
Elektrische Energie Technik

FSPs des

Normal Conductiong Test Facility

Modul (NCTstFac)

(ab FW 7.1.x)

Version vom: Freitag, 17. März 2023, 14:51:00

<u>Inhaltsverzeichnis</u>

L.	Änderungsliste	
2.	ACU-FSPs_NCTstFac	2
	FSP001_ModuleStatus	3
	$0x01_{H}^{-}/1_{D}/0x3031_{ASCII}$	
	FSP002_ModuleWarnings	5
	0x02 _H /2 _D /0x3032 _{ASCII}	
	FSP003_ModuleErrors	6
	0x03 _H /3 _D /0x3033 _{ASCII}	
	FSP004_ModuleInterlocks	7
	UXU4H, 4D/ UX3U34ASCII FSP005_InterlocksEnable	0
	0x05 _H /5 _D /0x3035 _{ASCII}	9
	FSP006_InterlocksArrivalSequence	10
	0x06 _H /6 _D /0x3036 _{AS}	20
	FSP009_ModuleSerialNumber	11
	$0x09_{H}/9_{D}/0x3039_{ASCII}$	
	FSP010_ModuleCommands	12
	0x0A _H /10 _D /0x3041 _{ASCII}	
	FSP011_ModuleInterlocksMask_n	13
	0x0B _H /11 _D /0x3042 _{ASCII}	4-
	FSP012_USIConfig	15
	FSP013_PeripheralConfig	16
	0x0D _H / 13 _D / 0 x3044 _{ASCII}	10
	FSP030_SetValue_A	17
	0x1E _H /30 _D /0x3145 _{ASCII}	
	FSP031_SetValue_B	18
	0x1F _H /31 _D /0x3146 _{ASCII}	
	FSP040_RemoteUpdateStatus	19
	0x28 _H /40 _D /0x3238 _{ASCII}	
	FSP041_RemoteUpdateCommands	20
	0x29 _H /41 _D /0x3239 _{ASCII} FSP042_RemoteUpdateData	34
	FSP042_RemoteUpdateData	21
	FSP045_AlteraRemoteUpdateCmd	
	0x2D _H /45 _D /0x3244 _{ASCII}	23
	FSP046_AlteraRemoteUpdateStatus	24
	0x2E _H /46 _D /0x3245 _{ASCII}	
	FSP050_ModuleSupplyValues	25
	0x32 _H /50 _D /0x3332 _{ASCII}	
	FSP051_ModulePotiValues	26
	0x33 _H /51 _D /0x3333 _{ASCII}	
	FSP052_ModuleComparatorValues	27
	VX34 _H /32 _D / VX3334 _{ASCII} FSP053_ModuleTemperatures	20
	0x35 _H /53 _D /0x3335 _{ASCII}	20
	FSP054_ModuleTemperaturesComparationThresholds	29
	0x36 _H /54 _D /0x3336 _{ASCII}	
	FSP055_WaterFlowMeassurement	30
	0x37 _H /55 _D /0x3337 _{ASCII}	
	FSP058_ParameterChecksumValue	31
	0x3A _H /58 _D /0x3341 _{ASCII}	
	FSP059_ParameterChecksumValueCalculated	32
	0x3B _H /59 _D /0x3342 _{ASCII}	22
	FSP060_ValCounter	33
	FSP064_InterlockSelectMUX	3/1
	0x40 _H /64 _D /0x3440 _{ASCII}	34
	FSP065 HighSpeed USI 1 ReturnChannel SourceSelectionMux	35
	0x41 _H /65 _D /0x3441 _{ASCII}	
	FSP066_ADT7410_Temperatures	36
	$0x42_{H}/66_{D}/0x3442_{ASCII}$	
	FSP067_Crowbar_PulsePeriod	37
	0x43 _H /67 _D /0x3443 _{ASCII}	
	FSP68_Crowbar_T_on	38

0x44 _H /68 _D /0x3444 _{ASCII}	
FSP69_Crowbar_BurstLength	39
FSP070_Controller_1_InputSourceSelectionMultiplexer	40
FSP071_Controller_1_DifferenceCalculatorMultiplier	42
FSP072_Controller_1_PI_Settings	43
FSP073_Controller_1_Limits	44
FSP074_Controller_1_ComparatorLimits	45
FSP079_Controller_1_Values	46
FSP080_Controller_2_InputSourceSelectionMultiplexer	47
FSP081_Controller_2_DifferenceCalculatorMultiplier	49
FSP082_Controller_2_PI_Settings 0x52 _H /82 _D /0x3542 _{ASCII}	50
FSP083_Controller_2_Limits	51
FSP084_Controller_2_ComparatorLimits	52
FSP085_FF_AddersLimits	53
FSP086_SPI_Ext_Cfg	54
FSP089_Controller_2_Values	55
FSP092_Ud_Correction_C1_ControlBitsAndSetValue	56
FSP093_Ud_Correction_C1_Limits	57
FSP094_InputFilterDelay	58
FSP095_ExtSPI_EEPROM_Cfg	59
FSP096_ExtSPI_ID	60
Ox00 _H /30 _D /0x3030 _{ASCII} FSP097_ExtSPI_IO_Outputs	61
FSP098_ExtSPI_IO_Inputs	62
Ox62 _H /98 _D /0x3632 _{ASCII} FSP099_UdCorrection_Cx_ControlValues	63
0x63 _H /99 _D /0x3939 _{ASCII} FSP100_InvertedWaterFlow_TimePeriodeBetweenTwoPulses_in_us	64
0x64 _H /100 _D /0x3634 _{ASCII} FSP101_WaterFlow_Thresholds	65
Ox65 _H /101 _D /0x3635 _{ASCII} FSP102_ExtSPI_3_ADCandUser_OFFSET_CHx	66
0x66 _H /102 _D /0x3636 _{ASCII} FSP103_ExtSPI_3_ADCandUser_GAIN_CHx	67
Ox67 _H /103 _D /0x3637 _{ASCII} FSP104_ExtSPI_4_ADCandUser_OFFSET_Chx	68
Ox68 _H /104 _D /0x3638 _{ASCII} FSP105_ExtSPI_4_ADCandUser_GAIN_Chx	69
Ox69 _H /105 _D /0x3639 _{ASCII} FSP106_ExtSPI_Status	70
0x6A _H /106 _D /0x3641 _{ASCII} FSP109_PWM_PLLPhaseShift_ReConfig	71
0x6D _H /109 _D /0x3644 _{ASCII} FSP110_PWM_C1_Config	72
0x6E _H /110 _D /0x3645 _{ASCII} FSP111_PWM_Limits	74
$0x6F_{H}/111_{D}/0x3646_{ASCII}$	

FSP112_PWM_InhibitValue	75
FSP115_ExtSPI_3_ADC_OffsetGain	76
FSP116_ExtSPI_3_ADC_Thrs	77
FSP117_ExtSPI_3_ADC_Sig	78
FSP118_ExtSPI_3_ADC_SigScaledAndAveraged	79
FSP119_ExtSPI_4_ADC_OffsetGain	80
FSP120_ExtSPI_4_ADC_Thrs	81
FSP121_ExtSPI_4_ADC_Sig	82
0x79 _H /121 _D /0x3739 _{ASCII} FSP122_ExtSPI_4_ADC_SigScaledAndAveraged	83
FSP123_Controller_3_InputSourceSelectionMultiplexer	84
FSP124_Controller_3_DifferenceCalculatorMultiplier	86
FSP125_Controller_3_PI_Settings	87
FSP126_Controller_3_Limits	88
FSP127_Controller_3_ComparatorLimits	89
FSP129_Controller_3_Values	90
FSP130_Ud_Correction_C2_ControlBitsAndSetValue	91
FSP131_Ud_Correction_C2_Limits	92
FSP132_Ud_Correction_C3_ControlBitsAndSetValue	93
FSP133_Ud_Correction_C3_Limits	94
FSP134_PWM_SetValueC2C3_Sel (ThresholdValues)	95
FSP136_ExtSPI_4_ADC_ScalingFactors	96
0x89 _H /139 _D /0x3842 _{ASCII} 5x89 _H /139 _D /0x3842 _{ASCII}	97

1. Änderungsliste

Datum	Name	Kommentar
01.07.2021	D. Schupp	Dokument erstellt
17.11.2021	D. Schupp	FW 7.1
09.12.2021	D. Schupp	FW 7.1 Update bzgl. SPI

2. ACU-FSPs_NCTstFac

Dieses Dokument behandelt modulspezifische FSPs des Normal Conducting Test Facility Moduls.

Dabei handelt es sich um eine spezielle Firmware, die auf der Hardwareplattform des ICM Moduls (FG660_05x) Anwendung findet.

Name	FSP001_ModuleStatus
Adresse	0x01 _H /1 _D /0x3031 _{ASCII}
Tiefe	3 Byte / 24 Bit
1/0	lesen
Reset	Ox(siehe Beschreibung) _H

[23] wenn ,1', Hauptschütz geschlossen

[22] wenn ,1', externe Reglerfreigabe

[21] Reserviert

Reserviert für zukünftige Anwendungen

[20] wenn ,1', Regler freigegeben

[19..16] Status des Moduls

[30]	Status
0x0	Kein Status lesbar
0x1	cSTATUSSetDefaults/ cSTATSUWaitForParameters keine definierter Status
0x2	cSTATUSUnitOff Gerät ausgeschaltet
0x3	cSTATUSLoadingBank Bank laden
0x4	cSTATUSSwitchingUnitOn Gerät einschalten
0x5	cSTATUSUnitOn Gerät eingeschaltet
0x6	cSTATUSControllerDisabledByFPGAInternalCause FPGA interne Gründe (des Status erzeugenden Moduls) sperren den Regler
0x7	cSTATUSControllerEnabled Regler freigegeben
0x8	cSTATUSSwitchingUnitOff Gerät ausschalten
0x9	cSTATUSControllerDisabledByCommand Das Kommando cCMDDisableControllersperrt den Regler
0xA	cSTATUSControllerDisabledByFPGAExter nalCause FPGA externe Gründe (des Status erzeugenden Moduls) sperren den Regler
0xB	cSTATUSResetInterlocks
0xC	cSTATUSMachineProtection
0xD	n.u.
0xE	cSTATUSPowerOnReset
0xF	cSTATUSWhenOthers keine definierter Status

[15..12] Modul Kommando

[30]	Kommando
0x0	cCMDNoAction keine Aktion
0x1	cCMDSwitchUnitOn Gerät einschalten (wenn möglich)
0x2	cCMDSwitchUnitOff Gerät abschalten

0x3	cCMDResetUnit Reset durchführen (z.B. Interlocks)
0x4	cCMDDisableController
0x5	cCMDTriggerSomething hiermit lassen sich Sonderfunktionen in Modulen auslösen

[11] CrowbarFiringSig

wenn ,1' aktiv

[10..9] Reserviert

Reserviert für zukünftige Anwendungen

[8] USISlave1_IsHighSpeed

wenn ,1' ist USI Slave1 im Highspeed Mode

- [7] Reserviert
- [6] SwitchingOperationTimerCheck
- [5] NoInterlocks

wenn ,1' stehen keine Interlocks an

Im Modul sind keine Interlocks gespeichert und es stehen auch keine Interlocks an.

[4] NoErrors

wenn ,1' ist Modul fehlerfrei

Im Modul sind keine Fehler gespeichert die den Betrieb stören.

[3] NoWarnings

wenn ,1' ist Modul ohne Warnungen

Im Modul sind keine Warnmeldungen vorhanden die den Betrieb zwar nicht stören aber trotzdem überprüft werden müssten (Details im FSP für die Warnungsbits) z.B. Temperatur zu hoch.

[2] ModuleReady

wenn ,1' ist Modul betriebsbereit Das Modul ist voll betriebsbereit

[1] ChecksumOK

wenn ,1' Parameter Checksumme OK

Die Prüfsumme für die Modulparameter ist bestätigt.

[0] ParametersLoaded

wenn ,1' sind die Parameter geladen

Das Modul hat seine Konfigurationsparameter geladen.

Name	FSP002_ModuleWarnings
Adresse	0x02 _H /2 _D /0x3032 _{ASCII}
Tiefe	modulabhängig
I/O	3 Byte / 24 Bit
Reset	Ox(siehe Beschreibung) _H

Im FSP werden alle Warnungen bitcodiert aufgelistet die den unmittelbaren Betrieb des Moduls nicht stören, aber trotzdem von einem Techniker untersucht werden müssen, dargestellt (z.B. Temperatur des Moduls zu hoch).

Liegt eine Warnung vor ist das korrespondierende Bit ,0' andernfalls ,1'. Außerdem ist Bit [3] des FSP001_ModuleStatus = ,0'.

[23..0] n.u., immer ,1'

Name	FSP003_ModuleErrors
Adresse	0x03 _H /3 _D /0x3033 _{ASCII}
Tiefe	3 Byte / 24 Bit
I/O	lesen
Reset	Ox(siehe Beschreibung) _H

Der FSP enthält alle Fehler die den unmittelbaren Betrieb des Moduls und damit des Übergeordneten Gerätes gefährdet und zu einer Abschaltung führt.

Liegt ein Fehler vor ist das korrespondierende Bit ,0' andernfalls ,1'. Außerdem ist Bit [4] des FSP001_ModuleStatus = ,0'.

[23..0] n.u., immer ,1'

Name	FSP004_ModuleInterlocks
Adresse	0x04 _H /4 _D /0x3034 _{ASCII}
Tiefe	10 Byte / 80 Bit
I/O	lesen
Reset	0x(siehe Beschreibung) _H

Im FSP sind alle Interlocks des Moduls abgebildet sowohl die aktuell anstehenden wie auch die gespeicherten Interlockmeldungen.

Die Grenze liegt in der Mitte des FSP, wobei immer ganze Bytes für die Gruppen verwendet werden müssen. d.h. für 3 Interlocks müssen trotzdem 2 Bytes verwendet werden. 1 Byte für den aktuellen Status und 1 Byte für die gespeicherte Meldung.

Die unteren Bytes [n/2..0] des FSP sind für den aktuellen Status bestimmt und die oberen Bytes [n..n/2] für die gespeicherten Interlocks.

Liegt ein Interlock vor ist das korrespondierende Bit ,0' andernfalls ,1'. Außerdem ist Bit [5] des FSP001_ModuleStatus = ,0'.

Nicht genutzte Interlockbits müssen ,1' sein!

Gespeicherte Interlocks

Cosperance interioris			
[7978]	wenn ,0', TooLessWater_SPI_1_Filt[10]		
[7776]	wenn ,0', TooLessWater_SPI_0_Filt[10]		
[7572]	wenn ,0', anstehendes Interlock am ExtensionBusIn[6,4,2,0] EXTENSION_BUS_IN[6], EXTENSION_BUS_IN[4], EXTENSION_BUS_IN[2], EXTENSION_BUS_IN[0]		
[71]	n.u., immer ,1' VCC_BUS[0]		
[70]	USIIsHighSpeed Abbruch USISlave1_IsHighSpeed		
[6968]	wenn ,0', anstehendes Interlock am zugehörigen Wasserdurchflusswächter WaterFlowOK_Filt[21]		
[6758]	wenn '0', anstehendes Interlock am zugehörigen elektrischen Eingang ELECTRICAL_IN_Filtred[90]		
[57]	wenn '0', anstehendes Interlock am Quench In QUENCH_IN		
[5649]	wenn '0', anstehendes Interlock am zugehörigen optische Eingang OPTICAL_IN[70]		
[4840]	wenn '0', anstehendes Interlock am zugehörigen Komparator COMP_IN[91]		
Aktuell anstehende Interlocks			
[39 38]	wenn 0' ToolessWater SPL 1 Filt[1 0]		

[3938]	wenn ,0', TooLessWater_SPI_1_Filt[10]
[3736]	wenn ,0', TooLessWater_SPI_0_Filt[10]
[3532]	wenn ,0', anstehendes Interlock am ExtensionBusIn[6,4,2,0] EXTENSION_BUS_IN[6], EXTENSION_BUS_IN[4], EXTENSION_BUS_IN[2], EXTENSION_BUS_IN[0]
[31]	n.u., immer ,1' VCC BUS[0]

[30]	USIIsHighSpeed Abbruch USISlave1_IsHighSpeed
[2928]	wenn ,0 $^{\prime}$, anstehendes Interlock am zugehörigen Wasser-Durchflusswächter WaterFlowOK_Filt[21]
[2718]	wenn '0', anstehendes Interlock am zugehörigen elektrischen Eingang ELECTRICAL_IN_Filtred[90]
[17]	wenn '0', anstehendes Interlock am Quench In QUENCH_IN
[169]	wenn '0', anstehendes Interlock am zugehörigen optische Eingang OPTICAL_IN[70]
[80]	wenn '0', anstehendes Interlock am zugehörigen Komparator COMP_IN[91]

Name	FSP005_InterlocksEnable
Adresse	0x05 _H /5 _D /0x3035 _{ASCII}
Tiefe	5 Byte / 40 Bit
I/O	lesen
Reset	0x(siehe Beschreibung) _H

Im FSP sind alle Interlock Enable Informationen des Moduls abgebildet sofern darüber Informationen zur Verfügung gestellt werden. I.d.R. werden auf Modulen z.B. Jumperstellungen bzgl. der Zulässigkeit von Interlocks abgefragt und deren Einstellungen hier abgelegt.

Ist ein Interlock aktiviert (also zugelassen) ist das korrespondierende Bit in diesem FSP gesetzt, nicht zugelassene, also dauerhaft gesperrte Interlocks werden durch eine ,0' dargestellt.

[3936]	n.u., immer ,0'
[3532]	wenn ,1' Interlocks des ExtensionBusIn[6,4,2,0] aktiv
[3128]	n.u., immer ,0'
[2718]	wenn '1' Interlock des zugehörigen elektrischen Eingangs aktiv
[17]	wenn '1' Interlock des zugehörigen Quench In aktiv
[169]	wenn '1' Interlock des zugehörigen optischen Eingangs aktiv
[80]	n.u., immer ,0'

Name	FSP006_InterlocksArrivalSequence
Adresse	0x06 _H /6 _D /0x3036 _{ASCII}
Tiefe	6 Byte / 48 Byte
I/O	lesen
Reset	Reset:0x(siehe Beschreibung) _H

Dieser FSP liefert die zeitliche Abfolge auftretender Interlocks. Liegen mehrere Interlocks an, kann über diesen FSP die zeitliche Abfolge von deren Auftreten gelesen werden.

Zu beachten ist, treten Interlocks zeitgleich (also im selben Taktzyklus) auf, wird nur das hochwertigste Interlockbit erfasst und in diesem FSP abgelegt.

Werden also z.B. die Interlocks Bit[1], Bit[3] und Bit[7] im selben Takt erfasst, wird nur Bit[7] im FSP abgelegt.

Das FSP erfasst die 5 zuerst auftretenden Interlocks dieses Moduls.

[4740]	Das Interlockbit des zuerst aufgetretenen Interlocks (i)
[3932]	Das Interlockbit des vor (i) aufgetretenen Interlocks (i-1)
[3124]	Das Interlockbit des vor (i-1) aufgetretenen Interlocks (i-2)
[2316]	Das Interlockbit des vor (i-2) aufgetretenen Interlocks (i-3)
[158]	Das Interlockbit des zuletzt aufgetretenen Interlocks (i-4)
[70]	Anzahl der erfassten Interlock im FSP006 insgesamt (05)

Name	FSP009_ModuleSerialNumber
Adresse	0x09 _H /9 _D /0x3039 _{ASCII}
Tiefe	12 Byte / 96 Bit
I/O	lesen
Reset	Ox(siehe Beschreibung) _H

Der FSP enthält die Modul Serien Nummern

Die Serien Nummer ist über einen One Wire Chip von Dallas/Maxim zu erzeugen, da gewährleistet sein muss das die Serien Nummer weltweit nur einmal vergeben ist.

[95..48] Erweiterungsmodul an X22 Seriennummer

[47..0] ICM Modul Seriennummer

Name	FSP010_ModuleCommands
Adresse	0x0A _H /10 _D /0x3041 _{ASCII}
Tiefe	1 Byte / 8 Bit
I/O	lesen / schreiben
Reset	0x00 _H

Wenn ein Modul Kommandos unterstützt (Einschalten, Ausschalten, Reset usw.) dann werden diese über diesen FSP gesetzt.

Die Kommandos dieses FSPs werden nur ausgeführt, wenn das Modul mittels Standard-USI angebunden ist. Wird die USI HighSpeed Verbindung verwendet, dann werden die Kommandos aus diesem FSP ignoriert. Stattdessen erfolgt die Kommandoübertragung über die HighSpeed Anbindung.

- [7..5] n.u.
- [4] Wenn $,1' \rightarrow V5_On_V6_Off$ aktiv
- [3..0] Diese Kommandos werden von der MFU oder PowerConfigAdvanced gesetzt und steuern die Module-/Gerätefunktionen

[30]	Kommando
0x0	cCMDNoAction keine Aktion
0x1	cCMDSwitchUnitOn Gerät einschalten (wenn möglich)
0x2	cCMDSwitchUnitOff Gerät abschalten
0x3	cCMDResetUnit Reset durchführen (z.B. Interlocks)
0x4	cCMDDisableController
0x5	cCMDTriggerSomething hiermit lassen sich Sonderfunktionen in Modulen auslösen

Name	FSP011_ModuleInterlocksMask_n
Adresse	0x0B _H /11 _D /0x3042 _{ASCII}
Tiefe	15 Byte / 120 Bit
I/O	lesen / schreiben
Reset	0xFFC0000000_FFC00000000_H

Dieser FSP enthält Bitmasken, die zum einen nicht verwendete Interlocks vollständig ausmaskiert, d.h. alle nicht zu benutzenden Interlocks sind mit ,1' zu setzen. Zum anderen lassen sich Interlocks mit diesem FSP so maskieren, dass diese erst nach Freigabe des Reglers aktiviert werden. Deren Erfassung wird also während einer Reglersperre ignoriert. Hierbei ist das zugehörige Bit für verzögerte Freigabe des Interlocks (zusammen mit der Reglerfreigabe) mit ,1' zu setzen.

Zugelassene Interlocks nach der Reglerfreigabe

Diese Maske beeinflusst welche Interlocks erst nach der Reglerfreigabe zugelassen werden und ob diese dann vom FPGA erkannt und bearbeitet werden dürfen oder nicht.

Interlocks mit gesetztem Bit (,1') werden erst verzögert mit der erteilten Reglerfreigebe erfasst.

(Beispiel: Der Hauptschütz darf erst zugelassen werden, wenn die Reglerfreigabe erteilt ist. Andernfalls würde das anliegende Hauptschütz Interlock das Einschalten der SVE dauerhaft verhindern. Daher ist das zugehörige Bit auf ,1' zu setzen)

[119...118] wenn ,0', werden zugehörige TooLessWater_SPI_1_Filt[1..0] dauerhaft erfasst [117..116] wenn ,0', werden zugehörige TooLessWater SPI 0 Filt[1..0] dauerhaft erfasst wenn ,0', werden zugehörige ExtensionBusIn[6,4,2,0] Interlock dauerhaft erfasst [115..112] EXTENSION BUS IN[6], EXTENSION BUS IN[4], EXTENSION_BUS_IN[2], EXTENSION_BUS_IN[0] [111] n.u., immer ,1' [110] wenn ,0' wird ein USIIsHighSpeed Abbruch dauerhaft erfasst USISlave1 IsHighSpeed [109..108] wenn ,0' werden zugehörige Wasser-Durchflusswächter-Interlocks dauerhaft erfasst WaterFlowOK Filt[2..1] [107..98] wenn '0' werden zugehörige Elektrische Eingangs-Interlocks dauerhaft erfasst ELECTRICAL_IN_Filtred[9..0] [97] wenn '0' wird zugehöriges Optische Eingangs-Interlocks dauerhaft erfasst QUENCH IN [96..89] wenn '0' werden zugehörige Optische Eingangs-Interlocks dauerhaft erfasst OPTICAL_IN[7..0] [88..80] wenn '0', werden zugehörige Komparator-Interlocks dauerhaft erfasst

Gespeicherte Interlocks

COMP IN[9..1]

Diese Maske beeinflusst gespeicherte Interlocks und ob diese vom FPGA erkannt und bearbeitet werden sollen oder nicht.

[79...78] wenn ,0', werden zugehörige TooLessWater_SPI_1_Filt[1..0] gespeichert
 [77..76] wenn ,0', werden zugehörige TooLessWater_SPI_0_Filt[1..0] gespeichert
 [75..72] wenn ,0', werden zugehörige ExtensionBusIn[6,4,2,0] Interlock gespeichert EXTENSION_BUS_IN[6], EXTENSION_BUS_IN[4], EXTENSION_BUS_IN[2], EXTENSION_BUS_IN[0]

[71]	n.u., immer ,1'
[70]	wenn ,0' wird ein USIIsHighSpeed Abbruch gespeichert USISlave1_IsHighSpeed
[6968]	wenn ,0' werden zugehörige Wasser-Durchflusswächter-Interlocks gespeichert WaterFlowOK_Filt[21]
[6758]	wenn '0' werden zugehörige Elektrische Eingangs-Interlocks gespeichert ELECTRICAL_IN_Filtred[90]
[57]	wenn '0' wird zugehöriges Optische Eingangs-Interlocks gespeichert QUENCH_IN
[5749]	wenn '0' werden zugehörige Optische Eingangs-Interlocks gespeichert OPTICAL_IN[70]
[4840]	wenn '0', werden zugehörige Komparator-Interlocks gespeichert COMP_IN[91]

Aktuell anstehende Interlocks

Diese Maske beeinflusst aktuell anstehende Interlocks und ob diese vom FPGA erkannt und bearbeitet werden sollen oder nicht

[3938]	wenn ,0', werden zugehörige TooLessWater_SPI_1_Filt[10] angezeigt
[3736]	wenn ,0', werden zugehörige TooLessWater_SPI_0_Filt[10] angezeigt
[3532]	wenn ,0', werden zugehörige ExtensionBusIn[6,4,2,0] Interlock angezeigt EXTENSION_BUS_IN[6], EXTENSION_BUS_IN[4], EXTENSION_BUS_IN[2], EXTENSION_BUS_IN[0]
[31]	n.u., immer ,1'
[30]	wenn ,0' wird ein USIIsHighSpeed Abbruch angezeigt USISIave1_IsHighSpeed
[2928]	wenn ,0' werden zugehörige Wasser-Durchflusswächter-Interlocks angezeigt WaterFlowOK_Filt[21]
[2718]	wenn '0' werden zugehörige Elektrische Eingangs-Interlocks angezeigt ELECTRICAL_IN_Filtred[90]
[17]	wenn '0' wird zugehöriges Optische Eingangs-Interlocks angezeigt QUENCH_IN
[169]	wenn '0' werden zugehörige Optische Eingangs-Interlocks angezeigt OPTICAL_IN[70]
[80]	wenn '0', werden zugehörige Komparator-Interlocks angezeigt COMP_IN[91]

Name	FSP012_USIConfig
Adresse	0x0C _H /12 _D /0x3043 _{ASCII}
Tiefe	1 Byte / 8 Bit
I/O	Lesen / schreiben
Reset	0x00 _H

Dieser FSP definiert die USI Konfiguration

[7] wenn ,1' USI im HighSpeed Modus, wenn ,0' USI im normalen Modus

[4..3] n.u.

[2..0] USI Bitrate

[20]	Bitrate
111	115,2 kBit (default)
110	1 MBit
101	2 MBit
100	5 MBit
011	10 MBit
010	16,6 MBit
001	20 MBit
000	25 MBit (Test only!)

Name	FSP013_PeripheralConfig
Adresse	0x0D _H /13 _D /0x3044 _{ASCII}
Tiefe	1 Byte / 8 Bit
I/O	lesen / schreiben
Reset	0x80 _H

Auf dem Modul befindliche Peripherie kann mit diesem FSP konfiguriert werden

[7] Nach einschalten der Spannungsversorgung wird dieses Bit automatisch auf ,1' gesetzt. Werden Parameter durch die MFU oder per PC geladen, die zur Prüfsummenbildung beitragen sollen, muss dieses Bit gelöscht werden, bevor der erste Parameter übertragen wird. Ist das Laden der Parameter beendet, muss dieses Bit wieder auf ,1' gesetzt werden. Im Anschluss daran wird die Vergleichs-Prüfsumme an "FSP058_ParameterChecksumValue" gesendet. Die Modul-Freigabe erfolgt aber nur, wenn die Vergleichs-Prüfsumme auch zu der aus den restlichen Parametern gebildeten Prüfsumme passt.

Das Löschen dieses Bit löscht die zuvor errechnete Prüfsumme.

[6..0] n.u.

Name	FSP030_SetValue_A
Adresse	0x1E _H /30 _D /0x3145 _{ASCII}
Tiefe	3 Byte / 24 Bit
I/O	lesen / schreiben
Reset	0x000000 _H

Dieser FSP dient zur Übermittelung eines 20 Bit Sollwertes_A an diverse Ziele.

- [23..0] 20 Bit Sollwert_A, wird über verschiedene Multiplexer wahlweise diversen Zielen als endgültiger Sollwert_A vorgegeben:
 - Als Sollwert für den PI Regler 1 mittels des Sollwert-Multiplexer, welcher über "FSP070 Controller 1 InputSourceSelectionMultiplexer" konfiguriert wird.
 - Als Sollwert für den PI Regler 2 mittels des Sollwert-Multiplexer, welcher über "FSP080_Controller_2_InputSourceSelectionMultiplexer" konfiguriert wird.
 - Als Sollwert für den PI Regler 3 mittels des Sollwert-Multiplexer, welcher über "FSP123_Controller_3_InputSourceSelectionMultiplexer" konfiguriert wird.
 - Als Istwert für den PI Regler 1 mittels des Istwert-Multiplexer, welcher über "FSP070 Controller 1 InputSourceSelectionMultiplexer" konfiguriert wird.
 - Als Istwert für den PI Regler 2 mittels des Istwert-Multiplexer, welcher über "FSP080 Controller 2 InputSourceSelectionMultiplexer" konfiguriert wird.
 - Als Istwert für den PI Regler 3 mittels des Istwert-Multiplexer, welcher über "FSP123_Controller_3_InputSourceSelectionMultiplexer" konfiguriert wird.
 - Als Sollwert für die PWM 1 mittels des PWM 1-Multiplexer welcher über "FSP110_PWM_C1_Config" konfiguriert wird.
 - Als Sollwert für die PWM 2 mittels des PWM 2-Multiplexer welcher über "FSP134_PWM_SetValueC2C3_Sel (ThresholdValues)" konfiguriert wird.
 - Als Sollwert für die PWM 3 mittels des PWM 3-Multiplexer welcher über "FSP134_PWM_SetValueC2C3_Sel (ThresholdValues)" konfiguriert wird.

Name	FSP031_SetValue_B
Adresse	0x1F _H /31 _D /0x3146 _{ASCII}
Tiefe	3 Byte / 24 Bit
I/O	lesen / schreiben
Reset	0x000000 _H

Dieser FSP dient zur Übermittelung eines 16 Bit Sollwertes_B an diverse Ziele.

- [23..0] 20 Bit Sollwert_B, wird über verschiedene Multiplexer wahlweise diversen Zielen als endgültiger Sollwert_B vorgegeben:
 - Als Sollwert für den PI Regler 1 mittels des Sollwert-Multiplexer, welcher über "FSP070 Controller 1 InputSourceSelectionMultiplexer" konfiguriert wird.
 - Als Sollwert für den PI Regler 2 mittels des Sollwert-Multiplexer, welcher über "FSP080_Controller_2_InputSourceSelectionMultiplexer" konfiguriert wird.
 - Als Sollwert für den PI Regler 3 mittels des Sollwert-Multiplexer, welcher über "FSP123_Controller_3_InputSourceSelectionMultiplexer" konfiguriert wird.
 - Als Istwert für den PI Regler 1 mittels des Istwert-Multiplexer, welcher über "FSP070_Controller_1_InputSourceSelectionMultiplexer" konfiguriert wird.
 - Als Istwert für den PI Regler 2 mittels des Istwert-Multiplexer, welcher über "FSP080 Controller 2 InputSourceSelectionMultiplexer" konfiguriert wird.
 - Als Istwert für den PI Regler 3 mittels des Istwert-Multiplexer, welcher über "FSP123_Controller_3_InputSourceSelectionMultiplexer" konfiguriert wird.
 - Als Sollwert für die PWM 1 mittels des PWM 1-Multiplexer welcher über "FSP110_PWM_C1_Config" konfiguriert wird.
 - Als Sollwert für die PWM 2 mittels des PWM 2-Multiplexer welcher über "FSP134_PWM_SetValueC2C3_Sel (ThresholdValues)" konfiguriert wird.
 - Als Sollwert für die PWM 3 mittels des PWM 3-Multiplexer welcher über "FSP134_PWM_SetValueC2C3_Sel (ThresholdValues)" konfiguriert wird.

Name	FSP040_RemoteUpdateStatus
Adresse	0x28 _H /40 _D /0x3238 _{ASCII}
Tiefe	1 Byte / 8 Bit
I/O	lesen
Reset	0x(siehe Beschreibung) _H

Beim Fernupdate wird dieser FSP für das Rücklesen der Statusinformationen des Fernupdates verwendet.

[73]	n.u.
[2]	FSP042_Busy wenn ,1' ist FSP42 beschäftigt (z.B. weil gerade Flashsektoren gelöscht oder programmiert werden) und es sollten KEIN Zugriffe darauf erfolgen
[1]	FSP042_ReadyToSendData, wenn ,1' können Daten vom Host an FSP42 abgeholt werden
[0]	FSP042_ReadyToReceiveData, wenn ,1' können Daten vom Host an FSP42 gesendet werden.

Name	FSP041_RemoteUpdateCommands
Adresse	0x29 _H /41 _D /0x3239 _{ASCII}
Tiefe	1 Byte / 8 Bit
I/O	lesen / schreiben
Reset	0x00 _H

Dieser FSP überträgt die Kommandos für das Fernupdate

[7..3] n.u

[2..0] Kommandos für den RemoteUpdateHandler

[20]	Kommando	
000	NOP	
001	Erase Bulk, das gesamte Flash löschen	
010	Erase Sector, nur den an 'DataAddress' angegeben Sektor löschen	
011	Write single bytes, ein einzelnes Bytes ins Flash schreiben	
100	Write continuously, beliebige Anzahl Bytes ins Flash schreiben	
101	Read single byte, ein einzelnes Bytes aus dem Flash lesen	
110	Read continuously, beliebige Anzahl Bytes aus dem Flash lesen	
111	Init	

Name	FSP042_RemoteUpdateData
Adresse	0x2A _H /42 _D /0x3241 _{ASCII}
Tiefe	256 Byte / 2048 Bit
I/O	lesen / schreiben
Reset	Ox(siehe Beschreibung) _H

Dieser FSP überträgt die Daten für das Fernupdate entweder vom Host zum Modul oder umgekehrt.

Achtung:

Dieses FSP ist besonders im Hinblick auf Lesen und Schreiben. Da das FSP ein nachgeschalteter serieller Flash bedient und die empfangenen Daten direkt in diesen Flash programmiert, bzw. aus dem Flash ausgelesene Daten direkt an den Host versendet werden

Zugriffe einleiten

Zugriffe auf FSP042 müssen generell über FSP041 eingeleitet werden.

Das erste "Kommando" an FSP041 lautet immer "000" NOP. Der FSP041 muss mit ACK antworten. Darauf erfolgt das Kommando "111" (Init). FSP041 muss auch hier mit ACK antworten.

Lesen

Bevor Daten aus dem FSP042 gelesen werden, muss das Lesen mit FSP041 eingeleitet werden.

Zum Lesen eines einzelnen Byte wird das Kommando: "101" (Read single byte) an FSP041 gesendet. FSP041 muss mit ACK antworten.

Durch lesen von FSP040 lässt sich kontrollieren, ob FSP042 prinzipiell bereit ist Daten zu senden (Bit[1]).

Anschließend wird FSP042 einmalig gelesen. Dabei wird das erste Byte gesendet. Der Ausleseprozess beginnt an Adresse 0x0 und wird automatisch inkrementiert. D.h. wird ein weiteres Lesekommando an FSP042 geschickt, wird das folgende Byte ausgegeben.

Sollen hingegen die Daten seitenweise (jeweils 256 Byte) gelesen werden, erfolgt dies mit dem Kommando: "110" an FSP041.

Anschließend wird mit jedem Lesebefehl an FSP042 jeweils eine Seite Daten übertragen. Die Seiten werden dabei automatisch inkrementiert.

Schreiben

Bevor Daten sinnvoll ins Flash geschrieben werden können, muss dieses gelöscht werden.

Das Kommando "001" an FSP041 löscht dieses komplett, das Kommando "010" an FSP041 hingegen nur die aktuell adressierte Page. Da ein direktes Adressieren der Page im ADCII nicht möglich ist, entfällt die Verwendung dieses Kommandos. In jedem Fall muss FSP042 ACK antworten. Der EPCS Controller beginnt dann unmittelbar mit dem Löschen des Flashs.

Jetzt kann sofort ein erneutes Init-Kommando ("111") an FSP041 gesendet werden. Dieser muss mit ACK antworten.

Jetzt erfolgt die Einleitung des Schreibkommandos.

Zum Schreiben eines einzelnen Byte wird das Kommando: "011" (Write single bytes) an FSP041 gesendet. FSP041 muss mit ACK antworten.

Sollen hingegen die Daten seitenweise (jeweils 256 Byte) geschrieben werden, erfolgt dies mit dem Kommando: "100".

Durch lesen von FSP040 lässt sich kontrollieren, ob FSP042 prinzipiell bereit ist Daten zu empfangen, sobald das Bit[0] gesetzt wird. Dieses wird gesetzt, wenn der Löschvorgang abgeschlossen und ein Schreibkommandos geschickt wurde. Der Löschvorgang kann bis zu 20 Sekunden dauern.

Anschließend wird abhängig vom Schreibkommando mit dem Schreibbefehl an FSP042 jeweils entweder ein Byte oder jeweils eine Seite Daten ins Flash übertragen. Die Adressen, bzw. Seiten werden dabei automatisch inkrementiert.

Der Schreibvorgang beginnt dabei in jedem Fall bei Adresse 0x0.

Abbrechen/Beenden

Alle Zugriffe (schreiben/lesen) auf den Flash über FSP042 lassen sich mit einem "111" (Init) an FSP041 abbrechen/beenden.

Name	FSP045_AlteraRemoteUpdateCmd
Adresse	0x2D _H /45 _D /0x3244 _{ASCII}
Tiefe	7 Byte / 56 Bit
I/O	lesen / schreiben
Reset	Reset:0x00100000_00_0_0_0_0 _H

Dieser FSP dient als Kommando FSP für die Altera Remote Update Funktion

Imagetyp lesen

Bit[4] = ,0' (Read)

Bit[8] = ,1' (steigende Flanke startet lesen des Imagetyps)

FSP046[1..0] enthält nun den aktuellen Imagetyp.

Imagetyp wechseln

Bit[4] = ,1' (Write)

Bit[12] = ,1' (steigende Flanke wechselt das Image)

Mit Einführung des CycloneV änderte sich dieses FSP inhaltlich leicht.

Die Startadresse wanderte um 4 Bits nach links (beginnt nicht mehr bei Bit 20, sondern erst bei Bit 24) und wird um 4 weitere Bits ergänzt (hat also nun die Breite 32 Bits). (18.12.19 – DS)

Altes Format

[4744]	n.u.
--------	------

[43..20] Flash Start Address (ab dieser Adresse wird das Image geschrieben)

[19..17] n.u.

Neues Format

[55..24] Flash Start Address (ab dieser Adresse wird das Image geschrieben)

[23..17] n.u.

Gemeinsam unverändert

[16]	Reset WD Disable (only for debug)
------	-----------------------------------

[15..13] n.u.

[12] Start Write (steigende Flanke an diesem Bit startet die FSM zum Imagetyp-Wechsel)

[11..9] n.u.

[8] Start Read (steigende Flanke an diesem Bit startet die FSM zum lesen des Image-Type)

[7..5] n.u.

[4] Read_n_Write_Enable (muss ,0' sein damit ,Start Read' überhaupt ausgeführt wird, muss ,1' sein damit ,Start Write' überhaupt ausgeführt wird)

[3..2] n.u.

[1..0] Read Source

Name	FSP046_AlteraRemoteUpdateStatus
Adresse	0x2E _H /46 _D /0x3245 _{ASCII}
Tiefe	10 Byte / 80 Bit
I/O	lesen
Reset	Reset:0x(siehe Beschreibung) _H

Dieser FSP dient als Status FSP für die Altera Remote Update Funktion

[7972]	ReconfTriggerCondition
[7169]	Force Osc_int n.u.
[68]	Force Osc_int
[6744]	Boot Address
[4341]	Wachdog Enable n.u.
[40]	Wachdog Enable
[398]	Wachdog timeout
[75]	Cd_early n.u.
[4]	Cd_early, wenn ,1' ist ein gültiges Application-Image an der Bootadresse zu finden
[32]	MSM State n.u.
[10]	MSM State ('00' = Factory Image, '11' = Application Image)

Name	FSP050_ModuleSupplyValues
Adresse	0x32 _H /50 _D /0x3332 _{ASCII}
Tiefe	16 Byte / 128 Bit
I/O	lesen
Reset	0x(siehe Beschreibung) _H

Liefert die vorzeichenbehafteten Betriebsspannungen des Moduls. Immer 2 Byte stehen für eine Spannung. Bei 8 Spannungen ist dieses FSP 16 Byte tief Die Spannungen sind dabei wie folgt sortiert.

[127112]	vorzeichenbehaftete VREF, 2,75 Volt (13 Bit)
[11196]	vorzeichenbehaftete -12 Volt (13 Bit)
[9580]	vorzeichenbehaftete 12 Volt (13 Bit)
[7964]	vorzeichenbehaftete 5 Volt Analog (13 Bit)
[6348]	vorzeichenbehaftete 5 Volt Digital (13 Bit)
[4732]	vorzeichenbehaftete 3,3 Volt (13 Bit)
[3116]	vorzeichenbehaftete 2,5 Volt (13 Bit)
[150]	vorzeichenbehaftete 1,2 Volt (13 Bit)

Name	FSP051_ModulePotiValues
Adresse	0x33 _H /51 _D /0x3333 _{ASCII}
Tiefe	20 Byte / 160 Bit
I/O	lesen
Reset	0x(siehe Beschreibung) _H

Liefert die vorzeichenbehafteten Poti-Spannungen der Komparator/Potimodule. Diese Spannungen definieren die Schaltschwelle der Komparatoren.

Für alle Spannungen gilt, dass jeweils nur die OBEREN 13 Bit Verwendung finden. Das MSB ist dabei das Vorzeichen. Die unteren 3 Bit sind immer ,0'.

Die Spannungen sind dabei wie folgt sortiert.

[159144]	ADC1 Poti-Spannungen des Moduls auf X16 (bipolar), negative Schwelle (13 Bit)
[143128]	ADC1 Poti-Spannungen des Moduls auf X16 (bipolar), positive Schwelle (13 Bit)
[127112]	ADC2 Poti-Spannungen des Moduls auf X25 (bipolar), negative Schwelle (13 Bit)
[11196]	ADC2 Poti-Spannungen des Moduls auf X25 (bipolar), positive Schwelle (13 Bit)
[9580]	ADC3 Poti-Spannungen des Moduls auf X17 (bipolar), negative Schwelle (13 Bit)
[7964]	ADC3 Poti-Spannungen des Moduls auf X17 (bipolar), positive Schwelle (13 Bit)
[6348]	ADC4 Poti-Spannungen des Moduls auf X26 (bipolar), negative Schwelle (13 Bit)
[4732]	ADC4 Poti-Spannungen des Moduls auf X26 (bipolar), positive Schwelle (13 Bit)
[3116]	n.u., immer ,0'
[150]	ADC5 Poti-Spannungen des Moduls auf X15 (unipolar), positive Schwelle (13 Bit)

Name	FSP052_ModuleComparatorValues
Adresse	0x34 _H /52 _D /0x3334 _{ASCII}
Tiefe	20 Byte / 160 Bit
I/O	lesen
Reset	Ox(siehe Beschreibung) _H

Liefert die vorzeichenbehafteten Komparator-Spannungen der Komparator/Potimodule, jeweils vor und hinter dem Filter.

Für alle Spannungen gilt, dass jeweils nur die OBEREN 13 Bit Verwendung finden. Das MSB ist dabei das Vorzeichen. Die unteren 3 Bit sind immer ,0'.

Die Spannungen sind dabei wie folgt sortiert.

[159144]	ADC1 Komparator-Spannung des Moduls auf X16 (bipolar), hinter dem Filter (13 Bit)
[143128]	ADC ${f 1}$ Komparator-Spannung des Moduls auf X16 (bipolar), vor dem Filter (13 Bit)
[127112]	ADC 2 Komparator-Spannung des Moduls auf X25 (bipolar), hinter dem Filter (13 Bit)
[11196]	ADC 2 Komparator-Spannung des Moduls auf X25 (bipolar), vor dem Filter (13 Bit)
[9580]	ADC 3 Komparator-Spannung des Moduls auf X17 (bipolar), hinter dem Filter (13 Bit)
[7964]	ADC 3 Komparator-Spannung des Moduls auf X17 (bipolar), vor dem Filter (13 Bit)
[6348]	ADC 4 Komparator-Spannung des Moduls auf X26 (bipolar), hinter dem Filter (13 Bit)
[4732]	ADC4 Komparator-Spannung des Moduls auf X26 (bipolar), vor dem Filter (13 Bit)
[3116]	ADC 5 Komparator-Spannung des Moduls auf X15 (unipolar), hinter dem Filter' (13 Bit)
[150]	ADC 5 Komparator-Spannung des Moduls auf X15 (unipolar), vor dem Filter (13 Bit)

Name	FSP053_ModuleTemperatures
Adresse	0x35 _H /53 _D /0x3335 _{ASCII}
Tiefe	4 Byte / 32 Bit
I/O	lesen
Reset	Ox(siehe Beschreibung) _H

Je Temperatur 2 Byte ASCII, also je 1 Byte Vorzeichen behaftetes HEX Zeichen.

[31..24] Alarm_Info

[70]	Bedeutung
0x00	n.u., Resetzustand
0x01	Device 1 nicht bereit
0x02	Device 2 nicht bereit
0x04	Device 3 nicht bereit
0x08	DeviceSearchRunDone
0x10	Device 1 Grenze überschritten
0x20	Device 2 Grenze überschritten
0x40	Device 3 Grenze überschritten
0x80	Alarm Interrupt wenn Grenze bei einem Device überschritten

[23..16] Sensor **3**: Temperatur Modul Mitte (8 Bit)

[15..8] Sensor 2: Temperatur FPGA (8 Bit)

[7..0] Sensor 1: Temperatur DC-DC Wandler (8 Bit)

Die Schwellen der Temperaturgrenzen werden im "FSP054_ModuleTemperaturesComparationThresholds" festgelegt.

Name	FSP054_ModuleTemperaturesComparationThresholds
Adresse	0x36 _H /54 _D /0x3336 _{ASCII}
Tiefe	3 Byte / 24 Bit
1/0	lesen / schreiben
Reset	0x46_46_46 _H

Stellt die vorzeichenbehafteten Vergleichswerte zur Verfügung bei denen die Temperatursensoren Alarm auslösen sollen, sofern die Temperatur überschritten wurde.

Je Temperatur 2 Byte ASCII, also je 1 Byte Vorzeichen behaftetes HEX Zeichen.

Als Standardwert ist 70° Celsius ($70_D = 46_H$) gewählt.

[23..16] Sensor **3**: Temperatur Modul Mitte (8 Bit)

[15..8] Sensor 2: Temperatur FPGA (8 Bit)

[7..0] Sensor 1: Temperatur DC-DC Wandler (8 Bit)

Name	FSP055_WaterFlowMeassurement
Adresse	0x37 _H /55 _D /0x3337 _{ASCII}
Tiefe	8 Byte / 48 Bit
I/O	lesen / schreiben
Reset	Reset:0x00_00_06_6465 _H

Sind Wasserwächter im Modul vorhanden, werden diese über verschiedene Parameter beschrieben um deren aktuellen Durchfluss zu bestimmen und dazustellen.

"FSP101_WaterFlow_Thresholds" wird mit den unteren und oberen Schwellwerten für den Durchfluss in μSekunden zwischen zwei Pulsen beschrieben. Zu beachten ist, dass der <u>untere Grenzwert die minimal zulässige Zeitdauer</u> in μSekunden angibt, <u>die zwischen zwei Pulsen liegen darf</u>, damit aber den maximalen Durchfluss beschreibt. Je kleiner die Zeitspanne zwischen zwei Pulsen ist, desto mehr Wasser fließt durch den Wasserwächter. Umgekehrt beschriebt der <u>obere Schwellwert mit maximal zulässige Zeitdauer</u> in μSekunden, <u>die zwischen zwei Pulsen liegen darf</u> und damit den minimalen Durchfluss. Je größer die Zeitspanne zwischen zwei Pulsen ist, desto weniger Wasser fließt durch den Wasserwächter.

"FSP100_InvertedWaterFlow_TimePeriodeBetweenTwoPulses_in_us" gibt die Zeitdauer zwischen zwei Messimpulsen des Wasserwächters in μ Sekunden zurück.

Diese FSP können beliebig im Modul zu finden sein.

Daher beschreibt FSP055 u. A. deren FSP-Adressen.

[4744]	Index-Typ *) des SPI_2_1. Wasserwächters/Durchflussmessers
[4340]	Index-Typ *) des SPI_2_0. Wasserwächters/Durchflussmessers
[3936]	Index-Typ *) des SPI_1_1. Wasserwächters/Durchflussmessers
[3532]	Index-Typ *) des SPI_1_0. Wasserwächters/Durchflussmessers
[3128]	Index-Typ *) des 2. Wasserwächters/Durchflussmessers
[2724]	Index-Typ *) des 1. Wasserwächters/Durchflussmesser
[2316]	Anzahl der verfügbaren Wasserwächter-/Durchflussmesskanäle ($0x06_H = 6_D$)
[158]	Adresse des "FSP100_InvertedWaterFlow_TimePeriodeBetweenTwoPulses_in_us" $(0x64_H = 100_D)$
[70]	Adresse des "FSP101_WaterFlow_Thresholds" Indextypen (0x65 _H = 101 _D)

*) Indextypen

0	Float_Type_or_norm_Interlock	(normaler Schaltkontakt, kein Durchfluss übermittelt)
1	Customized_Values	(Benutzerwerte)
2	RRI_010xxx020_2l	(GHM-Hornsberg)
3	RRI_010xxx050_12l	(GHM-Hornsberg)
4	RRI_010xxx070_14l	(GHM-Hornsberg)
5	RRI_025xxx180_36l	(GHM-Hornsberg)
6	RRI_025xxx120_72l	(GHM-Hornsberg)
7	RRI_010xxx160_120l	(GHM-Hornsberg)
8	DRS_9250XXF300	(Kobold)

Name	FSP058_ParameterChecksumValue
Adresse	0x3A _H /58 _D /0x3341 _{ASCII}
Tiefe	3 Byte / 24 Bit
I/O	lesen / schreiben
Reset	0x000000 _H

Repräsentiert die Vergleichs-Prüfsumme der vom Modul empfangenen Parameter. Dieser Wert dient zum Vergleich der im Modul errechneten Prüfsumme.

Die Modul-Prüfsumme wird dabei aus den empfangenen Datenbytes durch aufaddieren gebildet und abschließend mit dem Eintrag von "FSP058_ParameterChecksumValue" verglichen.

[23..0] Checksumme der Datenübertragung zum Modul.

Die Prüfsumme wird im Modul ChecksumBuilder der Teil von mUISc (modular-USI-control) ist aus den Daten der beschriebenen FSP gebildet und abschließend mit dem Wert dieses FSP verglichen.

Name	FSP059_ParameterChecksumValueCalculated
Adresse	0x3B _H /59 _D /0x3342 _{ASCII}
Tiefe	3 Byte / 24 Bit
I/O	lesen
Reset	Ox(siehe Beschreibung) _H

Repräsentiert die errechnete Prüfsumme innerhalb des Moduls. Gibt die aktuell im Modul errechnete Prüfsumme zurück. Dadurch kann der Fortschritt der Prüfsummenbildung jederzeit verifiziert werden.

[23..0] errechnete Checksumme der Datenübertragung vom PC, bzw. MFU.

Name	FSP060_ValCounter
Adresse	0x3C _H /60 _D /0x3343 _{ASCII}
Tiefe	4 Byte / 32 Bit
I/O	lesen / schreiben
Reset	0x00_00_00_00 _H

Gibt Zeiten vor, die das ICM für die Ein-/Ausschaltzyklen benötigt

eingeschaltet wurde

dist Zeiten vor, die das felv für die Ein-y-Ausschlaftzyklen benotigt		
[3124]	,Val_CutOffTime_s' = Wertigkeit * 1 Sekunde, gibt die Zeit an die vergeht, bis die Wiedereinschaltsperre des Gerätes freigegeben wird nachdem das Gerät ausgeschaltet wurde	
[2316]	,Val_Timer 3 _RunTime_in_s' = Wertigkeit * 1 Sekunde, gibt die Zeit an die vergeht, bis die Regler-Freigabe erfolgt nachdem der elektrische Schaltkontakt 3 eingeschaltet wurde	
[158]	,Val_Timer2_RunTime_in_s' = Wertigkeit * 1 Sekunden, gibt die Zeit an die vergeht, bis der elektrische Schaltkontakt 3 eingeschaltet wird nachdem der elektrische Schaltkontakt 2 eingeschaltet wurde	
[70]	,Val_Timer1_RunTime_in_s' = Wertigkeit * 1 Sekunde, gibt die Zeit an die vergeht, bis der elektrische Schaltkontakt 2 eingeschaltet wird nachdem der elektrische Schaltkontakt 1	

Name	FSP064_InterlockSelectMUX
Adresse	0x40 _H /64 _D /0x3440 _{ASCII}
Tiefe	3 Byte /24 Bit
I/O	lesen / schreiben
Reset	0x12_2C_2D _H

Diese FSP legt fest welches korrespondierende Bit der anstehenden Interlocks eine Sonderfunktion auslöst.

Der dabei zu selektierende Bit-Bus ist 46 Bit breit (gezählt werden die Bits von 0..45) und ist wie folgt belegt:

[VCC][GND][Reißleine(1..4)][InterlockBits(39..0)]

InterlockBits entspricht dabei der Interlockverteilung aus "FSP004_ModuleInterlocks".

[23..22] n.u.

[21..16] Bitposition, an der das Hauptschütz-Interlock zu finden ist.

Das Hauptschütz wird über den elektrischen Schaltausgang 1 bedient.

Die Bitposition des Hauptschützes in diesem FSP muss festgelegt werden, damit die Rückmeldung des Hauptschützes über den zugehörigen Interlockeingang im ICM korrekt verarbeitet werden kann. Andernfalls wird das ICM keine Regler-Freigabe erteilen.

Nach dem Reset ist Bit 18_D , 12_H ausgewählt. Dies entspricht dem digital-elektrischen Interlock Nummer 1.

[15..14] n.u.

[13..8] Bitposition, die das PSS auslöst.

Das PSS wird über den elektrischen Schaltausgang 3 signalisiert.

Wird Bit 44_D , $2C_H$ gewählt ist der Schaltausgang dauerhaft ausgeschaltet, wird Bit 45_D , $2D_H$ gewählt dauerhaft eingeschaltet.

Nach dem Reset ist Bit 44_D , $2C_H$ ausgewählt, wodurch der Schaltausgang dauerhaft abgeschaltet ist.

[7..6] n.u.

[5..0] Bitposition, die eine externe Regler-Sperre zulässt.

Die Regler-Sperre/-freigabe wird über den elektrischen Schaltausgang 4 signalisiert. die Freigabe ist dabei von mehreren Faktoren abhängig. Über diese Bits ist es möglich einen Interlockeingang oder eine Reißleine zur Regler-Sperre zu nutzen. Außerdem lässt sich eine dauerhafte Sperrung erzwingen (Bit 44_D, 2C_H) oder die Funktion der externen Regler-Sperre dauerhaft deaktivieren (Bit 45_D, 2D_H).

Nach dem Reset ist Bit 45_D , $2D_H$ ausgewählt, wodurch die Funktion der externen Regler-Sperre dauerhaft abgeschaltet ist.

Name	FSP065_HighSpeed_USI_1_ReturnChannel_SourceSelectionMux
Adresse	0x41 _H /65 _D /0x3441 _{ASCII}
Tiefe	1 Byte / 8 Bit
I/O	lesen / schreiben
Reset	0x00 _H

USI slave 1 back data channel selector

7..4 Lower 14 bits

[30]	Beschreibung
0x0	n.u., Resetzustand
0x1	Controller_1_SetValueMuxOut
0x2	Controller_1_ActValueMuxOut
0x3	Controller_2_ActValueMuxOut
0x4	Controller_3_ActValueMuxOut
0x5	Controller_1_PI_Part_Output
0x6	Controller_2_PI_Part_Output
0x7	Controller_3_PI_Part_Output
0x8	Controller_1_MultipliedDeviation
0x9	Controller_2_MultipliedDeviation
0xA	Controller_3_MultipliedDeviation
0xB	UdCorrection_C1_ControlValue_Out
0xC	UdCorrection_C2_ControlValue_Out
0xD	UdCorrection_C3_ControlValue_Out

[3..0] Upper 14 bits

[30]	Beschreibung
0x0	n.u., Resetzustand
0x1	Controller_1_SetValueMuxOut
0x2	Controller_1_ActValueMuxOut
0x3	Controller_2_ActValueMuxOut
0x4	Controller_3_ActValueMuxOut
0x5	Controller_1_PI_Part_Output
0x6	Controller_2_PI_Part_Output
0x7	Controller_3_PI_Part_Output
0x8	Controller_1_MultipliedDeviation
0x9	Controller_2_MultipliedDeviation
0xA	Controller_3_MultipliedDeviation
0xB	UdCorrection_C1_ControlValue_Out
0xC	UdCorrection_C2_ControlValue_Out
0xD	UdCorrection_C3_ControlValue_Out

Name	FSP066_ADT7410_Temperatures
Adresse	0x42 _H /66 _D /0x3442 _{ASCII}
Tiefe	9 Byte / 72 Bit
I/O	lesen
Reset	0x(siehe Beschreibung) _H

Es können bis zu 4 externe ADT7410 Temperatursensoren an das Modul angeschlossen werden.

[71] Wenn der ADT7410 an Kanal A gelesen wird ist dieses Bit ,1'

[70..68] n.u., immer ,0'

[67..64] Status

[30]	Beschreibung
0x00	n.u., Resetzustand
0x01	Device an Kanal A gefunden
0x02	Device an Kanal B gefunden
0x04	Device an Kanal C gefunden
0x08	Device an Kanal D gefunden

[63..48] Temperatur des ADT7410 an Kanal A (15 Bit)

[47..32] Temperatur des ADT7410 an Kanal **B** (15 Bit)

[31..16] Temperatur des ADT7410 an Kanal **C** (15 Bit)

[15..0] Temperatur des ADT7410 an Kanal **D** (15 Bit)

Name	FSP067_Crowbar_PulsePeriod
Adresse	0x43 _H /67 _D /0x3443 _{ASCII}
Tiefe	3 Byte / 24 Bit
I/O	lesen / schreiben
Reset	0x 001388

It defines the pulse period: 5000*10ns=50us. Max value 2^24-1

Name	FSP68_Crowbar_T_on
Adresse	0x44 _H /68 _D /0x3444 _{ASCII}
Tiefe	3 Byte / 24 Bit
I/O	lesen / schreiben
Reset	0x 0005DC

It defines the firing signal on time: 1500*10ns=15us. NOTE: it has not a minimum value gard band, so it can be set to 1(10ns).

Name	FSP69_Crowbar_BurstLength
Adresse	0x45 _H /69 _D /0x3445 _{ASCII}
Tiefe	1 Byte / 8 Bit
I/O	Lesen / schreiben
Reset	0x 05

It defines the number of pulses inside the burst. Max value 255.

Name	FSP070_Controller_1_InputSourceSelectionMultiplexer
Adresse	0x46 _H /70 _D /0x3436 _{ASCII}
Tiefe	2 Byte / 16 Bit
1/0	lesen / schreiben
Reset	0x00_0_0 _H

Repräsentiert die Einstellungen der PI Regler 1 Eingangsmultiplexer für dessen Soll- und Istwert-Quellen.

Das Äquivalent für Regler **2** ist der "FSP080_Controller_2_InputSourceSelectionMultiplexer". Das Äquivalent für Regler **3** ist der "FSP123_Controller_3_InputSourceSelectionMultiplexer".

[15..10] n.u.

- [9] wenn '1' => Regler 1 Quellenwahl für Istwert-Quellen-Multiplexer-Ausgangssignal invertiert
- [8] wenn ,1' => Regler 1 Quellenwahl für Sollwert-Quellen-Multiplexer-Ausgangssignal invertiert

[7..4] Regler 1 Quellenwahl für das Istwert-Quellen-Multiplexer-Ausgangssignal (4 Bit)

[30]	Ausgang des Multiplexers	
0x0	0	
0x1	Sollwert A , bestimmt durch "FSP030_SetValue_A"	
0x2	Sollwert B , bestimmt durch "FSP031_SetValue_B	
0x3	ExtSPI_3_ADC_SigScaled[6348],GND_BUS[30] (ADC1)	
0x4	ExtSPI_ 3 _ADC_SigScaled[4732],GND_BUS[30] (ADC2)	
0x5	ExtSPI_3_ADC_SigScaled[3116],GND_BUS[30] (ADC3)	
0x6	ExtSPI_3_ADC_SigScaled[150],GND_BUS[30] (ADC4)	
0x7	n.u.	
0x8	n.u.	
0x9	n.u.	
0xA	n.u.	
0xB	n.u.	
0xC	n.u.	
0xD	n.u.	
0xE	n.u.	
0xF	n.u.	

[3..0] Regler 1 Quellenwahl für Sollwert-Quellen-Multiplexer-Ausgangssignal (4 Bit)

[30]	Ausgang des Multiplexers
0x0	0
0x1	Sollwert A, bestimmt durch "FSP030_SetValue_A"
0x2	Sollwert B , bestimmt durch "FSP031_SetValue_B"
0x3	HighSpeedPort_Received_USI_Slave_1[3112]
0x4	HighSpeedPort_Received_USI_Slave_1[31], HighSpeedPort_Received_USI_Slave_1[3113]
0x5	n.u.
0x6	n.u.
0x7	n.u.
0x8	n.u.
0x9	n.u.
0xA	n.u.

0xB	n.u.
0xC	n.u.
0xD	n.u.
0xE	n.u.
0xF	n.u.

Name	FSP071_Controller_1_DifferenceCalculatorMultiplier
Adresse	0x47 _H /71 _D /0x3731 _{ASCII}
Tiefe	2 Byte / 16 Bit
1/0	lesen / schreiben
Reset	0x0001 _H

Repräsentiert den Multiplikator für den Multiplikand Delta I der Regelabweichung des Regler 1.

Das Äquivalent für Regler **2** ist der "FSP081_Controller_2_DifferenceCalculatorMultiplier". Das Äquivalent für Regler **3** ist der "FSP124_Controller_3_DifferenceCalculatorMultiplier".

Die Regelabweichung zwischen Soll- und Istwert sollte i.d.R. sehr klein sein. Das ist hinderlich sofern der Wert auf einem Anzeigeinstrument (z.B. ext. Oszilloskop) dargestellt werden soll. Aus diesem Grund befinden sich in jedem Regler Multiplikator-Stufen, die den Wert der Regelabweichung mit einem Multiplikator so hoch verstärken können, dass eine vernünftige Darstellung möglich ist.

Der Multiplikator versteht sich als Signed Integer zwischen +/- 2¹⁰.

[15..11] n.u.

[10..0] Multiplikator (11 Bit) für den Differenzbilder Regler 1

Name	FSP072_Controller_1_PI_Settings
Adresse	0x48 _H /72 _D /0x3448 _{ASCII}
Tiefe	13 Byte / 104 Bit
1/0	lesen / schreiben
Reset	0x00_0000000_00000000_00000000

Über diesen FSP können die I und P1, P2 Anteile des Regler **1** gesetzt werden.

Das Äquivalent für Regler **2** ist der "FSP082_Controller_2_PI_Settings". Das Äquivalent für Regler **3** ist der "FSP125_Controller_3_PI_Settings".

[103..96] Controller_1_PI_Control
[103..99] n.u.
[98] Wenn '1' P2 Enable comparator activation
[97] Wenn '1' I Disable comparator activation
[96] Wenn ,1' wird der I-Anteil des Reglers um den Faktor 1000 verlangsamt.
[95..64] Controller_1_I_Part (32 Bit), repräsentiert den I Anteil des PI Regler 1.
[63..32] Controller_1_P2_Part (32 Bit), repräsentiert den 2. P Anteil des PI Regler 1.
[31..0] Controller_1_P1_Part (32 Bit), repräsentiert den 1. P Anteil des PI Regler 1.

Name	FSP073_Controller_1_Limits
Adresse	0x49 _H /73 _D /0x3439 _{ASCII}
Tiefe	6 Byte / 48 Bit
I/O	lesen / schreiben
Reset	0x000000_000000 _H

Über diesen FSP können die Bereichsgrenzen des PI Regler 1 festgelegt werden.

Das Äquivalent für Regler **2** ist der "FSP083_Controller_2_Limits". Das Äquivalent für Regler **3** ist der "FSP126_Controller_3_Limits".

- [47..24] Controller_1_MaxVal (20 Bit), repräsentiert den oberen (maximalen) Grenzwert des PI Regler 1
- [23..0] Controller_1_MinVal (20 Bit), repräsentiert den unteren (minimalen) Grenzwert des PI Regler 1

Name	FSP074_Controller_1_ComparatorLimits
Adresse	0x4A _H /74 _D /0x3441 _{ASCII}
Tiefe	12 Byte / 96 Bit
1/0	lesen / schreiben
Reset	0x000000_000000_0000000 _H

Repräsentiert die Bereichsgrenzen in denen der I Anteil, bzw. P2 bei der Regelung berücksichtig werden soll.

Das Äquivalent für Regler **2** ist der "FSP084_Controller_2_ComparatorLimits". Das Äquivalent für Regler **3** ist der "FSP127_Controller_3_ComparatorLimits".

[9672]	Controller_1_I_Part_ComparatorOFFThreshold (20 Bit)
[7148]	Controller_1_I_Part_ComparatorONThreshold (20 Bit)
[4724]	Controller_1_P2_Part_ComparatorOFFThreshold (20 Bit)
[230]	Controller_1_P2_Part_ComparatorONThreshold (20 Bit)

Name	FSP079_Controller_1_Values
Adresse	0x4F _H /79 _D /0x3446 _{ASCII}
Tiefe	18 Byte / 144 Bit
I/O	lesen
Reset	Ox(siehe Beschreibung) _H

Liefert Ausgangswerte des Regler 1 zurück

Das Äquivalent für Regler **2** ist der "FSP089_Controller_2_Values". Das Äquivalent für Regler **3** ist der "FSP129_Controller_3_Values".

[143120]	Controller_1_PI_Part_Output (20 Bit)
[11996]	Controller_1_I_Part_Output (20 Bit)
[9572]	Controller_1_P_Part_Output (20 Bit)
[7148]	Controller_1_Deviation (20 Bit)
[4724]	Controller_1_ActValueMuxOut (20 Bit)
[230]	Controller 1 SetValueMuxOut (20 Bit)

Name	FSP080_Controller_2_InputSourceSelectionMultiplexer
Adresse	0x50 _H /80 _D /0x3530 _{ASCII}
Tiefe	2 Byte / 16 Bit
I/O	lesen / schreiben
Reset	0x00_0_0 _H

Repräsentiert die Einstellungen der PI Regler **2** Eingangsmultiplexer für dessen Soll- und Istwert-Quellen.

Das Äquivalent für Regler **1** ist der "FSP070_Controller_1_InputSourceSelectionMultiplexer". Das Äquivalent für Regler **3** ist der "FSP123_Controller_3_InputSourceSelectionMultiplexer".

[15..10] n.u.

[9] wenn '1' Regler **2** Quellenwahl für Istwert-Quellen-Multiplexer-Ausgangssignal invertiert

[8] wenn ,1' Regler 2 Quellenwahl für Sollwert-Quellen-Multiplexer-Ausgangssignal invertiert

[7..4] Regler **2** Quellenwahl für das Istwert-Quellen-Multiplexer-Ausgangssignal (4 Bit)

[30]	Ausgang des Multiplexers
0x0	0
0x1	Sollwert A, bestimmt durch "FSP030_SetValue_A"
0x2	Sollwert B , bestimmt durch "FSP031_SetValue_B
0x3	ExtSPI_ 3 _ADC_SigScaled[6348],GND_BUS[30] (ADC1)
0x4	ExtSPI_ 3 _ADC_SigScaled[4732],GND_BUS[30] (ADC2)
0x5	ExtSPI_ 3 _ADC_SigScaled[3116],GND_BUS[30] (ADC3)
0x6	ExtSPI_ 3 _ADC_SigScaled[150],GND_BUS[30] (ADC4)
0x7	n.u.
0x8	n.u.
0x9	n.u.
0xA	n.u.
0xB	n.u.
0xC	n.u.
0xD	n.u.
0xE	n.u.
0xF	n.u.

[3..0] Regler **2** Quellenwahl für Sollwertquellen-Multiplexer-Ausgangssignal (4 Bit)

[30]	Ausgang des Multiplexers
0x0	0
0x1	Sollwert A, bestimmt durch "FSP030_SetValue_A"
0x2	Sollwert B , bestimmt durch "FSP031_SetValue_B
0x3	HighSpeedPort_Received_USI_Slave_1 [3112]
0x4	HighSpeedPort_Received_USI_Slave_ 1 [31], HighSpeedPort_Received_USI_Slave_ 1 [3113]
0x5	n.u.
0x6	n.u.
0x7	n.u.
0x8	n.u.
0x9	n.u.
0xA	n.u.
0xB	n.u.

0xC	n.u.
0xD	n.u.
0xE	n.u.
0xF	n.u.

Name	FSP081_Controller_2_DifferenceCalculatorMultiplier
Adresse	0x51 _H /81 _D /0x3531 _{ASCII}
Tiefe	2 Byte / 16 Bit
1/0	lesen / schreiben
Reset	0x0001 _H

Repräsentiert den Multiplikator für den Multiplikand Delta I der Regelabweichung des Reglers 2.

Das Äquivalent für Regler **1** ist der "FSP071_Controller_1_DifferenceCalculatorMultiplier". Das Äquivalent für Regler **3** ist der "FSP124_Controller_3_DifferenceCalculatorMultiplier".

Die Regelabweichung zwischen Soll- und Istwert sollte i.d.R. sehr klein sein. Das ist hinderlich sofern der Wert auf einem Anzeigeinstrument (z.B. ext. Oszilloskop) dargestellt werden soll. Aus diesem Grund befinden sich in jedem Regler Multiplikator-Stufen, die den Wert der Regelabweichung mit einem Multiplikator so hoch verstärken können, dass eine vernünftige Darstellung möglich ist.

Der Multiplikator versteht sich als signed Integer zwischen +/- 2¹⁰.

[15..11] n.u.

[10..0] Multiplikator (11 Bit) für den Differenzbilder Regler 2

Name	FSP082_Controller_2_PI_Settings
Adresse	0x52 _H /82 _D /0x3542 _{ASCII}
Tiefe	13 Byte / 104 Bit
I/O	lesen / schreiben
Reset	0x00_0000000_00000000_00000000

Über diesen FSP können die I und P1, P2 Anteile des Reglers 2 gesetzt werden.

Das Äquivalent für Regler **1** ist der "FSP072_Controller_1_PI_Settings". Das Äquivalent für Regler **3** ist der "FSP125_Controller_3_PI_Settings".

[103..96] Controller_2_PI_Control
[103..99] n.u.
[98] Wenn '1' P2 Enable comparator activation
[97] Wenn '1' I Disable comparator activation
[96] Wenn ,1' wird der I-Anteil des Reglers um den Faktor 1000 verlangsamt.
[95..64] Controller_2_I_Part (32 Bit), repräsentiert den I Anteil des PI Regler 2.
[63..32] Controller_2_P2_Part (32 Bit), repräsentiert den 2. P Anteil des PI Regler 2.
[31..0] Controller_2_P1_Part (32 Bit), repräsentiert den 1. P Anteil des PI Regler 2.

Name	FSP083_Controller_2_Limits
Adresse	0x53 _H /83 _D /0x3533 _{ASCII}
Tiefe	6 Byte / 48 Bit
I/O	lesen / schreiben
Reset	0x000000_000000 _H

Über diesen FSP können die Bereichsgrenzen des PI Regler 2 festgelegt werden.

Das Äquivalent für Regler **1** ist der "FSP073_Controller_1_Limits". Das Äquivalent für Regler **3** ist der "FSP126_Controller_3_Limits".

- [47..24] Controller_2_MaxVal (20 Bit), repräsentiert den oberen (maximalen) Grenzwert des PI Regler 2
- [23..0] Controller_2_MinVal (20 Bit), repräsentiert den unteren (minimalen) Grenzwert des PI Regler 2

Name	FSP084_Controller_2_ComparatorLimits
Adresse	0x54 _H /84 _D /0x3544 _{ASCII}
Tiefe	12 Byte / 96 Bit
I/O	lesen / schreiben
Reset	0x000000_000000_0000000 _H

Repräsentiert die Bereichsgrenzen in denen der I Anteil, bzw. P2 bei der Regelung berücksichtig werden soll.

Das Äquivalent für Regler **1** ist der "FSP074_Controller_1_ComparatorLimits". Das Äquivalent für Regler **3** ist der "FSP127_Controller_3_ComparatorLimits".

[9672]	Controller_2_I_Part_ComparatorOFFThreshold (20 Bit)
[7148]	Controller_2_I_Part_ComparatorONThreshold (20 Bit)
[4724]	Controller_2_P2_Part_ComparatorOFFThreshold (20 Bit)
[230]	Controller_2_P2_Part_ComparatorONThreshold (20 Bit)

Name	FSP085_FF_AddersLimits
Adresse	0x55 _H /85 _D /0x3545 _{ASCII}
Tiefe	6 Byte / 48 Bit
I/O	lesen / schreiben
Reset	0x000000 000000 _H

Über diesen FSP werden die Bereichsgrenzen der Feed Forward Addierer Adder_C1, AdderC2 und Adder_C3 festgelegt.

[47..24] FF_Adder_MaxVal (20 Bit), repräsentiert den oberen Grenzwert der Addierer.

[23..0] FF_Adder_MinVal (20 Bit), repräsentiert den unteren Grenzwert der Addierer.

Name	FSP086_SPI_Ext_Cfg
Adresse	0x56 _H /86 _D /0x3536 _{ASCII}
Tiefe	3 Byte / 24 Bit
I/O	lesen / schreiben
Reset	0x000000 _H

It contains the settings to configure the four SPI extension modules

[23]	ADC average SPI4 flush FIFO
[22]	ADC average SPI3 flush FIFO
[21]	n.u.
[20]	n.u.
[19]	Enable ADC average 16x SPI4
[18]	Enable ADC average 16x SPI 3
[17]	n.u.
[16]	n.u.
[15]	EnPSSonOut10 for SPI port 4 (active high) when the module connected is a SPI IO Ext one
[14]	MultiLoadEn for SPI port 4 (active high) when the module connected is a SPI IO Ext one
[13]	EnPSSonOut10 for SPI port 3 (active high) when the module connected is a SPI IO Ext one
[12]	MultiLoadEn for SPI port 3 (active high) when the module connected is a SPI IO Ext one
[11]	EnPSSonOut10 for SPI port 2 (active high) when the module connected is a SPI IO Ext one
[10]	MultiLoadEn for SPI port 2 (active high) when the module connected is a SPI IO Ext one
[9]	EnPSSonOut10 for SPI port 1 (active high) when the module connected is a SPI IO Ext one
[8]	MultiLoadEn for SPI port 1 (active high) when the module connected is a SPI IO Ext one
[74]	n.u.
[3]	Enable thresholds monitoring on SPI4 (active high) when the module connected is a SPI ADC Ext one
[2]	Enable thresholds monitoring on SPI 3 (active high) when the module connected is a SPI ADC Ext one
[1]	n.u.
[0]	n.u.

Name	FSP089_Controller_2_Values
Adresse	0x59 _H /89 _D /0x3539 _{ASCII}
Tiefe	18 Byte / 143 Bit
1/0	lesen
Reset	Ox(siehe Beschreibung) _H

Liefert Ausgangswerte des Reglers 2 zurück

Das Äquivalent für Regler **1** ist der "FSP079_Controller_1_Values". Das Äquivalent für Regler **3** ist der "FSP129_Controller_3_Values".

[143120]	Controller_2_PI_Part_Output (20 Bit)
[11996]	Controller_2_I_Part_Output (20 Bit)
[9572]	Controller_2_P_Part_Output (20 Bit)
[7148]	Controller_2_Deviation (20 Bit)
[4724]	Controller_2_ActValueMuxOut (20 Bit)
[230]	Controller 2 SetValueMuxOut (20 Bit)

Name	FSP092_Ud_Correction_C1_ControlBitsAndSetValue
Adresse	0x5C _H /92 _D /0x3543 _{ASCII}
Tiefe	4 Byte / 32 Bit
I/O	lesen / schreiben
Reset	0x00_000000 _H

Repräsentiert mittels Kontrollbits die Möglichkeit die Ud Korrektur C1 ein- oder auszuschalten. Außerdem wird der Sollwert der Ud Korrektur festgelegt.

Das Äquivalent für Ud Korrektur **2** ist der "FSP130_Ud_Correction_C2_ControlBitsAndSetValue". Das Äquivalent für Ud Korrektur **3** ist der "FSP132_Ud_Correction_C3_ControlBitsAndSetValue".

[31..24] UdCorrection_C1_ControlBits (8 Bit)

[24] wenn '1' => Ud Korrektur aktiv

[23..0] UdCorrection_C1_SetValue (20 Bit)

Name	FSP093_Ud_Correction_C1_Limits
Adresse	0x5D _H /93 _D /0x3544 _{ASCII}
Tiefe	6 Byte / 48 Bit
I/O	lesen / schreiben
Reset	0x000000_000000 _H

Repräsentiert die zulässigen Bereichsgrenzen der Ud Korrektur C1

Das Äquivalent für Ud Korrektur **2** ist der "FSP131_Ud_Correction_C2_Limits". Das Äquivalent für Ud Korrektur **3** ist der "FSP133_Ud_Correction_C3_Limits".

[47..24] UdCorrection_C1_MaxOutput (14 Bit)[23..0] UdCorrection_C1_MinOutput (14 Bit)

Name	FSP094_InputFilterDelay
Adresse	0x5E _H /94 _D /0x3545 _{ASCII}
Tiefe	8 Byte / 64 Bit
I/O	lesen / schreiben
Reset	0x0_3F_00000_03FF_0000 _H

It contains the Digital electric interlock and water interlock filter settings in terms of mask bits and filter delay time. In the OCEM module the electric interlocks are 10, so only 10 of 16 mask bits are used for this project.

Dasselbe gilt für die Wasserinterlockbits. Hier sind lediglich 6 Bit benutz- und maskierbar.

- [63..58] n.u.
- [57..52] Water interlock mask bit active high: when the interlock is masked and the delay value (see below) is different from zero, the delay between input and output is maximum 10µs (see ACU_InputFilter.docx for more details)

 TooLessWater_SPI_1[1..0], TooLessWater_SPI_0[1..0], WaterFlowOK[2..1]
- [51..50] n.u
- [49..32] Water interlock delay value: it defines how long an input interlock has to be ignored (not reported to the output) after its activation. The minimum delay value is $1=>10\mu s$. When it is set to zero, the output will follow the input immediately (no filtering action). (gDelWidth = 18Bits, max=(2^gDelWidth)*10us)
- [31..26] n.u.
- [25..16] Digital electric interlock mask bit active high: when the interlock is masked and the delay value (see below) is different from zero, the delay between input and output is maximum 10µs (see ACU_InputFilter.docx for more details)

 ELECTRICAL IN[9..0]
- [15..0] Digital electric interlock delay value: it defines how long an input interlock has to be ignored (not reported to the output) after its activation. The minimum delay value is 1=>10µs. When it is set to zero, the output will follow the input immediately (no filtering action). (gDelWidth = 16Bits, max=(2^gDelWidth)*10us)

Name	FSP095_ExtSPI_EEPROM_Cfg
Adresse	0x5F _H /95 _D /0x3546 _{ASCII}
Tiefe	5 Byte / 40 Bit
I/O	lesen / schreiben
Reset	0x00_00_0_F_CAFE _H

It contains the EEPROM configuration enable bit, ExtSPI EEPROM address read and write commands, the 16b data to write into the EEPROM during the ExtSPI card test session.

[3936]	n.u.
[35]	SPI 4 EEPROM configuration enable bit
[34]	SPI 3 EEPROM configuration enable bit
[33]	SPI 2 EEPROM configuration enable bit
[32]	SPI 1 EEPROM configuration enable bit
[3124]	EEPROM write address.
[23]	Write EEPROM command on SPI port 4
[22]	Write EEPROM command on SPI port 3
[21]	Write EEPROM command on SPI port 2
[20]	Write EEPROM command on SPI port 1
[19]	Read EEPROM command on SPI port 4
[18]	Read EEPROM command on SPI port 3
[17]	Read EEPROM command on SPI port 2
[16]	Read EEPROM command on SPI port 1
[150]	EEPROM Data to write

Name	FSP096_ExtSPI_ID
Adresse	0x60 _H /96 _D /0x3630 _{ASCII}
Tiefe	24 Byte / 192 Bit
I/O	lesen
Reset	Ox(siehe Beschreibung) _H

It contains the read module ID and module version of all 4 SPI ports

_	
[191184]	Module ID on SPI port 4 (8b)
[183176]	Module version on SPI port 4 (8b)
[175144]	Serial number on SPI port 4 (32b)
[143136]	Module ID on SPI port 3 (8b)
[135128]	Module version on SPI port 3 (8b)
[12796]	Serial number on SPI port 3 (32b)
[9588]	Module ID on SPI port 2 (8b)
[8780]	Module version on SPI port 2 (8b)
[7948]	Serial number on SPI port 2 (32b)
[4740]	Module ID on SPI port 1 (8b)
[3932]	Module version on SPI port 1 (8b)
[310]	Serial number on SPI port 1 (32b)

Name	FSP097_ExtSPI_IO_Outputs
Adresse	0x61 _H /97 _D /0x3631 _{ASCII}
Tiefe	8 Byte / 64 Bit
I/O	lesen / schreiben
Reset	Oxffff_ffff_ffff _H

It contains the MAX7301 chip (IO extension chip) outputs driving status of all 4 SPI ports

Depending of the SPI extension card connected, these bits can represent different quantities (chip select, switch driver, etc..)

SPI_IO_Ext Module:

[6358]	n.u.
[5748]	Extended outputs on SPI port 4 (10b)
[4742]	n.u.
[4132]	Extended outputs on SPI port 3 (10b)
[3128]	n.u.
[2516]	Extended outputs on SPI port 2 (10b)
[1510]	n.u.
[90]	Extended outputs on SPI port 1 (10b)

SPI_ADC_Ext Module:

[63..0] n.u.

SPI_Opt_Ext Module:

[63..58] n.u.
[57..48] Extended outputs on SPI port 4 (10b)
[47..42] n.u.
[41..32] Extended outputs on SPI port 3 (10b)
[31..28] n.u.
[25..16] Extended outputs on SPI port 2 (10b)
[15..10] n.u.
[9..0] Extended outputs on SPI port 1 (10b)

SPI_PhaseGridMonitoring_Ext Module:

[63..0] n.u.

Name	FSP098_ExtSPI_IO_Inputs
Adresse	0x62 _H /98 _D /0x3632 _{ASCII}
Tiefe	8 Byte / 64 Bit
I/O	lesen
Reset	0x(siehe Beschreibung) _H

It contains the MAX7301 chip (IO extension chip) extended inputs status of all 4 SPI ports.

Depending of the SPI extension card connected, these bits can represent different quantities (status, interlock, etc.)

SPI_IO_Ext Module:

- [63..58] n.u. [57..48] Extended inputs on SPI port 4 (10b) [47..42] n.u. [41..32] Extended inputs on SPI port 3 (10b) [31..26] n.u. [25..18] Extended inputs on SPI port 2 (8b) [17..16] Extended Water flow PWM pulses on SPI port 2 (2b) [15..10] n.u. [9..2] Extended inputs on SPI port 1 (8b)
- [1..0] Extended Water flow PWM pulses on SPI port 1 (2b)

SPI_ADC_Ext Module:

Latched interlocks on SPI port 4 (8b) [63..56] [55..48] Pending interlocks on SPI port 4 (8b) [47..40] Latched interlocks on SPI port 3 (8b) [39..32] Pending interlocks on SPI port 3 (8b) [31..24] Latched interlocks on SPI port 2 (8b) [23..16] Pending interlocks on SPI port 2 (8b) [15..8] Latched interlocks on SPI port 1 (8b) [7..0] Pending interlocks on SPI port 1 (8b)

SPI_Opt_Ext Module:

- [63..58] n.u.
- [57..48] Extended inputs on SPI port 4 (10b)
- [47..42] n.u
- [41..32] Extended inputs on SPI port 3 (10b)
- [31..26] n.u.
- [25..16] Extended inputs on SPI port **2** (10b)
- [15..10] n.u.
- [9..0] Extended inputs on SPI port 1 (10b)

SPI PhaseGridMonitoring Ext Module:

[63..0]

Name	FSP099_UdCorrection_Cx_ControlValues
Adresse	0x63 _H /99 _D /0x3939 _{ASCII}
Tiefe	9 Byte / 72 Bit
I/O	lesen
Reset	Ox(siehe Beschreibung) _H

Liefert Ausgabewert der Ud Korrekturen

[7148]	UdCorrection_C3_ControlValue_Out[130] (14 Bit), GND_BUS[100]
[4724]	UdCorrection_C2_ControlValue_Out[130] (14 Bit), GND_BUS[100]
[230]	UdCorrection_C1_ControlValue_Out[130] (14 Bit), GND_BUS[100]

Name	FSP100_InvertedWaterFlow_TimePeriodeBetweenTwoPulses_in_us
Adresse	0x64 _H /100 _D /0x3634 _{ASCII}
Tiefe	12 Byte / 96 Bit
I/O	lesen
Reset	Ox(siehe Beschreibung) _H

Gibt die die Zeiten in μ -Sekunden zwischen zwei detektierten Wasserflusswächterpulsen als invertierte, vorzeichenbehaftete Integer-Wert an.

Beispiel: $100us \Rightarrow 0x64_H$ wird invertiert als $0x7FFFF_h - 0,64_h = 0x7F9B_h$ erfasst und ausgegben.

30,52Hz ist die kleinste erfassbare Pulsbreite 32,767ms => 32.767 μ s => 32.767 $_d$ = 0x7FFF $_h$ => 0x0000 $_h$

 $31Hz \Rightarrow Pulsbreite 32,258ms \Rightarrow 32.258\mu s \Rightarrow 32.258_d = 0x7E02_h \Rightarrow 0x01FD_h$

 $100Hz \Rightarrow Pulsbreite 10ms \Rightarrow 10.000 \mu s \Rightarrow 10.000 d = 0x2710 h \Rightarrow 0x58EF_h$

 $500Hz => Pulsbreite 2ms => 2.000 \mu s => 2.000 d = 0x07 D0 + => 0x782 F_h$

Begrenzt durch die hardwareseitigen Optokoppler ist

2kHz ist die größte erfassbare Pulsbreite 0,005ms => $5\mu s$ => 5_d = $0x0005_h$ => $0x7FFA_h$

[9580]	WaterFlow_SPI_ 2 _1_TimePeriode, Dauer zwischen zwei Pulsen in μ-Sekunden
[7964]	WaterFlow_SPI_ 2 _0_TimePeriode, Dauer zwischen zwei Pulsen in μ -Sekunden
[6348]	WaterFlow_SPI_1_1_TimePeriode, Dauer zwischen zwei Pulsen in μ -Sekunden
[4732]	WaterFlow_SPI_1_0_TimePeriode, Dauer zwischen zwei Pulsen in μ -Sekunden
[3116]	WaterFlow_2_TimePeriode, Dauer zwischen zwei Pulsen in μ -Sekunden
[150]	WaterFlow_1_TimePeriode, Dauer zwischen zwei Pulsen in μ-Sekunden

Name	FSP101_WaterFlow_Thresholds
Adresse	0x65 _H /101 _D /0x3635 _{ASCII}
Tiefe	12 Byte / 96 Bit
I/O	lesen / schreiben
Reset	0x0000_0000_0000_0000_0000H

Gibt die Zeiten in μ -Sekunden als Integer-Wert an, die minimal zwischen zwei detektierten Wasserflusswächterpulsen liegen dürfen.

Bedingt durch die Datenbreite von 16 Bit, ist die minimale Zeitspanne in μ s zwischen zwei Pulsen begrenzt auf 32.767 μ s => 32.767 $_d$ = 0x7FFF $_h$.

Bsp.: 100 Pulse bei 1 Liter Durchfluss und

15 Liter/Minute Durchfluss minimal

- → 1500 Pulse/Minute
- → 25 Pulse/Sekunde
- → mit 1/25 = 0,04 Sekunden = 40 mSekunden = 40.000 µs Zeitspanne zwischen 2 Pulsen
- \rightarrow 40.000_d = 0x9C40_h

Die min. Zeit zwischen 2 Pulsen liegt also bei 30.000µs (bei 20 Litern Durchfluss), die max. Zeit bei 40.000µs (bei 15 Litern Durchfluss).

Bsp.: 400 Pulse bei 1 Liter Durchfluss

und

5 Liter/Minute Durchfluss minimal

- → 2000 Pulse/Minute
- → 33,3 Pulse/Sekunde
- → mit 1/33,3 = 0,03 Sekunden = 30 mSekunden = 30.000 µs Zeitspanne zwischen 2 Pulsen
- \rightarrow 30.000_d = 0x7530_h

Die min. Zeit zwischen 2 Pulsen liegt also bei $30.000\mu s$ (bei 20 Litern Durchfluss), die max. Zeit bei $40.000\mu s$ (bei 15 Litern Durchfluss).

[9580]	WaterFlow_SPI_2_1_ValidMinTimeBetweenTwoPulses_in_us (16 Bit)
[7964]	WaterFlow_SPI_2_0_ValidMinTimeBetweenTwoPulses_in_us (16 Bit)
[6348]	$WaterFlow_SPI_1_1_ValidMinTimeBetweenTwoPulses_in_us~(16~Bit)$
[4732]	$WaterFlow_SPI_{1_0_ValidMinTimeBetweenTwoPulses_in_us} \ (16 \ Bit)$
[3116]	WaterFlow_2_ValidMinTimeBetweenTwoPulses_in_us (16 Bit)
[150]	$\label{eq:waterFlow_1_ValidMinTimeBetweenTwoPulses_in_us} WaterFlow_1_ValidMinTimeBetweenTwoPulses_in_us (16 Bit) \\ 0_d = 0x7FFF_h \qquad 24.000_d = 0x5DC0_h \qquad 40.000_d = 0x9C40_h \\ \end{array}$

Name	FSP102_ExtSPI_3_ADCandUser_OFFSET_CHx
Adresse	0x66 _H /102 _D /0x3636 _{ASCII}
Tiefe	8 Byte / 64 Bit
I/O	lesen
Reset	0x(siehe Beschreibung) _н

Enthält den kombinierten ADC- (Offset aus FSP115_ExtSPI_3_ADC_OffsetGain) und User-Offset-Wert (ADCOffset + UserOffset) für den SPI-Port **3** (sofern ein SPI_ADC-Modul am Port **3** des SPI Hub angeschlossen ist).

Ist kein SPI ADC Modul an SPI Port **3** angeschlossen ist der Inhalt dieses FSP "0xFFFFFFFF FFFFFFF".

Das Äquivalent für SPI Port 4 ist der "FSP104_ExtSPI_4_ADCandUser_OFFSET_Chx".

Die Gain Daten des SPI Port 3 sind im "FSP105_ExtSPI_4_ADCandUser_GAIN_Chx".

[6348]	ExtSPI_3_ADCandUser_Offset_CH4(16)
[4732]	ExtSPI_3_ADCandUser_Offset_CH3(16)
[3116]	ExtSPI_3_ADCandUser_Offset_CH2(16)
[150]	ExtSPI_3_ADCandUser_Offset_CH1(16)

Name	FSP103_ExtSPI_3_ADCandUser_GAIN_CHx
Adresse	0x67 _H /103 _D /0x3637 _{ASCII}
Tiefe	8 Byte / 64 Bit
1/0	lesen
Reset	Ox(siehe Beschreibung) _H

Enthält den kombinierten ADC- (Gain aus FSP115_ExtSPI_3_ADC_OffsetGain) und User-Gain-Wert (ADCGain * UserGain) für den SPI-Port **3** (sofern ein SPI_ADC-Modul am Port **3** des SPI Hub angeschlossen ist).

Ist kein SPI ADC Modul an SPI Port 3 angeschlossen ist der Inhalt dieses FSP "OxFFFFFFFF FFFFFFF".

Das Äquivalent für SPI Port 4 ist der "FSP105_ExtSPI_4_ADCandUser_GAIN_Chx".

Die Offset Daten des SPI Port 3 sind im "FSP105_ExtSPI_4_ADCandUser_GAIN_Chx".

[6348]	ExtSPI_ 3 _ADCandUser_Gain_CH 4 (16)
[4732]	ExtSPI_ 3 _ADCandUser_Gain_CH 3 (16)
[3116]	ExtSPI_ 3 _ADCandUser_Gain_CH 2 (16)
[150]	ExtSPI_3_ADCandUser_Gain_CH1(16)

Name	FSP104_ExtSPI_4_ADCandUser_OFFSET_Chx
Adresse	0x68 _H /104 _D /0x3638 _{ASCII}
Tiefe	8 Byte / 64 Bit
1/0	lesen
Reset	Ox(siehe Beschreibung) _H

Enthält den kombinierten ADC- (Offset aus FSP119_ExtSPI_4_ADC_OffsetGain) und User-Offset-Wert (ADCOffset + UserOffset) für den SPI-Port **4** (sofern ein SPI_ADC-Modul am Port **4** des SPI Hub angeschlossen ist).

Ist kein SPI ADC Modul an SPI Port 4 angeschlossen ist der Inhalt dieses FSP "OxFFFFFFFF FFFFFFF".

Das Äquivalent für SPI Port 3 ist der "FSP102_ExtSPI_3_ADCandUser_OFFSET_CHx".

Die Gain Daten des SPI Port 4 sind im "FSP105_ExtSPI_4_ADCandUser_GAIN_Chx".

[6348]	ExtSPI_4_ADCandUser_Offset_CH4(16)
[4732]	ExtSPI_4_ADCandUser_Offset_CH3(16)
[3116]	ExtSPI_4_ADCandUser_Offset_CH2(16)
[150]	ExtSPI_4_ADCandUser_Offset_CH1(16)

Name	FSP105_ExtSPI_4_ADCandUser_GAIN_Chx
Adresse	0x69 _H /105 _D /0x3639 _{ASCII}
Tiefe	8 Byte / 64 Bit
I/O	lesen
Reset	Ox(siehe Beschreibung) _H

Enthält den kombinierten ADC- (Gain aus FSP119_ExtSPI_4_ADC_OffsetGain) und User-Gain-Wert (ADCGain * UserGain) für den SPI-Port **4** (sofern ein SPI_ADC-Modul am Port **4** des SPI Hub angeschlossen ist).

Ist kein SPI ADC Modul an SPI Port 4 angeschlossen ist der Inhalt dieses FSP "OxFFFFFFFF FFFFFFF".

Das Äquivalent für SPI Port 3 ist der "FSP103_ExtSPI_3_ADCandUser_GAIN_CHx".

Die Offset Daten des SPI Port 4 sind im "FSP104_ExtSPI_4_ADCandUser_OFFSET_Chx".

[6348]	ExtSPI_4_ADCandUser_Gain_CH4(16)
[4732]	ExtSPI_4_ADCandUser_Gain_CH3(16)
[3116]	ExtSPI_ 4 _ADCandUser_Gain_CH 2 (16)
[150]	ExtSPI_4_ADCandUser_Gain_CH1(16)

Name	FSP106_ExtSPI_Status
Adresse	0x6A _H /106 _D /0x3641 _{ASCII}
Tiefe	3 Byte / 24 Bit
I/O	lesen
Reset	Ox(siehe Beschreibung) _H

It contains the status info of all 4 SPI ports

[2317]	n.u.
[16]	SPI_HUB connected (active low)
[15]	Incoming tripline from SPI port 4: 1=>OK; 0=> Failure
[14]	Incoming tripline from SPI port 3 : 1=>OK; 0=> Failure
[13]	Incoming tripline from SPI port 2: 1=>OK; 0=> Failure
[12]	Incoming tripline from SPI port 1: 1=>OK; 0=> Failure
[11]	Slave connected status of SPI port 4: 1=>No module connected
[10]	Slave connected status of SPI port 3 : 1=>No module connected
[9]	Slave connected status of SPI port 2: 1=>No module connected
[8]	Slave connected status of SPI port 1: 1=>No module connected
[7]	SPI port 4 busy: 1=> busy, no EEPROM read/write action is allowed
[6]	SPI port 3 busy: 1=> busy, no EEPROM read/write action is allowed
[5]	SPI port 2 busy: 1=> busy, no EEPROM read/write action is allowed
[4]	SPI port 1 busy: 1=> busy, no EEPROM read/write action is allowed
[3]	SPI port 4 EEPROM WriteInProgres: 1=> Write in progress
[2]	SPI port 3 EEPROM WriteInProgres: 1=> Write in progress
[1]	SPI port 2 EEPROM WriteInProgres: 1=> Write in progress
[0]	SPI port 1 EEPROM WriteInProgres: 1=> Write in progress

Name	FSP109_PWM_PLLPhaseShift_ReConfig
Adresse	0x6D _H /109 _D /0x3644 _{ASCII}
Tiefe	8 Byte / 64 Bit
I/O	schreiben/lesen
Reset	0x000000000000000 _H

Enthält Daten für die re-konfigurable PWM.

[63..60] n.u.

[58][39..32][57][31..24]

PWM_PhSh_PLLReconf.MDataReconf (18 Bit)

[55..48][59][47..40]

PWM_PhSh_PLLReconf.NDataReconf (18 Bit)

[23..16][56][15..8]

PWM_PhSh_PLLReconf.CxDataReconf (17 Bit)

[7..5] n.u.

[4] wenn '1' => PWM_PhSh_PLLReconf.EnReconf

[3..1] n.u.

[0] wenn '1' => PWM_PhSh_PLLReconf.PhaseShiftEn

Name	FSP110_PWM_C1_Config
Adresse	0x6E _H /110 _D /0x3645 _{ASCII}
Tiefe	4 Byte / 32 Bit
1/0	schreiben/lesen
Reset	0x00_0_0_0_3_3_3 _H

Dieses FSP konfiguriert die re-konfigurierbare PWM C1 im Hinblick auf deren Sollwerte und Verhalten Das Äquivalent für PWM C2 und C3 ist der "FSP134_PWM_SetValueC2C3_Sel (ThresholdValues)".

[31..29] n.u.

[28] Wenn ,1': Ausgang des PWM Sollwert Multiplexer negieren

[27..24] PWM C1 Sollwert Multiplexer Quellenwahl

[30]	Ausgang des Multiplexers
0x0	0
0x1	Sollwert A, bestimmt durch "FSP030_SetValue_A"
0x2	Sollwert B , bestimmt durch "FSP031_SetValue_B"
0x3	UdCorrection_C1_ControlValue_Out[130],GND_BUS[50]
0x4	AdderC1_out[190]
0x5	n.u.
0x6	n.u.
0x7	n.u.
0x8	n.u.
0x9	n.u.
0xA	n.u.
0xB	n.u.
0xC	n.u.
0xD	n.u.
0xE	n.u.
0xF	n.u.

[23] PulseInhibitor

[22] n.u.

[21..20] Clock_Mode (2 Bit)

[19..16] PWM Mode (4 Bit)

[15..12] HV_BlockTime (4 Bit)

[11..8] Totzeit für V6 (4 Bit)

[30]	
0x0	0,25 μs
0x1	0,5 μs
0x2	0,75 μs
0x3	1 μs
0x4	1,25 μs
0x5	1,5 μs
0x6	1,75 μs
0x7	2 μs
0x8	2,25 μs
0x9	2,5 μs

0xA	2,75 μs
0xB	3 μs
0xC	3,25 μs
0xD	3,5 μs
0xE	3,75 μs
0xF	4 μs

[7..4] Totzeit für V5 (4 Bit)

[30]	
0x0	0,25 μs
0x1	0,5 μs
0x2	0,75 us
0x3	1 μs
0x4	1,25 μs
0x5	1,5 μs
0x6	1,75 μs
0x7	2 μs
0x8	2,25 μs
0x9	2,5 μs
0xA	2,75 μs
0xB	3 μs
0xC	3,25 μs
0xD	3,5 μs
0xE	3,75 μs
0xF	4 μs

[3..0] Totzeit für V1..V4 (4 Bit)

[30]	
0x0	0,25 μs
0x1	0,5 μs
0x2	0,75 μs
0x3	1 μs
0x4	1,25 μs
0x5	1,5 μs
0x6	1,75 μs
0x7	2 μs
0x8	2,25 μs
0x9	2,5 μs
0xA	2,75 μs
0xB	3 μs
0xC	3,25 μs
0xD	3,5 μs
0xE	3,75 μs
0xF	4 μs

Name	FSP111_PWM_Limits
Adresse	0x6F _H /111 _D /0x3646 _{ASCII}
Tiefe	4 Byte / 32 Bit
I/O	schreiben/lesen
Reset	0x0000_0000 _H

Beinhaltet die Bereichsgrenzen der PWM C1, C2 und C3

[31..16] PWM_MaxValue (14 Bit)
[15..0] PWM_MinValue (14 Bit)

Name	FSP112_PWM_InhibitValue
Adresse	0x70 _H /112 _D /0x3730 _{ASCII}
Tiefe	3 Byte / 24 Bit
I/O	schreiben/lesen
Reset	0x00_0000 _H

Beinhaltet das PWM_InhibitValue (Impulsperre der PWM C1, C2, C3)

[23..0] PWM_InhibitValue (14 Bit)

Name	FSP115_ExtSPI_3_ADC_OffsetGain
Adresse	0x73 _H /115 _D /0x3733 _{ASCII}
Tiefe	4 Byte / 32 Bit
I/O	lesen
Reset	0x(siehe Beschreibung) _H

It contains the SPI port **3** ADC Offset and Gain read back from the EEPROM

Das Äquivalent für SPI Port **4** ist der "FSP119_ExtSPI_4_ADC_OffsetGain".

[31..16] ADC SPI port **3** offset 0x000 = 0V (16b)

[15..0] ADC SPI port **3** gain 0x4000=1 (16b)

Name	FSP116_ExtSPI_3_ADC_Thrs
Adresse	0x74 _H /116 _D /0x3734 _{ASCII}
Tiefe	12 Byte / 96 Bit
I/O	lesen
Reset	0x(siehe Beschreibung) _н

It contains the SPI **3** ADC monitored thresholds

Das Äquivalent für SPI Port **4** ist der "FSP120_ExtSPI_4_ADC_Thrs".

[9584]	ADC channel 4 negative threshold (12b)
[8372]	ADC channel 4 positive threshold (12b)
[7160]	ADC channel 3 negative threshold (12b)
[5948]	ADC channel 3 positive threshold (12b)
[4736]	ADC channel 2 negative threshold (12b)
[3524]	ADC channel 2 positive threshold (12b)
[2312]	ADC channel 1 negative threshold (12b)
[110]	ADC channel 1 positive threshold (12b)

Name	FSP117_ExtSPI_3_ADC_Sig
Adresse	0x75 _H /117 _D /0x3735 _{ASCII}
Tiefe	8 Byte / 64 Bit
I/O	lesen
Reset	0x(siehe Beschreibung) _H

Enthält die SPI **3** ADC Signale. Es handelt sich dabei um die tatsächlichen Messwerte der ADCs also weder Offset noch Gain korrigiert.

Die korrigierten SPI **3** ADC Signale finden sich im FSP "FSP118_ExtSPI_3_ADC_SigScaledAndAveraged".

Das Äquivalent für SPI Port **4** ist der "FSP121_ExtSPI_4_ADC_Sig".

[6348]	Messwert ADC Kanal 4 (16b)
[4732]	Messwert ADC Kanal 3 (16b)
[3116]	Messwert ADC Kanal 2 (16b)
[150]	Messwert ADC Kanal 1 (16b)

Name	FSP118_ExtSPI_3_ADC_SigScaledAndAveraged
Adresse	0x76 _H /118 _D /0x3736 _{ASCII}
Tiefe	8 Byte / 64 Bit
I/O	lesen
Reset	Ox(siehe Beschreibung) _H

Enthält die SPI **3** ADC Signale. Diese sind Offset/Gain korrigiert und enthalten ggf. noch eine zusätzliche Benutzer (User) Offset/Gain Korrektur(FSP102_ExtSPI_3_ADCandUser_OFFSET_CHx, FSP103_ExtSPI_3_ADCandUser_GAIN_CHx). Außerdem ist der Wert ggf. 16-fach gemittelt, sofern das Bit[**19**] des "FSP086_SPI_Ext_Cfg" gesetzt ist.

Das Äquivalent für SPI Port **4** ist der "FSP122_ExtSPI_4_ADC_SigScaledAndAveraged".

[6348]	Messwert ADC Kanal 4 (16b), Offset/Gain korrigiert, ggf. gemittelt
[4732]	Messwert ADC Kanal 3 (16b), Offset/Gain korrigiert, ggf. gemittelt
[3116]	Messwert ADC Kanal 2 (16b), Offset/Gain korrigiert, ggf. gemittelt
[150]	Messwert ADC Kanal 1 (16b), Offset/Gain korrigiert, ggf. gemittelt

Name	FSP119_ExtSPI_4_ADC_OffsetGain
Adresse	0x77 _H /119 _D /0x3737 _{ASCII}
Tiefe	4 Byte / 32 Bit
I/O	lesen
Reset	0x(siehe Beschreibung) _н

It contains the SPI port 4 ADC Offset and Gain read back from the EEPROM

Das Äquivalent für SPI Port **3** ist der "FSP115_ExtSPI_3_ADC_OffsetGain".

[31..16] ADC SPI port **4** offset 0x000 = 0V (16b)

[15..0] ADC SPI port **4** gain 0x4000=1 (16b)

Name	FSP120_ExtSPI_4_ADC_Thrs
Adresse	0x78 _H /120 _D /0x3738 _{ASCII}
Tiefe	12 Byte / 96 Bit
1/0	lesen
Reset	0x(siehe Beschreibung) _H

It contains the SPI **4** ADC monitored thresholds

Das Äquivalent für SPI Port **3** ist der "FSP116_ExtSPI_3_ADC_Thrs".

[9584]	ADC channel 4 negative threshold (12b)
[8372]	ADC channel 4 positive threshold (12b)
[7160]	ADC channel 3 negative threshold (12b)
[5948]	ADC channel 3 positive threshold (12b)
[4736]	ADC channel 2 negative threshold (12b)
[3524]	ADC channel 2 positive threshold (12b)
[2312]	ADC channel 1 negative threshold (12b)
[110]	ADC channel 1 positive threshold (12b)

Name	FSP121_ExtSPI_4_ADC_Sig
Adresse	0x79 _H /121 _D /0x3739 _{ASCII}
Tiefe	8 Byte / 64 Bit
1/0	lesen
Reset	0x(siehe Beschreibung) _H

Enthält die SPI **4** ADC Signale. Es handelt sich dabei um die tatsächlichen Messwerte der ADCs also weder Offset noch Gain korrigiert.

Die korrigierten SPI 4 ADC Signale finden sich im FSP "FSP122_ExtSPI_4_ADC_SigScaledAndAveraged".

Das Äquivalent für SPI Port **3** ist der "FSP117_ExtSPI_3_ADC_Sig".

[6348]	Messwert ADC Kanal 4 (16b)
[4732]	Messwert ADC Kanal 3 (16b)
[3116]	Messwert ADC Kanal 2 (16b)
[150]	Messwert ADC Kanal 1 (16b)

Name	FSP122_ExtSPI_4_ADC_SigScaledAndAveraged
Adresse	0x7A _H /122 _D /0x3741 _{ASCII}
Tiefe	8 Byte / 64 Bit
I/O	lesen
Reset	0x(siehe Beschreibung) _H

Enthält die SPI **4** ADC Signale. Diese sind Offset/Gain korrigiert und enthalten ggf. noch eine zusätzliche Benutzer (User) Offset/Gain Korrektur(FSP104_ExtSPI_4_ADCandUser_OFFSET_Chx, FSP105_ExtSPI_4_ADCandUser_GAIN_Chx). Außerdem ist der Wert ggf. 16-fach gemittelt, sofern das Bit[**18**] des "FSP086_SPI_Ext_Cfg" gesetzt ist.

Das Äquivalent für SPI Port **3** ist der "FSP118_ExtSPI_3_ADC_SigScaledAndAveraged".

[6348]	Messwert ADC Kanal 4 (16b), Offset/Gain korrigiert, ggf. gemittelt
[4732]	Messwert ADC Kanal 3 (16b), Offset/Gain korrigiert, ggf. gemittelt
[3116]	Messwert ADC Kanal 2 (16b), Offset/Gain korrigiert, ggf. gemittelt
[150]	Messwert ADC Kanal 1 (16b), Offset/Gain korrigiert, ggf. gemittelt

Name	FSP123_Controller_3_InputSourceSelectionMultiplexer
Adresse	0x7B _H /123 _D /0x3742 _{ASCII}
Tiefe	2 Byte / 16 Bit
I/O	lesen / schreiben
Reset	0x00_0_0 _H

Repräsentiert die Einstellungen der PI Regler **3** Eingangsmultiplexer für dessen Soll- und Istwert-Quellen.

Das Äquivalent für Regler **1** ist der "FSP070_Controller_1_InputSourceSelectionMultiplexer". Das Äquivalent für Regler **2** ist der "FSP080_Controller_2_InputSourceSelectionMultiplexer".

[15..10] n.u.

[9] wenn '1' Regler **3** Quellenwahl für Istwert-Quellen-Multiplexer-Ausgangssignal invertiert

[8] wenn ,1' Regler 3 Quellenwahl für Sollwert-Quellen-Multiplexer-Ausgangssignal invertiert

[7..4] Regler **3** Quellenwahl für das Istwert-Quellen-Multiplexer-Ausgangssignal (4 Bit)

[30]	Ausgang des Multiplexers
0x0	0
0x1	Sollwert A, bestimmt durch "FSP030_SetValue_A"
0x2	Sollwert B , bestimmt durch "FSP031_SetValue_B
0x3	ExtSPI_3_ADC_SigScaled[6448],GND_BUS[30] (ADC1)
0x4	ExtSPI_ 3 _ADC_SigScaled[4732],GND_BUS[30] (ADC2)
0x5	ExtSPI_ 3 _ADC_SigScaled[3116],GND_BUS[30] (ADC3)
0x6	ExtSPI_3_ADC_SigScaled[150],GND_BUS[30] (ADC4)
0x7	n.u.
0x8	n.u.
0x9	n.u.
0xA	n.u.
0xB	n.u.
0xC	n.u.
0xD	n.u.
0xE	n.u.
0xF	n.u.

[3..0] Regler **3** Quellenwahl für Sollwertquellen-Multiplexer-Ausgangssignal (4 Bit)

[30]	Ausgang des Multiplexers
0x0	0
0x1	Sollwert A, bestimmt durch "FSP030_SetValue_A"
0x2	Sollwert B , bestimmt durch "FSP031_SetValue_B
0x3	HighSpeedPort_Received_USI_Slave_1[3112]
0x4	HighSpeedPort_Received_USI_Slave_1[31], HighSpeedPort_Received_USI_Slave_1[3113]
0x5	n.u.
0x6	n.u.
0x7	n.u.
0x8	n.u.
0x9	n.u.
0xA	n.u.
0xB	n.u.

0xC	n.u.
0xD	n.u.
0xE	n.u.
0xF	n.u.

Name	FSP124_Controller_3_DifferenceCalculatorMultiplier
Adresse	0x7C _H /124 _D /0x3743 _{ASCII}
Tiefe	2 Byte / 16 Bit
I/O	lesen / schreiben
Reset	0x0001 _H

Repräsentiert den Multiplikator für den Multiplikand Delta I der Regelabweichung des Reglers 3.

Das Äquivalent für Regler **1** ist der "FSP071_Controller_1_DifferenceCalculatorMultiplier". Das Äquivalent für Regler **2** ist der "FSP081_Controller_2_DifferenceCalculatorMultiplier".

Die Regelabweichung zwischen Soll- und Istwert sollte i.d.R. sehr klein sein. Das ist hinderlich sofern der Wert auf einem Anzeigeinstrument (z.B. ext. Oszilloskop) dargestellt werden soll. Aus diesem Grund befinden sich in jedem Regler Multiplikator-Stufen, die den Wert der Regelabweichung mit einem Multiplikator so hoch verstärken können, dass eine vernünftige Darstellung möglich ist.

Der Multiplikator versteht sich als signed Integer zwischen +/- 2¹⁰.

[15..11] n.u.

[10..0] Multiplikator (11 Bit) für den Differenzbilder Regler 3

Name	FSP125_Controller_3_PI_Settings
Adresse	0x7D _H /125 _D /0x3744 _{ASCII}
Tiefe	13 Byte / 104 Bit
I/O	lesen / schreiben
Reset	0x00 00000000 00000000 00000000 _H

Über diesen FSP können die I und P1, P2 Anteile des Reglers **3** gesetzt werden.

Das Äquivalent für Regler **1** ist der "FSP072_Controller_1_PI_Settings". Das Äquivalent für Regler **2** ist der "FSP082_Controller_2_PI_Settings".

[103..96] Controller_3_PI_Control
[103..99] n.u.
[98] Wenn '1' P2 Enable comparator activation
[97] Wenn '1' I Disable comparator activation
[96] Wenn ,1' wird der I-Anteil des Reglers um den Faktor 1000 verlangsamt.
[95..64] Controller_3_I_Part (32 Bit), repräsentiert den I Anteil des PI Regler 3.
[63..32] Controller_3_P2_Part (32 Bit), repräsentiert den 2. P Anteil des PI Regler 3.
[31..0] Controller_3_P1_Part (32 Bit), repräsentiert den 1. P Anteil des PI Regler 3.

Name	FSP126_Controller_3_Limits
Adresse	0x7E _H /126 _D /0x3745 _{ASCII}
Tiefe	6 Byte / 48 Bit
1/0	lesen / schreiben
Reset	0x000000_000000 _H

Über diesen FSP können die Bereichsgrenzen des PI Regler 3 festgelegt werden.

Das Äquivalent für Regler **1** ist der "FSP073_Controller_1_Limits". Das Äquivalent für Regler **2** ist der "FSP083_Controller_2_Limits".

- [47..24] Controller_3_MaxVal (20 Bit), repräsentiert den oberen (maximalen) Grenzwert des PI Regler 3
- [23..0] Controller_3_MinVal (20 Bit), repräsentiert den unteren (minimalen) Grenzwert des PI Regler 3

Name	FSP127_Controller_3_ComparatorLimits
Adresse	0x7F _H /127 _D /0x3746 _{ASCII}
Tiefe	12 Byte / 96 Bit
I/O	lesen / schreiben
Reset	0x000000_000000_0000000 _H

Repräsentiert die Bereichsgrenzen in denen der I Anteil, bzw. P2 bei der Regelung berücksichtig werden soll.

Das Äquivalent für Regler **1** ist der "FSP074_Controller_1_ComparatorLimits". Das Äquivalent für Regler **2** ist der "FSP084_Controller_2_ComparatorLimits".

[9672]	Controller_3_I_Part_ComparatorOFFThreshold (20 Bit)
[7148]	Controller_3_I_Part_ComparatorONThreshold (20 Bit)
[4724]	Controller_3_P2_Part_ComparatorOFFThreshold (20 Bit)
[230]	Controller_3_P2_Part_ComparatorONThreshold (20 Bit)

Name	FSP129_Controller_3_Values
Adresse	0x81 _H /129 _D /0x3831 _{ASCII}
Tiefe	18 Byte / 143 Bit
I/O	lesen
Reset	0x(siehe Beschreibung) _H

Liefert Ausgangswerte des Reglers **3** zurück

Das Äquivalent für Regler **1** ist der "FSP079_Controller_1_Values". Das Äquivalent für Regler **2** ist der "FSP089_Controller_2_Values".

[143120]	Controller_3_PI_Part_Output (20 Bit)
[11996]	Controller_3_I_Part_Output (20 Bit)
[9572]	Controller_3_P_Part_Output (20 Bit)
[7148]	Controller_3_Deviation (20 Bit)
[4724]	Controller_3_ActValueMuxOut (20 Bit)
[230]	Controller 3 SetValueMuxOut (20 Bit)

Name	FSP130_Ud_Correction_C2_ControlBitsAndSetValue
Adresse	0x82 _H /130 _D /0x3832 _{ASCII}
Tiefe	4 Byte / 32 Bit
I/O	lesen / schreiben
Reset	0x00_000000 _H

Repräsentiert mittels Kontrollbits die Möglichkeit die Ud Korrektur C2 ein- oder auszuschalten. Außerdem wird der Sollwert der Ud Korrektur festgelegt.

Das Äquivalent für Ud Korrektur **1** ist der "FSP092_Ud_Correction_C1_ControlBitsAndSetValue". Das Äquivalent für Ud Korrektur **3** ist der "FSP132_Ud_Correction_C3_ControlBitsAndSetValue".

[31..24] UdCorrection_C2_ControlBits (8 Bit)

[24] wenn '1' => Ud Korrektur aktiv

[23..0] UdCorrection_C2_SetValue (20 Bit)

Name	FSP131_Ud_Correction_C2_Limits
Adresse	0x83 _H /131 _D /0x3833 _{ASCII}
Tiefe	6 Byte / 48 Bit
I/O	lesen / schreiben
Reset	0x000000_000000 _H

Repräsentiert die zulässigen Bereichsgrenzen der Ud Korrektur C2

Das Äquivalent für Ud Korrektur **1** ist der "FSP093_Ud_Correction_C1_Limits". Das Äquivalent für Ud Korrektur **3** ist der "FSP133_Ud_Correction_C3_Limits".

[47..24] UdCorrection_C2_MaxOutput (14 Bit)[23..0] UdCorrection_C2_MinOutput (14 Bit)

Name	FSP132_Ud_Correction_C3_ControlBitsAndSetValue
Adresse	0x84 _H /132 _D /0x3834 _{ASCII}
Tiefe	4 Byte / 32 Bit
I/O	lesen / schreiben
Reset	0x00_000000 _H

Repräsentiert mittels Kontrollbits die Möglichkeit die Ud Korrektur C3 ein- oder auszuschalten. Außerdem wird der Sollwert der Ud Korrektur festgelegt.

Das Äquivalent für Ud Korrektur **1** ist der "FSP092_Ud_Correction_C1_ControlBitsAndSetValue". Das Äquivalent für Ud Korrektur **2** ist der "FSP130_Ud_Correction_C2_ControlBitsAndSetValue".

[31..24] UdCorrection_C3_ControlBits (8 Bit)

[24] wenn '1' => Ud Korrektur aktiv

[23..0] UdCorrection_C3_SetValue (20 Bit)

Name	FSP133_Ud_Correction_C3_Limits
Adresse	0x85 _H /133 _D /0x3835 _{ASCII}
Tiefe	6 Byte / 48 Bit
I/O	lesen / schreiben
Reset	0x000000_000000 _H

Repräsentiert die zulässigen Bereichsgrenzen der Ud Korrektur C3.

Das Äquivalent für Ud Korrektur **1** ist der "FSP093_Ud_Correction_C1_Limits". Das Äquivalent für Ud Korrektur **2** ist der "FSP131_Ud_Correction_C2_Limits".

[47..24] UdCorrection_C3_MaxOutput (14 Bit)[23..0] UdCorrection_C3_MinOutput (14 Bit)

Name	FSP134_PWM_SetValueC2C3_Sel (ThresholdValues)
Adresse	0x86 _H /134 _D /0x3836 _{ASCII}
Tiefe	1 Byte / 8 Bit
I/O	schreiben/lesen
Reset	0x00 _H

Repräsentiert die Einstellungen der PWM C2/C3 Eingangsmultiplexer für deren Sollwert-Quellen. (ThresholdValues)

Das Äquivalent für PWM C1 ist der "FSP110_PWM_C1_Config".

[7..4] PWMMux_SetValue_C**3**

Quellenwahl für Sollwert-Quellen-Multiplexer-Ausgangssignal (4 Bit)

[30]	Ausgang des Multiplexers
0x0	0
0x1	Sollwert A, bestimmt durch "FSP030_SetValue_A"
0x2	Sollwert B , bestimmt durch "FSP031_SetValue_B
0x3	UdCorrection_C3_ControlValue_Out[130],GND_BUS[50]
0x4	AdderC3_out[190]
0x5	n.u.
0x6	n.u.
0x7	n.u.
0x8	n.u.
0x9	n.u.
0xA	n.u.
0xB	n.u.
0xC	n.u.
0xD	n.u.
0xE	n.u.
0xF	n.u.

[3..0] PWMMux_SetValue_C2

Quellenwahl für Sollwert-Quellen-Multiplexer-Ausgangssignal (4 Bit)

[30]	Ausgang des Multiplexers
0x0	0
0x1	Sollwert A, bestimmt durch "FSP030_SetValue_A"
0x2	Sollwert B , bestimmt durch "FSP031_SetValue_B
0x3	UdCorrection_C2_ControlValue_Out[130],GND_BUS[50]
0x4	AdderC2_out[190]
0x5	n.u.
0x6	n.u.
0x7	n.u.
0x8	n.u.
0x9	n.u.
0xA	n.u.
0xB	n.u.
0xC	n.u.
0xD	n.u.
0xE	n.u.
0xF	n.u.

Name	FSP136_ExtSPI_4_ADC_ScalingFactors
Adresse	0x88 _H /136 _D /0x3838 _{ASCII}
Tiefe	8 Byte / 64 Bit
1/0	schreiben/lesen
Reset	0x4000_4000_4000_4000 _H

Enthält die Skalierungsfaktoren der 4 ADC Kanäle bei Verwendung einer SPI ADC Moduls am SPI Hub Port 4.

Das Äquivalent für SPI Port 3 ist der "Fehler! Verweisquelle konnte nicht gefunden werden.".

Sofern der gemessene ADC Wert auf ein Erfassungsmodul normiert werden muss, erfolgt dies über diesen FSP.

Der Skalierungsfaktor wird als vorzeichenloser Festkommawert interpretiert mit den 2 MSBs für den Integerteil und den restlichen 14 Bit für den Dezimalteil. Der Skalierungsfaktor kann 3,9 (3,999999) nicht überschreiten.

```
Bsp.: Skalierungsfaktor = 1.0 \Rightarrow 1.0*2^14 = 16384,0(d) = 0x4000

3.9 \Rightarrow 3.9*2^14 = 63897,6(d) = 0xF999 \text{ (Max value)}

3.999999 \Rightarrow 3.999999*2^15 = 65535,98(d) = 0xFFFF \text{ (Max value)}

0.5 \Rightarrow 0.5*2^14 = 8192,0(d) = 0x0200
```

Der Standardwert ist x1 (0x4000). D.h. der am ADC gemessene Wert wird unverändert an der entsprechende UdKorrektur (1, 2, 3) als Istwert verwendet.

[6448]	Skalierungsfaktor für ADC Kanal 4 am SPI Hub Port 4
[4732]	Skalierungsfaktor für ADC Kanal 3 am SPI Hub Port 4
[3116]	Skalierungsfaktor für ADC Kanal 2 am SPI Hub Port 4
[150]	Skalierungsfaktor für ADC Kanal 1 am SPI Hub Port 4

Name	FSP137_PWMMux_SetValue
Adresse	0x89 _H /139 _D /0x3842 _{ASCII}
Tiefe	9 Byte / 72 Bit
I/O	lesen
Reset	0x(siehe Beschreibung) _H

Ermöglicht das Rücklesen der C1, C2, C3 PWM_SetValues (ThresholdValues).

[7148]	PWMMux_SetValue_C 3 [190], GND_BUS[30]
[4724]	PWMMux_SetValue_C2[190], GND_BUS[30]
[230]	PWMMux_SetValue_C1[190], GND_BUS[30]