
Managed by UT-Battelle
for the Department of Energy

Pure LabVIEW Implementation of

EPICS Communication Protocol

Alexander Zhukov

Spallation Neutron Source,
ORNL

NIWeek 2012

2 Managed by UT-Battelle
for the Department of Energy

 Experimental Physics and Industrial Control System (EPICS) is a set of Open
Source software tools, libraries and applications developed collaboratively and used
worldwide to create distributed soft real-time control systems for scientific instruments
such as a particle accelerators, telescopes and other large scientific experiments.

 Major collaborators

– ANL

– LANL

– ORNL (SNS)

– SLAC (SSRL, LCLS)

– JLAB (CEBAF)

– DESY

– BESSY

– PSI (SLS)

– KEK

 Runs on variety of hardware/OS (Linux, VxWorks, Windows, Mac, RTEMS…)

What is EPICS

3 Managed by UT-Battelle
for the Department of Energy

 A network based fully distributed client/server model

 Client and server use Channel Access (CA) protocol to communicate

 Everything spins around process variables (PV) – an entity similar to LabVIEW
network shared variable

– A server (Input Output Controller – IOC) publishes data by updating PVs

– PV corresponds to some value (measurement, setting, status etc)

– Every PV has unique name

– Client has ways to read PVs and update them over network

– Client can subscribe to particular PV and monitor its value or state without polling
it

 Standard EPICS server also has records processing mechanism

– Control logic is programmed in records definition file

– Allows perform routine tasks without explicitly programming in C

– In addition to value every record has also status (OK, ALARMED, etc) and
timestamp.

How EPICS works

4 Managed by UT-Battelle
for the Department of Energy

Development process in EPICS

 Create a driver talking to hardware (device support) - C code

 Put high level code in EPICS records programming

 Different tools exist to simplify record programming including graphical ones
where developer connects blocks with lines (looks familiar!)

5 Managed by UT-Battelle
for the Department of Energy

How to interface LabVIEW and EPICS

 We want to use LabVIEW for both low level and high level tasks, but still have
connectivity with EPICS clients

 Several options exist

– Windows shared memory (SNS)

– National Instruments cRIO implementation of shared memory: full IOC runs on
VxWorks (LANL)

– National Instruments CA server shared variable engine extension

– Simple Channel Access (SCA) OS specific (LBNL)

– CaLab Windows DLL (BESSY)

– LabVIEW Native Channel Access for EPICS LANCE (Observatory Sciences

– Pure LabVIEW CA (SNS)

 Pure LabVIEW solution uses standard Network Connectivity VIs that are
available on all platforms where LabVIEW is supported. The same code written
in LabVIEW communicates with EPICS clients. No C code involved at all!

6 Managed by UT-Battelle
for the Department of Energy

CA protocol

 Client wants to find out a value of a particular PV

 Client sends out UDP broadcast with PV name

 The server that has such PV replies

 Client checks if it already has TCP connection with this server

 If there is no such connection the client creates it

 If connection exists the client reuses existing connection

 After connection is established client exchanges messages with server over
that connection.

7 Managed by UT-Battelle
for the Department of Energy

LabVIEW implementation

 Uses UDP/TCP VIs

 Object Oriented design

– References to objects implemented using queues (compatible with 8.5 version)

– Every PV type corresponds to a LabVIEW class (with common functionality
pushed to base class)

– Main Server class can be extended adding functionality without digging into
internals

– Logging exists as a separate service allowing different storage engines (text files,
HTTP posts)

 No dynamic thread allocation, instead everything is served by specified
number of Worker Threads that check out established connections from
connection pool and perform message processing if needed

 Naive implementation of standard Map (key-value pair)container in LabVIEW

– All operations take O(N) in worst case

– Heavy use of variant data type with casting

8 Managed by UT-Battelle
for the Department of Energy

Code internals: Task class

 Task class implements basic functionality of a task

– Reading config file and initializing settings

– Has a stub for Run method

– Handles closing the task correctly

– Shows/hides front panel (for debug purposes)

– Task can receive events from other tasks (using Queue VIs)

 There are several task types all inheriting from Task (all are state machines)

– UDP task (listens to UDP requests from clients and if PV exists replies)

– TCP listener task (listens to TCP connections and if established puts the
associated object into a pool)

– TCP task, many instances can be active (takes connection from the pool, checks
if it needs processing and returns it back to the pool)

– Logger Task (logs different events to a file or web server)

9 Managed by UT-Battelle
for the Department of Energy

Code internals: Launching all tasks

Initialize

UDP, TCP

listener,

Logger

Several TCP

tasks

10 Managed by UT-Battelle
for the Department of Energy

Code internals: UDP Task

UDP Task listens to UDP port

Read UDP to for

new MSGs

If new MSG

received, parse it

and go to PROC

state

11 Managed by UT-Battelle
for the Department of Energy

Code internals: TCP Listener Task

TCP listener task waits for TCP connection

Wait for

connection

If connection was

established, create

a new connection…

… and put it in the

pool (queue)

Log event of

connection creation

12 Managed by UT-Battelle
for the Department of Energy

Code internals: TCP Task State Diagram

 TCP Task processes connections. Several Tasks work with the same connection
pool.

START IDLE CHECKIN EXIT

CHECKOUT

SEND MONITORS

RECEIVE

PROCESS

DISCONNECT

SEND

13 Managed by UT-Battelle
for the Department of Energy

Code internals: TCP Task 1

TCP Task processes connections

Wait for

connection

If any MSGs read, go

to PROCESS state

Read from TCP

socket while data is

available and parse

MSGs

14 Managed by UT-Battelle
for the Department of Energy

Demo server and GUI client

15 Managed by UT-Battelle
for the Department of Energy

Demo program structure

Server object

created, it

could be

“forked” later

Put initial value

(and publish to

CA)

Publish Array

16 Managed by UT-Battelle
for the Department of Energy

Code internals: problems and challenges

 Multi-threaded environment

– Debugging is hard

– Profiling is hard and sometime inconsistent

– Queue operations are somewhat different (in terms of performance) on Windows and RT

 LabVIEW limitations

– OOP doesn’t have multiple inheritance (Java style interfaces)

– No way to have custom C++ style template

– No standard containers (Vectors, Maps)

17 Managed by UT-Battelle
for the Department of Energy

Beam Diagnostics LabVIEW based instruments

 Beam Instruments running on Windows at SNS

– Beam Position Monitors

– Beam Current Monitors

– Wire scanners

– Laser profile monitors

– Video monitors

– Faraday Cups

– Emittance scanners

 Instruments running on cRIO platform

– Beam loss monitors

– Beam current monitor

– Collimator protection

 Typical data acquisition rate

– 1Hz for Windows based devices

– 60Hz for cRIO

 Publication rate almost always 1 Hz

18 Managed by UT-Battelle
for the Department of Energy

Real life example of data acquisition

• 200 MS/s 1 channel or

• 5MS/s 32 channels

• 5 Actuators

• 2 PC controlled by LV

• Scanning performed by external

Java application using EPICS

client

• Server side LabVIEW only!!!

19 Managed by UT-Battelle
for the Department of Energy

Several instruments run this server

implementation in production

 PC based systems ~ 20 PCs total

– Laser profile scanners

– Emittance scanners

– Different attenuators

 cRIO based systems 4 cRIO controllers total

– Collimator machine protection (with actual machine protection implemented in
FPGA)

20 Managed by UT-Battelle
for the Department of Energy

Performance considerations

 SNS typical numbers for “big” EPICS server

– ~ 2k PVs

– ~ 16 channels x 1k points per second

– ~ 30 clients

– Under 10 Mbit/s

 Performance

– The biggest problem is setting up a test environment and test case

– Number of PVs, clients connected, PV update rate, PV (array) size, CPU power
form at least 5-dimensional parameter configuration space

– one 1000 point WF at 300Hz/5 clients results in ~ 20% of CPU usage of iMAC
with I7

– Two 20k point updated at 1 Hz uses ~5% of CPU on an average 4 yrs old
industrial PC

21 Managed by UT-Battelle
for the Department of Energy

Summary

 Many LV EPICS interfaces exist

 There is no ideal one

 The need in full featured IOC is the key parameter for selection
process

 Windows shared memory is still default way at SNS

 SNS pure LV version is cross-platform and seems to satisfy all
needs, but is not finalized yet

– Beta testers needed!

– Client implementation is not ready yet

– Performance tuning

– Bad map implementation can become a bottleneck for servers hosting
many (~5000 PVs) in busy networks

 The same programming technique can be used to implement any
custom communication protocol

 LabVIEW can be used as general purpose programming tool and it is
fast!

22 Managed by UT-Battelle
for the Department of Energy

Questions

?

