcepti on
i mport com cosyl ab. dat at ypes. Request ;

i nport com cosyl ab. dat at ypes. ResponseLi st ener;

i mport com cosyl ab. dat at ypes. i npl . Request | npl

i nport com cosyl ab. dat at ypes. i npl . Responsel npl ;

i mport com cosyl ab. dat at ypes. pr oxy. Moni t or Pr oxy;

i mport java.util.Ti mer Task;

/**

* Simul ation inplenmentati on of MonitorProxy.
*
* @uthor |gor Kriznar (igor.kriznarATcosyl ab.com
*/
public class MnitorProxyl npl extends Request!|npl inplenments MonitorProxy,
Runnabl e
{

private PropertyProxyl nmpl <?> proxy;
private long tinerTrigger = 1000;
private bool ean heartbeat = true
private TinerTask task;

/**

* Creates new i nstance.
*

* @ar am proxy parent proxy object

* @aram| l|istener for notifications

*/
publ i ¢ Moni tor Proxyl npl (PropertyProxyl npl proxy, ResponselListener |)
{

super (proxy, |);
this. proxy = proxy;
reset Timer();

}

As already shown in example of PropertyProxy implementation, MonitorProxyImpl is
created with reference to proxy in which was created and responde to listener, who
will receive value updates.

Note that MonitorProxylmpl is extended from RequestImpl, which is default support
implementation.

Data Access Layer Plug Implementation

publi ¢ Request get Request ()
{

return this;

public long getTinerTrigger() throws DataExchangeExcepti on
{

return timerTrigger;

public void setTimerTrigger(long trigger)
t hr ows Dat aExchangeExcepti on, UnsupportedOperati onExcepti on
{

timerTrigger = trigger;
reset Ti mer();

}

Timer trigger is the rate at which regulate value updates event that are sent to
listener but only if monitor is in heartbeat mode.

public voi d set Heartbeat (bool ean heart beat)
t hrows Dat aExchangeExcepti on, UnsupportedOperati onExcepti on
{

t his. heart beat = heart beat;
reset Ti mer () ;

publ i ¢ bool ean i sHeart beat ()

{

return heartbeat;
public | ong get Defaul t Ti merTri gger () throws Dat aExchangeExcepti on
{

return 1000;

}
publ i ¢ bool ean i sDefaul t ()
{

}

return true;

Simulation monitor always returns true for default since it is generating events by
itself.

private void fireVal ueEvent ()

{
Responsel npl r = new Responsel npl (proxy, this, proxy.getVal ueSync(),
"val ue", true, null, proxy.getCondition(), false);
addResponse(r);
}

This method dispatches events to the listener.

public void fireVal ueChange()

if (!heartbeat) {
fireVal ueEvent ();
}

}

This method is called from proxy when value is changed and dispatches event but
only if monitor is not in heartbeat mode.

10

Data Access Layer Plug Implementation

public void run()

{
}

private synchroni zed void resetTiner()

fireval ueEvent ();

if (task '=null) {
task. cancel ();

}
if (heartbeat) {

task = Simul ator Pl ug. getl nstance().schedul e(this, tinmerTrigger);
}

}

}

SimulatorPlug implementation has scheduler, which calls run() method on this
monitor proxy at specified rate. In realistic case this should be done by
communication layer. Scheduler is implemented with Java Times class and thread
pool from Concurrent library.

2.3.5 DirectoryProxy Methods

Best practice is to implement this interface is the same class as PropertyProxy.
Especially if communication layer provides a way of introspection with which it is
possible to determine information about property. If the information is not possible to
get from property it must be obtained in different ways. As to be read from some
central directory service. If such service is not available than it could be read from
local Map container (loaded with data from some configuration file or hard coded in
code). The same DeviceProxy interface is also used for device implementation so all
methods, that are marked as device relevant, should be ignored (throw unsupported
exception).

Implementation of simulation is a good example for those, that do not have
introspection in communication layer. In a simulation all characteristics are stored
locally in a the Map. Simulation code example contains only relevant parts.

package com cosyl ab. dat at ypes. si nul ati on;

public class PropertyProxyl npl <T> extends AbstractProxylnpl inplenents PropertyProxy<T>,
SyncPropertyProxy<T>, DirectoryProxy {

protected Map<String, Object> characteristics = new HashMap<Stri ng, Object>();

/**
* Creates new instance.
* @ar am nane
*/
public PropertyProxylnpl (String nane) {
super (name) ;
characteristics. put(Nuneri cPropertyCharacteristics. C_ DESCRI PTI ON,

"Si nmul ated Property");
characteristics. put(NunmericPropertyCharacteristics. C DI SPLAY_NAVE, nane);
characteristics. put (Numeri cPropertyCharacteristics. C POSITION, new

Doubl e(0));
characteristics. put(Numeri cPropertyCharacteristics. C_ PROPERTY_TYPE,

"property");
characteristics. put (Numeri cPropertyCharacteristics. C RESOLUTI ON, OxFFFF);
characteristics. put(NunmericPropertyCharacteristics. C SCALE TYPE, "linear");
characteristics. put(Numeri cPropertyCharacteristics.C UNITS, "anper");

}

When created, the characteristic map is filled with default values.

11

Data Access Layer Plug Implementation

public String[] getCharacteristicNanes() throws Dat aExchangeException {
return characteristics. keySet().toArray(new
String[characteristics. keySet().size()]):

public Object getCharacteristic(String characteristicNanme) throws
Dat aExchangeExcepti on {
return characteristics.get(characteristicNane);

publi ¢ Request getCharacteristics(String[] characteristics, ResponseListener
cal | back) throws DataExchangeException {
Request | npl r= new Request | npl (this, cal |l back);
for (int i = 0; i < characteristics.length; i++) {
r. addResponse(new
Responsel mpl (this,r

,this.characteristics.get(characteristics[i])
,Ccharacteristics[i],true,null,condition,true));

}

return r;

}

All other methods defined by DirectoryProxy are not property relevant.

2.4 Device Implementation

Similar to property implementation it is the implementation of a device necessary to
implement DeviceProxy and DirectoryProxy. Same suggestion holds here: if it is
possible then both interfaces should be implemented by the same class.

Device can be understand as a holder for properties and commands. The way that
device proxy is designed it is possible to model communication layer with devices
even if there is no direct representation in communication layer. Basics for this could
be naming structure, where same pattern of properties is repeated over several
“logical” devices. Also commands can be modeled with properties: command is
simply operation where certain property is set to predefined value.

2.4.1 DeviceProxy and DirectoryProxy Methods

DeviceProxy covers commands and provides child properties. DirectoryProxy
provides information which properties and commands are available on the system. If
such information is provided from communication layer than implementation is easy.

Method

| publ i ¢ CommandPr oxy get Conmand(String nane) throws RenoteException;

Explanation

Returns proxy class for particular command. Knowledge which commands are actually
available is in DirectoryProxy.

Code sample from Simulation

prot ected Map<String, CommandProxy> conmmands = new
HashMap<St ri ng, CommandPr oxy>() ;

DeviceProxylmpl initialization part.

publ i ¢ CommandPr oxy get Command(String nanme) throws RenobteException {
return commands. get (nane) ;
}

DeviceProxy method implementation.

public String[] get ConmandNanes() throws Dat aExchangeException {
return commands. keySet ().t oArray(new String[conmands. si ze()]);
}

12

Data Access Layer Plug Implementation

Method

DirectoryProxy method implementation. Somebody needs to fill commands array with
implementations of CommandProxy interface. Simulation by itself can not know, which
commands should be supported.

Method

public PropertyProxy getPropertyProxy(String nanme) throws RenoteExcepti on;
public DirectoryProxy getDirectoryProxy(String nane) throws RenoteException;

Explanation

Both methods return proxies which are then use to create property with particular name.
This properties are then used as child nodes of parent device.

Code sample from Simulation

protected Sinmul atorPlug plug;
protected Map<String, Di rectoryProxy> directoryProxies;
prot ected Map<String, PropertyProxy> propertyProxies;
protected Map<String, CommandProxy> conmmands = new
HashMap<St ri ng, CommandPr oxy>() ;
protected Map<String, Cl ass<? extends Sinpl eProperty>> propertyTypes= new
HashMap<Stri ng, Cl ass<? extends Sinpl eProperty>>();

DeviceProxyIlmpl initialization part.

public String[] getPropertyNanmes() {
return propertyTypes. keySet().toArray(new String[propertyTypes.size()]);

public C ass<? extends Sinpl eProperty> getPropertyType(String propertyNane) {
return propertyTypes. get (propertyNane);
}

DirectoryProxy methods implementation. Simulation by itself can not know, which properties
should be supported, somehow information about available properties and their type must be
rovided.

publ i ¢ PropertyProxy getPropertyProxy(String name) throws RenpteException {
i f (propertyProxies==null) {
propertyProxi es= new HashMap<Stri ng, Propert yProxy>(3);

PropertyProxy p= propertyProxies. get(nane);

if (p!'=null) {
return p;
}

p = plug. get PropertyProxy(
t hi s. nane+' /' +nane,
SinmulatorUtilities.
Get Pr opert yProxyl npl enent ati onCl ass(
get PropertyType(nane)));
pr opertyProxi es. put (nanme, p) ;
return p;

public DirectoryProxy getDirectoryProxy(String nane) throws RenoteException {

if (directoryProxies==null) {
di rect or yPr oxi es= new HashMap<Stri ng, Di rect or yPr oxy>(3) ;
}

Di rect oryProxy p= directoryProxies. get(nane);

if (p!=null) {
return P;
}

13

Data Access Layer Plug Implementation
Method

p = plug.getDirectoryProxy(this.nane+'/'+nane);
di rect oryPr oxi es. put (nane, p);
return p;

}
DirectoryProxy implementation returns property proxy and directory proxy. If there is a
notion of remote device object in communication library, then implementation may return
property proxies initialized by remote property objects, which are obtained from the device.
If communication library consist of properties only and device is logically modeled, that
similar technique may be used as in simulation implementation. Here properties are obtained
from the plug.

2.4.2 CommandProxy

Command proxy is a wrapper for remote command or action. Communication plug
may support such object directly or supports remote methods, which can be called
from within this proxy, or it does not support commands as such but they can be
modeled by invoking certain value on remote data channel. All this can be enveloped
with CommandProxy.

API of CommandProxy is almost identical to Command DAL API. The only difference
is that command proxy contains synchronous execution method beside method for
asynchronous execution.

CommandProxy must support synchronous execution. If command also supports
asynchronous execution, then the method

| publ i ¢ bool ean i sAsyncrhonous(); |
must return true and the method

publ i c Request execute(Responselistener call back, Cbject... paraneters)
t hrows Renot eExcepti on;

must be implemented.

2.5 AbstractPlug Implementation

The implementation of plug object is done by extension of AbstractPlug. This is
because AbstractPlug is the key object for managing PropertyProxy, DeviceProxy and
DirectoryProxy life cycle. If communication layer does not support device or
properties are obtained directly from devices, than corresponding unused methods
may be committed.

Particular implementation of AbstractPlug must be created as a singleton instance. It
is recommended that method name public static XPlug getInstance() is used.
This means that only one instance of plug implementation is alive in whole JVM.
AbstractPlug also ensures that for each unique name only one instance of
PropertyProxy, DeviceProxy or DirectoryProxy is created. For this reason
AbstractPlug stores all alive instances of proxies in cache.

Method
| protected AbstractPlug() {...} |

Explanation

Constructor of AbstractPlug is under protected access. Also class extending AbstractPlug
must not make constructor visible. Best approach is to make constructor private and obtain

14

Data Access Layer Plug Implementation
Method

plug instance trough singleton programming pattern as it is done for simulation plug.

Code sample from Simulation

package com cosyl ab. dat at ypes. si nul ati on;

public class SimulatorPlug extends AbstractPlug {

/**

* Si ngl et on.

*/

private static SimulatorPlug instance;

public static final SimulatorPlug getlnstance() {
if (instance==null) {
i nstance= new Si nul at or Pl ug() ;

}
return instance;

}

private SinulatorPlug(){
super () ;

}

Method
| public abstract String getPl ugType(); |

Explanation

Type of plug or communication protocol. For simulation is “Simulator” for EPICS protocol
should be “EPICS”, etc.

Code sample from Simulation

public String getPlugType() {
return "Sinulator";
}

Method

prot ected abstract <T extends PropertyProxy> T creat eNewPropertyProxy(String
uni queNanme, C ass<T> type) throws RenpteException;

Explanation

Implementation of plug must create new PropertyProxy implementation instance with this
method. Class of this instance is provided as method parameter. If it is not possible to create
proxy with this name or this implementation class, than exception must be thrown. If type
parameter is PropertyProxy.class than plug must decide, which proxy implementation will
use. If it is possible to determine type of remote object from communication layer, than
decision should be taken regarding remote type.

Method must return as fast as possible. Even if that means that proxy is not connected by the
time it is returned.

If the same implementation class is used for PropertyProxy and DirectoryProxy, created
proxy must be manually put to directory cache in order not to mix up life cycle procedure:
putDirectoryProxyToCache (newPropertyAndDirectoryProxy);.

Code sample from Simulation

protected <TT extends PropertyProxy> TT creat eNewPropertyProxy(String uni queNane,
Cl ass<TT> type) throws RenoteException {

try {

15

Data Access Layer Plug Implementation

Method

if (type==PropertyProxy.class) {
PropertyProxyl npl p= new PropertyProxyl npl (uni queNane) ;
put Di rect or yPr oxyToCache(p) ;
return type. cast(p);

}
if (!PropertyProxylnpl.class.isAssignabl eFrom(type)) ({
t hr ow
new ||| egal Argunent Excepti on(
"Simulator plug can not instantiate class "
+type. get Name()) ;
}
PropertyProxyl npl p= (PropertyProxylnpl)type. get Construct or (
String. cl ass) . newl nst ance(uni queNane) ;
/1 adding to directory cache as well
put Di rect or yPr oxyToCache(p) ;
return type. cast(p);
} catch (Exception e) {
t hr ow new Renot eExcepti on(
this,
"Failed to instantiate simulation proxy ""
+uni queNanme+"' for type '"+type.getName()+"'.", e);
}

return nane;

}
}

PropertyProxyImpl implements DirectoryProxy as well, so when PropertyProxyIlmpl instance
is created, it is manually added to DirectoryProxy cache. To PropertyProxy cache it is added
automatically.

Method

| protected abstract DirectoryProxy createNewD rectoryProxy(String uni queNane);

Explanation

Implementation of plug must create new DirectoryProxy implementation instance with this
method. If same implementation class is used for PropertyProxy and DirectoryProxy, than
this method must throw an exception.

Code sample from Simulation

protected DirectoryProxy createNewDirectoryProxy(String uni queNane) {
t hrow new Runti meExcepti on(
"Error in factory inplenentation, PropertyProxy nmust be created first.");

}

Here exception is thrown, because when implementation of PropertyProxy is created it is
added to the cache of DirectoryProxies as well. So all subsequent calls for directory proxy
with the same name as property proxy will return instance from cache.

Method

protected abstract <T extends Devi ceProxy> T creat eNewDevi cePr oxy(
String uni queNane, C ass<T> type) throws Connecti onExcepti on;

Explanation

Implementation of plug must create new DeviceProxy implementation instance with this
method. Class of this instance is provided as method parameter. If it is not possible to create
proxy with this name or this implementation class, than exception must be thrown. If type
parameter is DeviceProxy.class than plug must decide, which proxy implementation will use.
If it is possible to determine type of remote object from communication layer, than decision
should be taken regarding remote type.

16

Data Access Layer Plug Implementation

Method

Method must return as fast as possible. Even if that means that proxy is not connected by the
time it is returned.

If the same implementation class is used for DeviceProxy and DirectoryProxy, that created
proxy must be manually put to directory cache in order not to mix up life cycle procedure:
putDirectoryProxyToCache (newPropertyAndDirectoryProxy);.

Code sample from Simulation

protected <T extends Devi ceProxy> T creat eNewDevi ceProxy(String uni queNane,
Cl ass<T> type) throws Connecti onException {
try {
if (type==DeviceProxy.class) {
Devi ceProxyl npl p= new Devi ceProxyl npl (uni queNane) ;
put Di r ect or yPr oxyToCache(p) ;
return type. cast(p);

}
if (!DeviceProxylnpl.class.isAssignabl eFron{type)) {
throw new I | | egal Argunment Except i on(
"Simul ator plug can not instantiate class "+
t ype. get Nane()) ;
}
Devi ceProxyl mpl p= (Devi ceProxyl npl)type. get Construct or (
String. cl ass). newl nst ance(uni queNane) ;
/1 adding to directory cache as well
put Di rect or yPr oxyToCache(p) ;
return type. cast(p);
} catch (Exception e) {
t hr ow new Connecti onException(this,
"Failed to instantiate simul ation proxy +uni queNane+
for type '"+type.getNane()+"'.",e);

}
}
Exception is thrown, because when implementation of PropertyProxy is created it is added to
the cache of DirectoryProxies as well. So all subsequent calls for directory proxy with same
name as property proxy will return instance from cache.

Method

|pub| ic String getUni queNanme();

Explanation

Unique name is a name of remote property or data channel.

Code sample from Simulation

public String getUni queNane() {
return nane;
}

where name is obtained from a constructor.

Method

|pub| ic String getUni queNanme();

Explanation

Unique name is a name of remote property or data channel.

Code sample from Simulation

public String getUni queNane() {
return nane;
}

17

Data Access Layer Plug Implementation

Method

where name is obtained from a constructor.

Method

lpublic String getUni queNane();

Explanation

Unique name is a name of remote property or data channel.

Code sample from Simulation

public String getUni queNane() {
return nane;
}

where name is obtained from a constructor.

2.6 PropertyFactory Implementation

The PropertyFactory instance freates new properties. How property is obtained from
factory does not depend on underlaying system, if it has devices (like ACS or Tango)

or flat structure of properties (EPICS). In both ways properties can be obtained from
a property factory and plug object takes care of all necessary connections.

There could be several different instances of same property factory class, but they
must all use one instance of particular AbstractPlug implementation, which is done
using singleton programming pattern as described in AbstractPlug section.

PropertyFactory implementation must provide following methods.

Method

public LinkPolicy getLinkPolicy();
public Abstract Applicati onCont ext get Applicati onContext();
public void initialize(AbstractApplicationContext ctx, LinkPolicy policy);

Explanation

LinkPolicy and ApplicationContext are defined when factory is created. LinkPolicy determine
what is default connection behavior when properties are connected.

Code sample from Simulation

public LinkPolicy getLinkPolicy() {
return |inkPolicy;

}
publ i ¢ Abstract Applicati onCont ext get ApplicationContext () {
return aac;

public void initialize(AbstractApplicationContext ctx, LinkPolicy policy) {
this.aac = ctx;
this.linkPolicy = policy;

Method

| public PropertyFam |y getPropertyFam|ly();

Explanation

Returns property family, which stores all by factory created properties.

18

Data Access Layer Plug Implementation

Method

Code sample from Simulation

private PropertyFani |yl npl propertyFam|y;

public PropertyFactorylnpl (){
propertyFam |y = new PropertyFam |yl npl (this);

public PropertyFam |y getPropertyFamly() {
return propertyFamnly;
}

Method

public Sinpl eProperty getProperty(String uni queNane)
throws Instantiati onException, RenoteException;
publ i c <P extends Sinpl eProperty> P getProperty(String uni qgueNane, d ass<P> type,
ConnectionLi stener |) throws Instantiati onException, RenoteException;

Explanation

First method allows factory and plug to decide, what kind of property will be created for
unique remote name. Second method provides desired property type as parameter.
Parameter must be a Class object of some DAL property interface.
Factory must perform following steps:

. If a property already exists in default family it is returned from the family.

2. If a property type is not defined, then factory or plug can decide what type of
property will be created.

3. Factory decides which common plug implementation of property to use. There is a
helper method that does the job:
PropertyUtilities.getImplementationClass(type).

4. Factory makes instance of property implementation.

5. Factory decides which implementation of PropertyProxy to use. Simulator does this as
follows: SimulatorUtilities.getProxyImplementationClass (property).

6. Factory creates property proxy:

SimulatorPlug.getInstance() .getPropertyProxy(uniqueName, proxyType);

7. Factory initializes property implementation with proxy.

8. Property is returned.

Code sample from Simulation

publ i c Sinpl eProperty getProperty(String uni queNane) throws
I nstanti ati onExcepti on, RenoteException {
return getProperty(uni queNane, SinpleProperty.class, null);

publ i c <P extends Sinpl eProperty> P getProperty(String uni queNane, d ass<P> type,
ConnectionLi stener |) throws Instantiati onException, RenpteException
{

if (propertyFanily.contains(uni queNanme)) {
return type. cast (propertyFam |y. get(uni queNane));
}

try{
/| Creates property inplenentation

Class impd ass = PropertyUilities.getlnplenmentationC ass(type);
Dynani cVal uePropertyl npl property =
(Dynam cVal uePropertyl npl)i npCl ass.
get Constructor (String. cl ass, PropertyFam |y. cl ass) .
newl nst ance(uni queNane, propertyFamly);
/] creates proxy inplenentation
PropertyProxy proxy= Sinul ator Pl ug. getl nstance().
get Propert yProxy(uni queNane,
SinmulatorUtilities.getProxylnpl ementationC ass(property));

Di rectoryProxy dir= Sinul ator Pl ug. get | nstance().

19

Data Access Layer Plug Implementation

Method

get Di rect or yPr oxy(uni queNane) ;
property.initialize(proxy,dir);
Di rectoryProxy dir= Sinul ator Pl ug. get | nstance() .
get Di rect or yProxy(uni queNan®) ;
property.initialize(proxy,dir);
propertyFanmi | y. add(property);
if (I'=null) {
property. addLi nkLi st ener (1) ;

return type. cast (property);
} catch (Exception e){
t hr ow new Renot eException(this,
"Failed to instantiate simulation.", e);

2.7 DeviceFactory Implementation

The DeviceFactory instance created new devices. How device is obtained from
factory does not depend on underlaying system, if it has devices (like ACS or Tango)
or flat structure of properties (EPICS). In both ways device can be obtained from
device factory and plug object takes care of all necessary connections or logical
modeling of device (eg. from naming hierarchy). In general property factory it is
more important to be implemented than directory factory, since properties are basic
objects through which remote value is accessed.

There could be several different instances of same device factory class, but they must
all use one instance of particular AbstractPlug implementation, which is done by use
of singleton programming pattern as described in AbstractPlug section.

DeviceFactory implementation must provide following methods.

Method

public LinkPolicy getLinkPolicy();
publ i c Abstract Appl i cati onCont ext get Appli cati onContext ();
public void initialize(AbstractApplicationContext ctx, LinkPolicy policy);

Explanation

LinkPolicy and ApplicationContext are defined when factory is created. LinkPolicy determine
what is default connection behavior when devices are connected.

Code sample from Simulation

publ i c LinkPolicy getLinkPolicy() {
return |inkPolicy;

publ i ¢ Abstract Appl i cati onCont ext get ApplicationContext() {
return aac;
}

public void initialize(AbstractApplicationContext ctx, LinkPolicy policy) {
this.aac = ctx;
this.linkPolicy = policy;

Method

publ i c Devi ceFam |y get Devi ceFam | y();

Explanation

20

Data Access Layer Plug Implementation

Method

The Device family stores all by factory created devices.

Code sample from Simulation

private DeviceFam |yl npl devi ceFam |y;

publ i ¢ Devi ceFactoryl npl () {
devi ceFami |y = new Devi ceFani | yl npl (this);

}

publ i ¢ DeviceFanmi |y getDeviceFam |ly() {
return devi ceFam |y;

}

Method

publ i ¢ Abstract Devi ce get Device(String uni queNane)
throws Instantiati onException, RenpteException;
publ i c <P extends AbstractDevice> P getDevice(String uni queName, C ass<P> type,
ConnectionListener |) throws Instantiati onExcepti on, RenpteExcepti on;

Explanation

The first method allows factory and plug to decide, what kind of device will be created for
unique remote name. The second method provides desired device type as parameter.
Parameter must be Class object of some DAL device interface.
Factory must perform following steps:
. If device already exists in default family it is returned from the family.
10. If a device type is not defined, then factory or plug can decide what kind of device will
be created.
11. Factory decides which common plug implementation of device to use.
12. Factory makes instance of device implementation.
13. Factory decides which implementation of DeviceProxy to use. Simulator does this as
follows: SimulatorUtilities.getProxyImplementationClass (device).
14. Factory creates device proxy:
SimulatorPlug.getInstance() .getDeviceProxy(uniqueName, proxyType);
15. Factory initializes device implementation with proxy.
16. Device is returned.

Code sample from Simulation

publ i ¢ Abstract Devi ce get Device(String uni queNane) throws |nstantiati onExcepti on,
Renot eExcepti on {
return getDevi ce(uni queName, AbstractDevice.class, null);

}
publ i c <P extends AbstractDevice> P getDevice(String uni queNanme, C ass<P> type,
ConnectionListener |) throws Instantiati onExcepti on, RenpteException

i f (deviceFam |y. contains(uni queNane)) {
return type. cast (devi ceFamni | y. get (uni queNan®)) ;
}

try{
/] Creates device inplenentation

/1 TODO missing proper inplenentation
//C ass inpClass = DeviceUtilities.getlnplenentati ond ass(type);
/| Abst ract Devi cel npl devi ce=(Abst ract Devi cel npl)i npd ass.

/1 get Const ruct or (
/1 String.class, DeviceFanily.class).new nstance(uni queNane,
/1 propertyFam | y);

Abstract Devi cel npl device = new Abstract Devi cel npl (uni queNane) ;
connect (uni queNane, type, device);
fam | y. add(devi ce) ;
if (I '=null) {
devi ce. addLi nkLi stener (1) ;

21

Data Access Layer Plug Implementation

Method

}

return type. cast (device);
} catch (Exception e){
t hr ow new Renot eException(this,
"Failed to instantiate simulation.", e);

3. Loading Different Plug Implementations

PropertyFactory and PropertyFactory instances are obtained from
DefaultPropertyFactoryService and DefaultDeviceFactoryService. These services are
default implementations of PropertyFactoryService and DeviceFactoryService. This
section describes behavior of default implementations.

They decide which factory to use in two ways:

1. Plug type is provided as parameter, code snippet is below:

public interface DeviceFactoryService {
publ i ¢ Devi ceFactory get Devi ceFact ory(Abstract Appli cati onCont ext ctx,
Li nkPolicy |inkPolicy, String plugNane);

public interface PropertyFactoryService {
publ i c PropertyFactory getPropertyFactory(AbstractApplicati onContext ctx,
Li nkPol icy |inkPolicy, String plugNane);

}

In this case default service implementation tries to load defined plug. Which
class to load for provided plug name should be provided trough configuration
as it is discussed after the next point.

2. Default plug type is obtained from configuration of ApplicationContext.

Configuration parameters in ApplicationContext can be hard coded or loaded from
the some configuration file or provided as command line parameter for system
properties. At the moment there is no default way to define them. But in the future it
may be convenience class, which will provide integration with underlaying
application framework (such as RCP from Eclipse).

ApplicationContext snippet:

public interface AbstractApplicati onContext extends LifecycleReporter,
Identifiable {
public Properties getConfiguration();

If the plug type for factory is not provided as parameter to factory service then
default factory service uses two distinct configuration keyword methods to
determine which default implementation factory class should be used.

1. Keywords directly defining implementation classes:

Pr opertyFact oryServi ce. DEFAULT_FACTORY_I MPL ==
"PropertyFactoryService.default_factory_inpl"
Devi ceFact or yServi ce. DEFAULT_FACTORY_| MPL ==
"Devi ceFactoryServi ce.default_factory_inpl"

Factory service first checks configuration for these keywords, if default
implementation is requested. These keywords must store valid class name of
factory implementation.

22

Data Access Layer Plug Implementation

2. As second resort factory service checks plug definitions.

| Pl ugs. PLUGS == "dal . pl ugs"

This keyword value must contain comma separated list of available plug
names. Plug name must match the name returned by corresponding plug
implementation. For example:

Properties conf= new Properties();
conf . set Property("dal.plugs","Simulator, EPI CS, TANGO') ;

Each plug name in list property factory and device factory must be defined by
using corresponding prefix

Pl ugs. PLUG DEVI CE_FACTORY_CLASS == "dal . devi cef actory. "
Pl ugs. PLUG_PROPERTY_FACTORY_CLASS == "dal . propertyfactory."

and plug name. Continuation of previous example follows:

conf.setProperty("dal . devicefactory. Si nul ator",

"com cosyl ab. dat at ypes. si mul ati on. Devi ceFact oryl npl ") ;
conf.setProperty("dal . propertyfactory. Si mul ator",

"com cosyl ab. dat at ypes. si mul ati on. PropertyFactoryl npl ") ;

conf. set Property("dal . devicefactory. EPI CS", "org. epi cs. dal . Devi ceFactoryl npl ") ;
conf.setProperty("dal.propertyfactory. EPI CS", "org. epi cs. dal . PropertyFactoryl npl ") ;

conf.set Property("dal . devi cefactory. TANGO', "or g. t ango. dal . Devi ceFactoryl npl ") ;
conf.set Property("dal . propertyfactory. TANGO', "org.tango. dal . PropertyFactoryl npl ") ;

Factory service then loads appropriate class when factory for particular plug is
requested. If plug is not provided as parameter to factory service, default plug
is chosen. ApplicationContext configuration below defines which plug is
default:

| Plugs. PLUGS DEFAULT == "dal . pl ugs. def aul t"

For example:

| conf.setProperty("dal . plugs.default","Simlator");

For handling configuration Plugs class can be used. It also provides
conveniende methods for extracting plug information from configuration.

4. Directory Service And DAL

Directory service is authority that provides access to metadata: it can describe the
system without actually making connection to the system. In this sense it is out of the
scope of DAL. Directory is not directly part of DAL, it is rather service parallel to
DAL. DAL may use directory service to retrieve additional information or to store
some cached values, but this is DAL implementation dependant. DAL plug may also
fill directory with information about itself (version, supported features, etc.), this part
has not been defined yet.

Important consideration for any implementation of directory service is not to use DAL
directly. This my create close loop if some DAL implementation uses directory
service.

By designed DAL does not need direct reference to directory service, still plug
implementation has to provide some introspection functionality by DirectoryProxy
interface. Implementation of DirectoryProxy is completely arbitrary, some
communication protocol may provide this functionality directly. If particular
communication protocol does not provide this functionality, DirectoryProxy
implementation may ask directory service or some other meta data or introspection
authority.

23

Data Access Layer Plug Implementation

There is distinction between directory service and directory proxy. Information that
must be provided from a DirectoryProxy in order for DAL to function:

® names of avaliable characteristic for particular data channel,
value of particular channel's characteristic,

name of avaliable command names for particular data channel,
names of avaliable properties (data channels) for particular device,
data type of particular property (data channel)

From DAL it is expected to make connection and return data for particular remote
object if remote name is provided. Functionality of DirectoryProxy provides DAL with
additional information required to execute remote request.

Information what is availaible in particular system is in domain of directory service.
Without defining API a folowing functionality can be identified of such service:

e All what has been already defined for DirectoryProxy.

List of avaliable data channels.

List of avaliable devices.

List of avaliable DAL protocol implementations (plugs).

Protocol specific detailed information (protocol version, protocol dialect,

supported functionality in underlaying protocol implementation different from

standard implementation).

Implementation and data type of channels and devices

® Search capability for channels and devices.

® Detailed information about special protocol capabilities: is “BLUE BEAM”
supported by event system, etc.

DAL itself does not specify how directory service should be implemented or how API
should be used. The directory service is a service parallel to DAL and they both are
used from application layer.

JNDI is ideal API for Java directory service, that would work well with DAL concept.
JNDI is Java interface for naming and directory service with some interesting default
implementations, like LDAP.

DAL prototype implementation define how JNDI directory service is used. Following
code initializes JNDI staring point in DAL, an initial Context instance:

Properties p = System get Properties();

URL url = O asslLoader. get Syst enResource("j ndi . properties");
FilelnputStreamfis = new Fil el nputStream(url.getFile());
p.l oad(fis);

Di rContext initial Context = (DirContext) Nam ngManager.getlnitial Context(p);

In this case it is assumed that the file jndi.properties is included in classpath (by
adding dal jar to classpath for example) and this file includes declaration of initial
Context implementation Class. The following line must be included in jndi.properties
file:

|java.naning.factory.initialzorg.epics.css.dal.directory.lnitiaICbntextFactoryInp

DAL initial context loader takes care that each time same instance of initial context is
returned in the same JVM. There is also convenience implementation, which performs

24

Data Access Layer Plug Implementation

the same initalization as above:

|DirOontext initial Context= DirectoryUtilities.getlnitial Context();

The initial JNDI context can be queried for meta information about channels. Queries
are submitted in form of URI strings on URIName objects. The URI string has a
following notation:

|DAL- <PLUG NAME>: / /| <AUTHORI TY>/ <REMOTE NANME>

Where:

® DAL- is prefix, that defines particular URI to be part of DAL namespace.

® <PLUG NAME> is a name of protocol, like Simulation of EPICS.

® <AUTHORITY> is URI authority, like IP of computer hosting remote object.
Particular protocol may require that authority part can have arbitrary value,
only some default value or may be omitted.

e <REMOTE NAME> is name of remote object (channel, device or their
components). It may be further fragmented in hierarchy by / characters or may
be flat namespace. Can be hierarchical name as described in [5].

Proposed naming scheme and proper implementation of JNDI interface allows to send
queries to LDAP implementation of JNDI as suggested in [5]. For example PV named
'fref' with hierarchical path "fred.linac.sns.epics" and LDAP name
"cn=fred,dc=linac,dc=sns,dc=epics" would have DAL URI like this: "DAL-
EPICS:///epics/sns/linac/fred".

Example based on Simulator, which performs lookup in two ways: one with URI
string, second with URIName instance is written bellow:

String uri= "DAL-Sinulator:///PSl:current";

URI Name unanme= new URI Nane("DAL-Si nul ator”, null,”PS1: current”, null);
oj ect 01 = initial Context.|ookup(uri);
Obj ect 02 = initial Context.|ookup(unane);

if (0l==02) CK;

Note, that DAL at this point does not specify what object should be binded in
directory under given URI name. Neither does DAL use this object. This can be
defined in the future by the application layer, where such information may be used.

However simulation implementation of DAL uses JNDI directory to store and retrieve
characteristics (channel fields) as JNDI attributes. Other DAL implementation may
choose similar approach.

The example below is taken from simulation DAL implementation where
DirectoryProxy queries JNDI simulation directory for a characteristic value of
particular channel. In this case simulation JNDI plays role of cache for simulated
values.

DirContext initial Context= DirectoryUtilities.getlnitial Context();
String uri= "DAL-Sinulator:///PSl:current";

String characteristicName= "maxVal ue";

Attributes attr = ctx.getAttributes(uri);

Obj ect characteristic = attr.get().get();

25

Data Access Layer Plug Implementation

4.1 EPICS Directory Proposal

This section constitutes Cosylab's proposal towards an implementation of
an EPICS Name Service. The opinion is based on Cosylab's work on a
reliable EPICS Directory Service performed in context of the 'Dependable
Distributed Systems' project, [6].

A preliminary list of requirements is given in [5] and extended in DeDiSys Work
Package 3.3: Design Documents & First Prototype & Test Report (sec. 4: WP3.3
application scenario). To recap, the requirements are as follows:

R Al: Wildcard searches. Clients should be able to resolve channels to
IOCs using wildcards.

R A2: Report on number of channels per IOC. The naming service should be
able to report how many channels a particular IOC is hosting.

R A3: Redundant naming services. A hot-standby backup naming service is
available, which takes over name resolutions in case of primary’s failure.
R A4: Redundant IOCs with the same PV. The same PV can be hosted on more
than one IOC. The naming service is capable of redirecting clients to

the IOC most capable of serving a PV (e.g., the active IOC, or the one

with least load).

R A5: Archived data for a PV. Note: this is not the role of a naming

service, but more of an archiving or gateway service. Therefore, the
request will not be considered at this point in time.

R A6: Backup/restore locations for a PV.

R A7: PV meta data. The naming service should store information such as
engineer-in-charge, CA security roles, etc.

R B1: Minimal setup effort. The naming service should configure itself
on-the-fly if no configuration is given (e.g., by establishing name—IOC
mappings as they are requested using existing name resolution).

R B2: Lookup performance. The lookup performance should be up to an
order of magnitude slower for the first lookup, and as fast as without

the naming service for subsequent lookups.

R B3: Bind performance. The performance of a bind can be up to an order
of magnitude slower than the performance of a lookup without the naming
service.

R B4: Scalability. The naming service should not have any particular
scalability bounds. It should be capable of handling 1 million records.

The algorithms for binding and lookup should be better than O(N2).

R B5: EPICS V3 backwards compatibility. The naming service shall require
no modifications to existing EPICS V3 clients and servers.

In [5], LDAP is proposed as the EPICS Name Service. However, the
choice of LDAP has several disadvantages:

1.

LDAP is not extensible beyond provisions made by the RFC standard.

For example, the following EPICS Name Service requirements are difficult

if not impossible to implement with LDAP:

® R A2 (would require search by attribute and counting, implemented on
each client separately)

® R A3 (depends on particular LDAP server implementation and may be
difficult to set up, understand and maintain)

® R A4 (it is impossible to bind several entries with the same name in LDAP)

® R Bl (population of LDAP database with EPICS deployment data is

26

Data Access Layer Plug Implementation

2.

3.

non-trivial)
e R B2, R B3 (LDAP implementations are relatively slow to other approaches)
e R B5 (LDAP implementations are difficult to integrate with CA)
The on-the-wire protocol of LDAP is fairly complex as it is based on
ASN.1's BER encoding of entities defined in LDAP RFC 2251. Thus, it will be
difficult to implement LDAP clients or servers if they don't yet exist
for a target platform of choice (e.g., VxWorks clients, Java servers, etc.).
LDAP is a suitable for naming, not for a meta-data rich directory
service required by EPICS, as alrady acknowledged in [5].

In the context of DeDiSys project, an EPICS Directory Service (EPICS DS)
is being implemented in the following manner:

EPICS DS intercepts CA's CA PROTO SEARCH requests, which are queries
for addresses of IOCs that host a particular PV.

If EPICS DS already knows the whereabouts of the requested PV, it

returns it from local memory, most likely implemented as a hash-table or
similarly efficient data structure. This allows for a very

high-performance name resolution and binding.

If the PV is unknown, the EPICS DS broadcasts CA PROTO SEARCH request
to the destination subnet where I0Cs reside. The answer is cached and
returned. This allows for minimal setup effort of the DS, as it is

populated automatically.

This approach works also for existing EPICS V3 applications without
modifications.

EPICS DS is designed to be a highly-available service, which will be
achieved through replication techniques under consideration in DeDiSys
project.

We recommend the following future steps:

1.

For Java clients, JNDI [6] APIs are used. To implement meta-data
(accessible in form of JNDI attributes) and attribute-based search,
'DirContext' interface should be used (‘Context' is insufficient). JNDI
schema as proposed in [5] is used to store EPICS PV data.

In addition to existing CA PROTO SEARCH interface, EPICS DS
implements a special-purpose, EPICS-optimized protocol using HTTP GET
requests to access its data structures. Also, a JNDI implementation
utilizing this HTTP protocol is created.

The product of step 2 will constitute a solid platform for easy access

from all platforms, as client-side API is trivial to implement. Also, as

a side effect, EPICS DS will be readily available from a web browser.
Furthermore, new EPICS DS features will be possible to add without
abusing the LDAP protocol further.

27

Data Access Layer Plug Implementation

1. Appendix - PropertyProxy and DirectoryProxy
Interfaces

This is a Proxy that has common methods for property and directory proxy.

package com cosyl ab. dat at ypes. pr oxy;

i mport com cosyl ab. dat at ypes. cont ext . Connect i onSt at e;
i nport com cosyl ab. dat at ypes. context. | denti fi abl e;

/**

* Common interface for all proxies.

*

* @ut hor lgor Kriznar (igor.kriznarATcosyl ab.com
*

*/
public interface Proxy extends Identifiable {
/**
* Returns the unique name. This name is used to initiate
* connection to renpte object and can be regards as renpte nane.
* @eturn String unique renbte nane for this property
*/
public String getUni queName();
/**
* Destroys object and releases all rembte and | ocal all ocated resources.
* <p>NOTE</ b></ br >
* Only plug which created this proxy can call this nethod since lifecycle is
* control ed by the plug.
* </ p>
*/
public void destroy();
/**
* Registers new |istener of proxy events.
* @aram| new |istener
*/
public void addProxyLi stener (ProxyLi stener |);
/**
* Deregisters |listener from proxy events.
* @aram | new |istener
*
/
public void renoveProxylLi stener (ProxyLi stener |);
/**
* Return connection state enum of the renote object.
* @eturn state of connection to renote object
*/
publi ¢ ConnectionState get ConnectionState();
}

28

Data Access Layer Plug Implementation

PropertyProxy interface.

package com cosyl ab. dat at ypes. pr oxy;
i mport java.util.Enunfet;

i nport com cosyl ab. dat at ypes. Dat aExchangeExcept i on;
i mport com cosyl ab. dat at ypes. Dynani cVal ueSt at e;

i mport com cosyl ab. dat at ypes. Renot eExcepti on;

i mport com cosyl ab. dat at ypes. Request ;

i mport com cosyl ab. dat at ypes. ResponseLi st ener;

/**

* Interface encapsul ate conmunication to renpote property object.
*

* @ut hor Bl az Hostni k

=/

public interface PropertyProxy<T> extends Proxy {

/**

* Asynchronously gets renote property val ue.
* @eturn a Request, which identifies incom ng responses.
*/
publ i ¢ Request get Val ueAsync(ResponselLi stener call back) throws
Dat aExchangeExcept i on;

/**

* Asynchronously sets value on renpte property.
*
* @aram val ue new val ue.
* @eturn a Request, which identifies incom ng responses.
*/
publ i ¢ Request setVal ueAsync(T val ue, ResponselLi stener callback) throws
Dat aExchangeExcept i on;

/**

* Returns whether the value can be set on renpte object presented by this proxy.
*
* @eturn <code>true</code> if val ue can be set.
*/
publ i c bool ean isSettable();
/**
* Creates new val ue subscription and returns nonitor proxy, which controls the
* subscription.
* @aramcall back a |listener which will receive subscription events.
* @eturn nonitor proxy, which controls the subscription.
* @hrows RenoteException if operation fails
*/
publ i ¢ MonitorProxy createMonitor(ResponseLi stener callback) throws
Renot eExcept i on;
/**
* Returns renpte condition of this dynami c val ue representation.
* @eturn renpte condition
*/
publ i ¢ Enunfet <Dynamni cVal ueSt at e> get Condi ti on();

29

Data Access Layer Plug Implementation

DirectoryProxy interface, the same interface is used for property and device
proxies.

package com cosyl ab. dat at ypes. pr oxy;

i mport com cosyl ab. dat at ypes. Dat aExchangeExcept i on;
i nport com cosyl ab. dat at ypes. Request ;
i mport com cosyl ab. dat at ypes. ResponseLi st ener;

/**

* This interface encapsul ate access to introspection part of renbte property. Each
* instance is asociated with

* particular unique renote name and all in and out names are relative to this nane.
*

* @ut hor Bl az Hostnik

*/

public interface DirectoryProxy

{
/**
* Returns the unique name. This name is used to initiate
* connection to renote object and can be regardes as renote nane.
* @eturn String unique renote name for this property
>/
public String getUni queNane();

/**

* Destroys object and releases all remote and | ocal all ocated resources.

30

Data Access Layer Plug Implementation

*
*
*
*
*

<p>NOTE</ b></ br >

Only plug which created this proxy can call this nethod since lifecycle is
control ed by the plug.

</ p>
/

public void destroy();

/*
*
*
*
*

*

*

Returns names of all characteristics for this proxy. Return value will
be an array of non-null characteristic nanes.

@eturn an array of non-null characteristic nanes

@ hrows Dat aExchangeException if operation fails

/

public String[] getCharacteristicNanes() throws Dat aExchangeExcepti on;
/**

*

*

*

*

Returns avail abl e command names, if this proxy represents device.
@eturn all avail abl e command nanes

@ hrows Dat aExchangeException if renote request fails

/

public String[] get ConmandNanes() throws Dat aExchangeExcepti on;

Dat aExchangeExcepti on;

/**

* Accesses asynchronously the conplete map of characteristics for this proxy.

* Thi s asynchronous request is considered as nultiple request where each

* characteristic nane can be treated as separate single request. As consequence,
* responses to this request are returned i ndependantly. For each charactetistic
* pame one response is returned, where characteristic nane is defined by ID tag
* of response and response val ue is val ue of

* characteristic. Last response is marked as |ast (isLast() method returns true).
* @aram characteristics |ist of requested characteristics nanes.

* @aram cal |l back a call back listener, which will receive all responses

* @eturn a Request, which identifies incom ng responses.

* @hrows Dat aExchangeException if operation failes

*/

publi c Request getCharacteristics(String[] characteristics, ResponseLi stener

/

* F X % F

cal | back) throws DataExchangeExcepti on;
*
Returns the value of the characteristic. If the characteristic with such nane
does not exist this nmethod returns <code>null </code>. If the characteristic
exi sts but the value is unknown,
<code>Char acteri sti cCont ext. UNI NI Tl ALI ZED</ code> i s returned.

31

Data Access Layer Plug Implementation

*

* @aram characteristicNane the nanme of the characteristic, may not be

* <code>nul | </ code> or an enpty string

* @eturn bject the value of the characteristic or <code>null </code> if unknown

* @xcepti on Dat aExchangeExcepti on when the query for the characteristic value on

* the data source fails

*/
public Object getCharacteristic(String characteristicNane) throws

Dat aExchangeExcept i on;

/**

* Returns nanes of properties if this proxy represents device proxy. Nanes are

* relative name, which are valid only in context of this device proxy.

*

* @eturn names of properties in this device proxy

*/

public String[] getPropertyNanes();

/**

* Returns data access interface class (extended from Sinpl eProperty interface)
* of property in device.

* Valid only if this directory proxy represents device proxy. Nane is relative,
* valid only in context of this device proxy.

*

* @aram propertyName nane of the property

* @eturn data access inerface class

*

/
public C ass<? extends Sinpl eProperty> getPropertyType(String propertyNane);

SyncPropertyProxy interface, property proxy implementation may optionally
choose to implement this interface as well.

package com cosyl ab. dat at ypes. pr oxy;

i nport com cosyl ab. dat at ypes. Dat aExchangeExcept i on;

/**

* This interface is optional. If property proxy does not inplenent this

* interface, than property inplenentation sinulates sincrhounous operations by
* cal ling asynchronous version and bl ocks call untill response is returned.

*

* @ut hor | gor Kriznar (igor.kriznarATcosyl ab. con
*/
public interface SyncPropertyProxy<T> extends PropertyProxy<T> {
/**
* Synchronous get of val ue.
* @eturn returned val ues
* @hrows Dat aExchangeException if renpote operation fails
*/
public T getVal ueSync() throws DataExchangeExcepti on;
/**
* Synchronous set of new val ue.
* @aram val ue new val ue to set
* @hrows Dat aExchangeException if renote operation fails
*/
public void setVal ueSync(T val ue) throws Dat aExchangeExcepti on;

MonitorProxy interface.

package com cosyl ab. dat at ypes. pr oxy;

i mport com cosyl ab. dat at ypes. Request ;
i nport com cosyl ab. dat at ypes. Si npl eMbni t or;

/**

32

Data Access Layer Plug Implementation

* MonitorProxy interface is used to control val ue subscription.

*

* @ut hor Igor Kriznar (igor.kriznarATcosyl ab. com

*/
public interface MonitorProxy extends Sinplelonitor
{
/**
* Returns request object asociated with this val ue response subscritpion.
* @eturn a Request, which identifies incom ng responses.
*/
publ i c Request get Request();
}

33

Data Access Layer Plug Implementation

package com cosyl ab. dat at ypes

*

/
Interface <code>Si npl eMoni t or </ code> defines the way in which an observer

(realized as JavaBeans listener) can influence the flow of events fromthe

data access event source. Subscription can be changed by each observer separately

and it affects that observer only. Event delivery is changed by changi ng
characteristics of the nonitor.

<p>

Timer trigger may operate at the prescribed default frequency, with all other
(optional) triggers set to their respective default values. In this case the nethod
<code>i sDef aul t </ code> nust return <code>true</code>. The default subscription may be
handl ed separately (in a nore efficient way) by the underlying inplenentation.

</ p>

o

Met hods of this interface which generate transient connection objects such as
requests and

responses, store those objects directly into the |atest values of the property to

whi ch this nonitor bel ongs.

</ p>

E I S R S I T B I I S S I N B N B

~

public interface SinplehMnitor {

/**

* Returns the value of the timer trigger for this subscription. The tiner trigger

* is the pronmise of the inplenentation of this interface to check for the new
* value in
* the underlying data source every <code>|l ong</code> milliseconds. |If an event is
* di spatched in response to the check depends on the <code>heart beat </ code>
* value. This is a witable characteristic of the subscription.
* @eturn long the anbunt in mlliseconds between the checks for new val ue status
* in the underlying data source |ayer
* @xception Dat aExchangeException if the query for the current trigger val ue
* fails
*/
public | ong getTinerTrigger() throws DataExchangeExcepti on

/**

*

Sets the timer trigger for this subscription. The val ue supplied nust be
positive or zero. If it is zero, the tinmer trigger is disabled and no periodic
checks will be performed. O course, other (optional) triggers may still cause
an event to be dispatched in this case. This is a witable characteristic of
t he subscri ption.
@aramtrigger a positive or zero value in mlliseconds between the checks in
the underlying data source | ayer
@xcepti on Dat aExchangeException if the set of the new trigger fails
/
public void setTinerTrigger(long trigger) throws DataExchangeException
Unsupport edOper ati onExcepti on;

E R R N

*

/
Sets the heartbeat flag for this subscription. If the heartbeat is turned on,
an event is dispatched to the |listeners whenever any trigger triggers. If the
heartbeat is turned off, the event is dispatched only if the dynamc
value or its status has changed. In any case, the
<code>| at est Updat eTi nest anp</ code> i n <code>Updat eabl e</code> interface will be
nmodi fi ed.
@ar am heartbeat <code>true</code> iff the subscription should generate

heart beat events

ok X ok kX % F X F

~

public void set Heartbeat (bool ean heartbeat) throws DataExchangeExcepti on
Unsupport edOper at i onExcepti on;
/**
* Returns the value of the heartbeat flag for this subscription

*

* @eturn bool ean <code>true</code> iff the subscription generates heartbeat

* events

*/

publ i c bool ean i sHeartbeat ();
/**

34

Data Access Layer Plug Implementation

* Returns the default tinmer trigger that is used when the subscription first
* pbecomes active. This is a characteristic of the subscription. Its value is
* determ ned by the inplenentation.

*

* @eturn long the default val ue of the <code>ti nmerTrigger</code> characteristic
* in mlliseconds

* @xception Dat aExchangeException if the query for the characteristic val ue
* fails

*/

public | ong getDefaul t Ti nerTri gger () throws Dat aExchangeExcepti on;

/**

* Returns <code>true</code> if the subscription has default triggers. The default
* val uesof all triggers (timer as well as optional) are determi ned by the

* inplenmentation of this interface. If the subscription is default, it may be

* optimized by the underlying layer. It is expected that nost of the

* subscriptions will, during their duration, remain at default triggers. For

* exanple, the inplenentation may choose to create only one link to the

* underlying (remote) layer for all default subscriptions.

*

*

*

@eturn bool ean <code>true</code> if this subscription uses default triggers

/
publ i c bool ean isDefaul t();
/**
* Destroys this nonitor and ends subscription to renote val ue
* changes.
*/
public void destroy();
/**

* Returns <code>true</code> if destroy has been called

*

* @eturn <code>true</code> if destroy has been call ed
*/
publ i ¢ bool ean i sDestroyed();

35

	1.Data Access Layer API
	 1.1 DAL Implementation from Scratch
	 1.2 DAL Implementation through Plug Commons
	 1.3 Other Plug Implementation Aspects

	2.Plug Implementation on Commons
	 2.1 Simulation Implementation
	 2.2 Implementation Entry Points
	 2.3 Property Implementation
	 2.3.1 Proxy Methods
	 2.3.2 PropertyProxy Methods
	 2.3.3 SyncPropertyProxy Methods
	 2.3.4 MonitorProxy Methods
	 2.3.5 DirectoryProxy Methods

	 2.4 Device Implementation
	 2.4.1 DeviceProxy and DirectoryProxy Methods
	 2.4.2 CommandProxy

	 2.5 AbstractPlug Implementation
	 2.6 PropertyFactory Implementation
	 2.7 DeviceFactory Implementation

	3.Loading Different Plug Implementations
	4.Directory Service And DAL
	 4.1 EPICS Directory Proposal

