
Data Aaccess Layer
for CSS

Igor Križnar
igor.kriznar@cosylab.com



DAL Goals

• Common API for accessing data from different CS sources

– Based on interfaces rather then abstrat classes

– Pluggable implementation of DAL interfaces

• Consistent OO and wide API design

– simple access to the data (JavaBean style)

– programming aids (auto-completion)

– compile time error checking

– easy debugging

• Narow style access with introspection

– metadata

– for generic applications

• CSS ready

 

2



Terms Used

• Device
– Container for properties and commands

• Property
– Container for dynamic remote data channel
– Channel in EPICS

• Characteristics
– Key-value pairs
– Rather static description of device or 

property (min,max,units,etc.)



DAL Device Features

• Access to commands 

– As objects in generic device

– As methods for particular device API

– Synchronous/asynchronous execution

• Access to properties

– By name in generic device

– By API for particular device

• Access to characteristics

– Synchronous, asynchronous, group

• Connection state (connected, disconneted, failed)

• Property grouping



DAL Property Features

• get/set for values

– Synchronous and asynchronous

• Get for characteristics

– Synchronous, asynchronous, as a group

• Data quality (condition), enum set of codes: error, alarm, timeout, etc.

• Events

– Value update, change

– Data quality 

– Custom events (blue beam)

• Concious data types 

– Double, Long, String, BitSet, Object and sequences of these

– multi-type-casting



Implementing DAL

• Interfaces, no abstract classes
• Implementation from scratch

– Full control
• By using common plug (glue) classes

– More conveniente
– Easier to ensure DAL compliance



Plug Design

• Provides common plug (glue) code
• device/property proxies
• Thin (minimalistic) as possible

– Easier mentainance
– Less performance overhead
– Set of helper classes, must not be framework 

of it's own
• Features

– Connection catching
– Lifecycle management



DAL Implementations

All in prototype stage at the moment

• Simulation
– Side efect of desing testing

• EPICS
– Presented by Matthias

• GSI
– Virtual accelerator number
– PSPanel demo (JFrame, CosyBeans widgets)



Open Points

• Finish common plug implementation
• Define/extend common constants 

(characteristic names, alarm/error codes)
• Naming service and directory

– Must provide meta-data (introspection)
• What does it mean “blue beam”?


