A new control system for ISOLTRAP

D.Beck®*, K. Blaum ®", H. Brand *, F. Herfurth®® and
S. Schwarz ©

8GSI-Darmstadt, DVEE and AP, Planckstr. 1, D-64291 Darmstadt, Germany
YCERN, Division PH, 1211 Geneva 23, Switzerland
¢NSCL, Michigan State University, Fast Lansing, MI 48824, USA

Abstract

A new LabVIEW based control system for the ISOLTRAP facility at ISOLDE/CERN
has been implemented by using the Control System (CS) framework which has been
developed by DVEE/GSI during the last two years. CS is an object-oriented, multi-
threaded, event-driven framework with Supervisory Control and Data Acquisition
(SCADA) functionality. It allows one to implement distributed control systems by
adding experiment specific add-ons. This paper gives an overview on the CS frame-
work, describes the requirements for ISOLTRAP and reports on the implementation
of the new control system.
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1 Introduction

ISOLTRAP [1,2] is a facility tailored for on-line mass measurements of short-
lived unstable nuclei, which are produced at ISOLDE/CERN [3]. The mass of
a nuclide is determined by measuring the cyclotron frequency of ions stored
in a Penning trap [4]. The motivation for high-precision mass measurements
or determination of nuclear binding energies with ISOLTRAP is manifold.
First, experimental mass values with relative uncertainties of dm/m ~ 107°
or better allow one to validate nuclear models which are needed to predict
properties for nuclides not accessible by experiments, like the cross-sections
for neutron capture along the r-process path [5]. Second, the systematic study
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of nuclear binding energies (dm/m ~ 1077) as a function of neutron and pro-
ton number yields information on nuclear structure effects like pairing, shell-
closures and the onset of deformation [6-9]. Third, high-precision mass values
(dm/m =~ 1078) for specific nuclides of interest contribute to test fundamental
physics, like the conserved vector current (CVC) hypothesis, the unitarity of
the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix, the isobaric multi-
plet mass equation (IMME) and the search for scalar or tensor currents in the
weak interaction [10-13].

ISOLTRAP is a versatile facility. It can in principle be applied to all nuclides
produced at ISOLDE and addresses a variety of questions in physics. This is re-
flected by the requirements to the control system. It must be flexible enough to
easily adapt to the different experimental techniques employed. Furthermore,
it must follow the changes and improvements of the experimental set-up. This
does not only concern the experimental procedure but also the ever increasing
number and exchange of hardware devices as well as hardware device types.
The control system does not only serve to set and monitor static parameters.
Instead, it must enable the experimentalists to actively manipulate the stored
ions in consecutive steps, similar to an accelerator complex. Note, that the
nuclides of interest have half-lives in the ms range requiring a “fast” control
system. The beam time at ISOLDE is typically restricted to a few days per
year and experiment. Beam time must not be lost and the control system
needs to be reliable and stable. When conducting experiments, novices to the
control system should quickly be able to learn how to run the apparatus. Since
the control system is maintained and developed further by PhD students, a
simple development environment is required.

A new control system framework, CS, has been developed at GSI [14]. It
is object-oriented, multi-threaded, event-driven and provides some SCADA
functionality. The development of the CS framework is driven by small exper-
iments with about a few thousand process variable. A dedicated experiment
control system can be implemented by adding a few experiment specific add-
ons to the framework. As an example, the new control system for ISOLTRAP
is presented in this paper.

2 ISOLTRAP

Figure 1 gives an overview of the experimental setup [1,2,15-17]. The main
components are three ion traps in which the ions are manipulated by means of
radio-frequency (rf) fields and buffer gas collisions. The RFQ structure serves
for retardation, cooling and bunching of the 60 keV quasi DC beam delivered
by ISOLDE. In the preparation Penning trap the ions are further cooled and
isobaric contaminations are removed. The precision Penning trap is used to
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Fig. 1. The ISOLTRAP setup. The main components are three ion traps, the RFQ
structure, the preparation Penning trap and the precision Penning trap. The insert
in the upper left shows a resonance curve of the short-lived radio-nuclide %3Ge™
(t1 2 =314 s). The true cyclotron frequency is determined by fitting the theoreti-
cally expected line shape (solid line) to the data points [18].

determine the mass of the stored ions. The experimental procedure includes an
excitation of the ion motion with a rf-field oscillating near the true cyclotron
frequency. When scanning the frequency of the rf-field, a resonance signal is
obtained as shown in the insert of Fig. 1.

The experimental procedure consists of cycles and scans. A typical cycle for
a nuclide with ¢,/ = 1s is depicted in Fig. 2. It consists of many steps which
have to be synchronized with a precision of typically 1 us. The start of a cycle
is triggered by a proton pulse from the PS-Booster impinging on the ISOLDE
target. The length of a cycle is typically around 0.3s —1.5s, depending on the
half-life of the nuclide of interest. The result of such a cycle is one data point
shown in the insert of Fig.1. A resonance curve is obtained by performing
several scans. A scan consists of many cycles, each at a different frequency
value of the rf-field, starting from the lowest frequency point to the highest
one. The curve shown in Fig.1 consists of 42 scans, each scan consists of 41
cycles.
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Fig. 2. Overview of a measurement cycle. A cycle consists of many steps that must
be synchronized with a precision of typically 1 us.

A rough sketch of the old control system used until spring 2003 is depicted
on the left side of Fig. 3. A VME-bus with a Motorola E6 CPU served as the
main platform for the control system that had been developed with GNU C
[19]. The hardware devices of ISOLTRAP were controlled via GPIB, analog
voltages, digital in- and outputs as well as Profibus. The graphical user inter-
face (GUI) had been developed with Borland C++ and was operated from a
PC which is connected to the VME-bus via TCP/IP [20]. This GUI served
for configuring the control system and to analyze the acquired data on-line. It
was continuously developed since many years and has been ported to Windows
20001 . This old control system was successfully used for more than ten years.
Unfortunately, the VME based hardware had become outdated and unreliable
requiring a replacement.

The plan for the implementation of the new control system is sketched in Fig. 3.
The GUI is reused as well as the existing hardware devices of ISOLTRAP. The

L The software runs on Windows XP as well.
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Fig. 3. Left: The old VME based control system of ISOLTRAP. Right: For the new
control system, only the VME-bus system is replaced by a PC with new LabVIEW
based control system software.

VME-bus is replaced by a PC. Instead of porting the control system software
to the new platform, a completely new control system software based on the
CS framework [14] has been developed.

3 CS framework

The interest in developing the CS framework is twofold: First, a couple of small
experiments at GSI need a new control system and it was decided to base it
on LabVIEW from National Instruments (NI) [21]. The framework aims at
control systems with up to 10,000 process variables. Second, one would like
to investigate the performance and scalability of a LabVIEW based system.
This is an important question, since GSI will undergo a substantial upgrade
to a new facility with larger experiments in the coming years [22]. Details on
the implementation of the CS framework are not in the main line of this paper
and are presented in the appendix.

3.1 Requirements

The main requirements summed up below are common to a couple of experi-
ments and not specific to ISOLTRAP.



(1) A simple data acquisition must be included in the control system. Im-
portant is an unambiguous assignment of the measured data to each
individual cycle. SCADA functionalities like alarming, trending and user
management are desirable.

(2) A PhD student must be able to maintain and develop the system further
after a few months of learning time, requiring only one development tool
that is easy to learn.

(3) The devices are distributed over a larger area and connected to different
PCs. In some cases safety requires that the users must not be close to the
experiment. This implies a distributed system with remote access.

(4) Important is the ability to call any function of any device at any moment.
This way, observables can be measured as a function of any parameter of
the experiment. This feature allows investigating systematic effects and
debugging of an apparatus even for those parameters which are not used
in the preconfigured operational modes. This implies operational states
to be configured on the fly.

(5) The control system should be open, so that new hardware can easily be
included. Especially for small experiments, the challenge is not so much
the number of I/O channels but the number of different hardware device
types.

(6) For small experiments with only a few days of beam time per year, the
stability and reliability of the control system is an important factor.

3.2 Solution path

LabVIEW from NI has been chosen as the development tool for the CS frame-
work. It can easily be linked to third party hard- and software and it is very
easy to build GUIs. An object-oriented approach is used to provide flexibility
and maintainability. Each hardware device or software module is represented
by its own object. The objects do not communicate via direct method calls
but via events. This has three advantages: First, one can easily replace an
object by another one, since the receiver of an event is only defined by the
name of the object. Second, one can replace one method by another method,
since methods are identified by the name of an event. Third, if an object
should not be created on the local host but on a remote PC, one just sends
the necessary events to the remote node. SCADA functionality like trending
and alarming is provided by the Datalogging & Supervisory Control (DSC)
module of LabVIEW. However, the functionality of the DSC module is encap-
sulated in a dedicated class. Hardware interfaces like RS232, RS485, GPIB,
CAN or Profibus are based on PCI cards. Connected to those interfaces are
external devices for control and data acquisition from various manufactur-
ers (see Tab. 1). By this, one can avoid PC specific based measurement and
automation hardware.



3.3 Class design

Although LabVIEW is not object-oriented, one can use an object-oriented ap-
proach within LabVIEW. One possibility is the usage of ObjectVIEW [23], a
third party toolkit, that can be used together with LabVIEW. The CS frame-
work has been inspired by ObjectVIEW but is independent from it. Objects
are represented by Virtual Instruments (VIs) and classes by so called VI-
templates (VIT). During run time, multiple objects (each object is a separate
VI) can be created dynamically from a class (represented by a VIT) by the
VI-server functionality of LabVIEW (see App. A.1). Inheritance is possible,
but not as straight forward as in C++. A simplified view of the resulting class
design is depicted in Fig. 4. The number of inheritance levels and classes is lim-
ited. Thus, the classes have more functionality than in a real object-oriented
language. The base class of the CS framework is the CAFEObj (Concurrent
Active Event Object) class. It provides active objects with the ability to com-
municate via events. If required for reasons of consistency, access to resources
like attribute data can be locked by so-called semaphores. The BaseProcess
class is a child of the CAEQODj class. It provides two threads, one for event
handling and one for periodic action. Watchdog functionality for both threads
is included. Optionally, a flat state machine is available in a third thread. This
class also defines a protocol that is used for the event-driven communication.

CAEObj

BaseProcess

0..1

SuperProc Objectlnspectorl DeviceClass GUIClass DSCIntProc

Fig. 4. Simplified class hierarchy of the CS framework depicted in the Unified Model-
ing Language (UML). Classes are represented as boxes. Arrows indicate inheritance
dependencies. Lines indicate associations and their cardinality. Detailed explanation
in the text.



The BaseProcess class is associated to two other classes. SCADA function-
ality is realized by the DSCIntProc class that provides the interface to the
DSC module from NI. All alarm and trend values are sent to the DSClInt-
Proc class for alarming and trending. The SuperProc class serves for creating
and destroying objects of the BaseProcess and child classes?. Moreover, the
SuperProc class allows to reserve objects for use so that they can not be de-
stroyed accidentally. Almost all classes of the framework are direct children
of the BaseProcess class. Each type of a hardware device is represented by a
class.

Frequently, control systems are designed according to the so called three layer
architecture which consists of a device layer, an application layer and a GUI
layer. Within CS, even GUI and application layer classes are direct children
of the BaseProcess class. Thus, the affiliation of a class to a specific layer is
defined by the functionality of the class and not by its interface.

3.4 Event-driven communication

In most cases, objects communicate via events. Direct method calls are rarely
used. Every object may send an event to any other object at any time. The
callee (receiver) of an event and the method to be called are specified by their
names, ObjectName and FventName. Data are passed as byte arrays. The
BaseProcess class provides three types of events. Simple: The caller sends an
event to the callee. Synchronous: The caller sends an event to the callee and
waits for an answer of the callee before its thread continues. Asynchronous:
The caller sends an event to the callee and the callee sends its answer to a
third object which has been specified by the caller. Simple events may be
buffered, using the LabVIEW message queues, or unbuffered, using the noti-
fiers provided by LabVIEW. Other event types are always buffered. An object
on a remote node is addressed in the form ObjectName@NodeName. As an
example, Fig. 5 shows the principle of a synchronous call. The communication
between different PCs is realized via dedicated client and server objects.

The BaseProcess class allows for introspection of an object by providing a
method GetDescriptors. By this, one can query each object for its descrip-
tors of all events defined by the class of that object. A descriptor contains
the name and a text description of an event, the names of the parameters
required, their data types as well as a text description for each parameter.
Thus, documentation about each method and its parameters can be retrieved
from an object. As a result, the use of an object via events is intuitive and

2 The only exception is the SuperProc class itself. During run-time, one object
of the SuperProc class is the first class to be created and the last object to be
destroyed.
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Fig. 5. A synchronous call to a callee on a local host (top) and on a remote host
(bottom). The caller sends a message to the message queue of the callee (1). The
latter sends the answer back to the caller via a temporary message queue (2).

almost self documenting. Furthermore, this feature allows the use of generic
GUIs that can gather all required information on objects during run-time.

The event-driven communication of the CS framework does not require a cen-
tral event manager. If the number of events that are sent to an object is higher
than the event rate that can be handled by that object, the number of pend-
ing buffered events will pile up. Then, an object can no longer be addressed.
This problem is solved by adding an optional timeout to an event. If the time
specified by the timeout has passed, an event becomes invalid and will be
discarded by the receiver object.

3.5 Database

In principle it is possible to instantiate as many objects of any class as required
by the user during run time. Most objects need configuration data like the
name of the hardware interface and the bus address of a device. Another
example are the names of the objects that need to be created upon the startup
of a control system. This information is stored in a database. If a CreateObject-
event is sent to an object of the SuperProc class together with the name of the
object to be created, the SuperProc class queries the configuration database
via the Structured Query Language (SQL). This query yields the class name of
the object together with the required configuration data. Finally, the requested
object is created by the SuperProc object.



3.6 Ezamples of GUI classes

Since a typical GUI class is also a child of the BaseProcess class, one can send
events to a GUI and use it as a compound device or subsystem. Two examples
will be given.

The Objectinspector class allows to retrieve information on the created ob-
jects like their age, the number of pending events, the status and the error
of the individual threads and their event rate. The user interface of the Ob-
jectInspector runs in a separate thread. However, querying the objects for
their properties is done in the event handling thread, so an ObjectInspector
must send an event to itself to retrieve the required information. This results
in a minute overhead but enables an ObjectInspector on one PC to obtain
information of objects on a remote PC by sending an event to the remote
ObjectInspector object.

The GeneralObjectGUI (GOG) is a generic user interface. It can be used to
send commands to and retrieve information from the created objects. First, the
user generates a list of all objects he/she is interested in. For this, the names
of all pre-configured objects are obtained by querying the database with an
SQL-statement. Then, the user can choose the required objects. Second, those
objects are created. Third, one obtains a list of all methods for each object by
querying the objects. Then, the user can select the methods that should be
executed. As a result, the user can configure a subsystem like an electrostatic
beam line. Since the objects and their method are called in a well defined order,
a GOG object can moreover be used as a simple sequencer. The configuration
of a GOG object can be stored in an Extensible Markup Language (XML)
configuration file. Note, that such a configuration file can be loaded remotely
by sending an event to one GOG object from any other object.

3.7 Application and performance of the CS framework

The CS framework has been developed at GSI. The code is available under
the GNU General Public License (GPL) and can be downloaded [24]. Table 1
lists the device types that are presently supported. One of the strengths of the
framework is the ability to connect to all kind of hard and software. First, new
devices for all interfaces supported by LabVIEW like RS232, RS485, GPIB,
CAN, OPC and others can easily be incorporated. Second, the framework can
be linked to non-LabVIEW applications by implementing specific interface
classes. The other outstanding feature of the framework is its flexibility that
allows its application not only to ISOLTRAP, but also to other projects like
life-time measurements of highly charged ions [25], SHIPTRAP [26], LEBIT
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Table 1

Overview of the devices that are supported by the CS framework. The package
name is given in the first column. The name of the model and the manufacturer are
listed in the next two columns. Some classes have been written for commonly used
devices with Interchangeable Virtual Instruments (IVI) drivers. IVI is a standard
for instrument driver software. Models marked by * are used at ISOLTRAP.

Package Model Manufacturer
CSAcquisition IVIOscilloscope all oscilloscopes with IVI drivers
SR430* Stanford Research Systems
TDS640 Tektronix
CSAfg IVIWaveGen all arbitrary function generators with IVI drivers
AG33250A* Agilent
DS345* Stanford Research Systems
HP3325B* Hewlett-Packard
SMLO01 Rohde & Schwarz
CSDelayGate BNC555 Berkeley Nucleonics
DF94011* University of Mainz, Germany
IECMemory* University of Mainz, Germany
PPG100 Becker & Hickl
QC9310* Quantum Composer
DG535 Stanford Research Systems
CSMotion PA-Control IEF Werner
SixPack Trinamics

CSPowerSupply  AnalogDevice* all power supplies controlled by analog I/0O

EHQFXXX iseg
HCN* FUG
HVSwitch GSI-Darmstadt

HP6629A Hewlett-Packard
PBPowerSupply® analog devices via Profibus
PBRelay*

RVC300

digital devices via Profibus

CSVacuum Pfeiffer Vacuum

27] and PHELIX [28).

Presently, the event rate for a synchronous call (see sect.3.4) can be as high
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as a few hundred Hertz per PC. This includes already the overhead for error
handling, alarming, trending and watchdog functionality. Typically, around
100 objects are created per PC. One has to keep in mind that each object has
quite some functionality and, typically, corresponds to one hardware device.
On a PIIT CPU with 500MHz, the overhead of the CS framework results in a
CPU load of a few percent.

If distributed over several PCs, the CS framework can handle up to 10,000
process variables. Scaling the framework to a larger number of process vari-
ables does not seem to be feasible. This is due to the properties of LabVIEW
3 [29]: First, the application requires a significant amount of memory. One ob-
ject typically uses a few MBytes of RAM. Second, it takes about one second
to create one object. Moreover, this time increases with the number of objects
that have already been created. These two facts limit the number of objects
per PC to a few hundred. Third, occasional crashes of the LabVIEW envi-
ronment are observed. This is not yet understood, but results in a practical
limitation for the number of PCs involved in one control system.

4 The ISOLTRAP control system

The control system must be capable of performing the scans and cycles re-
quired to obtain a resonance signal as shown in the insert of Fig. 1. The neces-
sary steps are described further down. The timing requirements of about 100 ns
within a cycle (see Fig.2) are realized in hardware. The VME-bus system is
replaced by a PC. The control system software is based on the CS framework.
Only a few experiment specific features have been added. Although the CS
framework supports distributed control systems, the first version of the new
control system for ISOLTRAP uses only one rack-mountable PC for simplic-
ity *. The devices of the set-up are connected via PCI interface cards plugged
into the PC. All devices can be accessed either by GPIB or via OPC. Presently,
two GPIB cards from NI and one Profibus master card from Beckhoff are used.
The connection to the RFQ buncher, which is operated on high-voltage, is pro-
vided by optical GPIB and Profibus links.

Figure 6 shows a simplified view of the ISOLTRAP control system. Two PCs
are involved. The Control PC replaces the old VME-bus system. The GUI
PC and the Control and on-line analysis GUI are basically unchanged (see
Fig. 3). Typically around 70 objects are created for operating the experiment.
As examples, eight objects are shown in Fig.6. SR430 is a multi-channel-

3 Presently, the CS framework uses LabVIEW 7.0.
4 The GUI PC does not count as a second PC, since its software is not based on
the CS framework.
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Fig. 6. Simplified layout of the ISOLTRAP control system. Hardware is shown
in rectangular boxes. Software is depicted by boxes with rounded corners. Active
(inactive) software objects have solid (dashed) bordered boxes. Arrows indicate
event-driven communication. The direction of the arrows do not indicate the direc-
tion of the data flow, but mark caller and callee. To simplify the figure, trending
and alarming is indicated only for the Sequencer but not for the other active objects
on the Control PC (dashed arrow). Direct method calls and hardware connections
are marked by lines. Uppercase and lowercase letters as well as numbers denote
communication paths (see text).

scaler for data acquisition. DS345 is a function generator to generate rf-fields
for the excitation of the ion motion. PPG is a pulsed patter generator and
produces bit patterns with a precision of 100ns. Those bit patterns trigger
hardware devices like delay gate generators (not shown). PBPowerSupply is a
power supply controlled by analog I/O of the Profibus. The Sequencer is the
heart of the control system and will be explained below. The DataCollector
serves to collect and buffer data from acquisition devices. The DiscArchiver
retrieves the buffered data from the DataCollector and writes it to a permanent
storage device. The DSCInterface is the interface between all objects and the
DSCEngine from NI. The DSCEngine represents the DSC module from NI.
It serves for trending and alarming as well as a client that is connected to an
OPC Server and Profibus Master via OLE for Process Control (OPC). Like
the DSCEngine, the OPC server and Profibus master is a commercial product
(Beckhoff).

The following actions are initiated via the GUI.

A. The configuration data for a measurement is sent to the Sequencer. All

13



objects involved are configured and consequently the hardware devices ini-
tialize.

B. Start of a measurement. The Sequencer calls the DiscArchiver and the
DataCollector objects. The DiscArchiver closes a possibly open file and
opens a new file. The DataCollector clears the data buffers. The DS345 is
set to the frequency of the first cycle of a scan. Finally, the PPG is triggered
and the measurement started.

C. The GUI retrieves buffered data from the DataCollector. The data are
used for on-line analysis by the GUL.

D. The measurement is stopped by the user.

After a measurement has been started by the user, the experiment runs on
its own. No interaction from the GUI or the user is required. The Sequencer
takes over and controls the experiment.

1. After the PPG has been triggered, it starts to produce bit patterns that
control the timing and trigger devices like delay-gate generators or pulsed
power supplies within a cycle. An example for the timing of a typical cycle
is depicted in Fig.2. After a cycle is finished, the PPG sends an event to
the Sequencer.

2. The Sequencer sends an event to the DataCollector that collects and buffers
the data from all used acquisition devices. In this example, the SR430 is
the only acquisition device. If the DataCollector encounters problems, the
Sequencer stops.

3. An event is sent to the DS345 together with the rf-frequency value for the
next cycle. If the DS345 encounters problems, the Sequencer stops.

4. If all previous steps have been executed successfully, the Sequencer sends
an event to the PPG. This will trigger the PPG and the next cycle may
start (step 1).

The DiscArchiver is not synchronized to the cycle. From time to time, it re-
trieves the buffered data from the DataCollector (m). If the DiscArchiver fails
to retrieve the data, the Sequencer can still continue (steps 1 —4). However, if
the amount of buffered data exceeds a specified limit, the DataCollector will
report an error in step 2 and the Sequencer discontinues the measurement.
The GUI is treated differently by the DataCollector. If the GUI fails to re-
trieve data for on-line analysis (C'), the DataCollector will not report an error

in step 2. By this, a measurement can continue in case the connection to the
GUI PC breaks or the GUI is closed by the user.

The communication with the Profibus devices is not synchronized with the
Sequencer. This is an advantage since, as an example, a changed read-back
value of a static voltage of a PBPowerSupply can be updated in the control
system independently of the Sequencer.
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a. The PBPowerSupply sends a set-value of a power supply to the DSClInter-
face.

b. The value is written to the real time database of the DSCEngine.

c. The DSCEngine, that also acts as an OPC client, transmits the value to
the OPCServer.

d. The OPCServer writes the value to the Profibus master that includes the
set-value into the cyclic data exchange of the Profibus.

e. Via a DAC, the ProfibusSlave sets the value at the PBPowerSupply device.

f. The PBPowerSupply transmits the get-value to an ADC of the Profibus-
Slave.

g. The ProfibusSlave includes the new get-value in the data exchange of the
Profibus.

h. The Profibus master reads the get-value from the Profibus and writes it to
the OPCServer that transmits the value to the DSCEngine.

j- The DSClnterface periodically checks the DSCEngine for changed values.

k. If the get-value has changed, the DSClInterface sends an event with the
new value to the PBPowerSupply object, where it can be used for different
purposes.

The link between the GUI PC and the control PC is provided by a protocol
based on TCP/IP. An interface class CommandServer (not shown in Fig.6)
has been implemented in the LabVIEW part of the control system. All commu-
nication between the LabVIEW based control system and the GUI is handled
by the CommandServer. The CommandServer emulates the protocol that was
used on the old VME-bus system. Only minute changes were required for
reusing the old GUI with the new control system.

In total, four classes are specific to the ISOLTRAP experiment, but only the
Sequencer and the GUI are shown in Fig.6. All other components are part
of and provided by the CS framework. Of course, some classes for hardware
devices types, like the one for the AG33250A from Agilent, have been written
while implementing the new control system. However, these classes can be used
by other experiments as well and are not specific to the ISOLTRAP experi-
ment. It should be noted, that even ISOLTRAP-specific software is reusable.
The GUI, the Sequencer and the CommandServer have been reused for the
control system of SHIPTRAP at GSI [26] and LEBIT at MSU [27].

5 Conclusion

ISOLTRAP is a versatile facility for high-precision mass measurements of
short-lived nuclides. The mass values are used to test nuclear models, for in-
vestigating nuclear structure effects and as input data for experiments testing
the Standard Model. Different questions in physics require the acquisition of
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different types of data under different experimental conditions. This results in
frequent changes of the experimental procedure that are only possible with a
flexible control system that is an integrated part of the experimental setup.
Due to aging of the hardware, the old VME-bus based control system had to
be replaced.

The LabVIEW based CS framework [14] has been chosen as the basis for the
new control system. The CS framework has been developed at GSI during the
last two years. It is object-oriented, multi-threaded, event-driven, distributed
and provides some SCADA functionality. Today, CS provides classes for about
twenty different device types as well as two classes for devices with available
IVI drivers. The CS framework is used to implement control systems for a cou-
ple of experiments. The software is GPL licensed and available for download

24].

Due to the use of the CS framework, the new control system for ISOLTRAP
was implemented in about nine man months. So far, the ISOLTRAP control
system is the most complex control system that is based on the CS frame-
work and already data taking. It not only replaces the old control system but
provides more functionality. This does not only concern new types of devices
but also features like alarming and historic trending. This enhances the exper-
imental capabilities of ISOLTRAP that are required to produce outstanding
data for exciting physics.
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A TImplementation

The CS framework is implemented in LabVIEW and has been inspired by the
third party toolkit Object VIEW [23]. Of capital importance for the implemen-
tation is the use of the VI-Server-methods. In the following a few examples of
code will be given.
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A.1  Creating an object

Figure A.1 shows the LabVIEW code that is required to create an object of a
class. A class is implemented as a so-called VI-template (*.vit). Only the path

i ref
Fermlate path]  [open WI Reference @l

B
0

Error auk

Fig. A.1. LabVIEW code required to create an object. Template path: Path to the
VI-template (class code). VI reference: Reference to the created VI (object).

to that VI-template must be specified. Then, the Open VI reference.vi creates
the object and returns the reference to that object.

A.2 Inheritance in LabVIEW

Child classes of the BaseProcess class will inherit the event handling thread
and the periodic action thread of the BaseProcess class. All events defined
together with all methods of the BaseProcess class will be inherited. Typically,
the method executed inside the periodic action thread will not be inherited
but overloaded by the child class. A child class must provide five methods.

Fig. A.3)
(5) ProcPeriodic: method called within the periodic action thread

refin EaseProcess.evt create, vi] EaseProcess.add descriptors. vi] ref out
i} ERSEPRO ERSEPRD E
g 10
ot in O i 0 =ror Ut
=5 i - T

3 Iresets the instrument ko default values

SetFrequency |lvmsg: " #SELF#"/SetFrequenc [TE SetFrequency | n[frequency {Hz}] §/sets the frequency {Hz}H

Setanmplitude | Bvrsg: M #SELF#"'SetAmplitude ] setamplitude | B n[amplitude {Ypp}] fisets the amplitude {4}

Fig. A.2. Method AG33250A.ProcEvents. Definition of events for the class imple-
menting an arbitrary function generator AG33250A from Agilent.

If a new class has been created, only these five methods must be provided by
the developer. As an example, the class for the function generator AG33250A
has the public methods Reset, SetFrequency and SetAmplitude. Those public
methods are typically placed within the method ProcCases. They are executed
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ref in AG332504, reset. vi EaseProcess.set evenk skatus, vil ref out

[} LT ERSEPRO EI

RESETD) Bl
Ij Error 't
B, SOLFCE ﬂ
Dhata
code Error #

[l cluster b [code ]
[Eatk =L
Etrar in ino &l j
[ Eat Hemmmmmmmmmeefil s bz ]

Fig. A.3. Method AG33250A.ProcCases. This is a case structure that calls the
public methods that correspond to the events defined in the method ProcEvents (see
Fig. A.2). Shown is the code required to call the public method AG33250A. Reset.

when the object receives the corresponding event. The five methods above are
called via virtual function calls from methods of the BaseProcess class. Figure
A.4 shows an example of a virtual function call in LabVIEW. Any method

Zall By Reference Mode

obieck reference _— E g !:h! phject reference out
[c] b
ns timeout {100 | ] kirne:d out
T35 i R
kvpe specifier ko method f
[
T p— Cpen VI Reference | Close Reference
T o
= i T .
— B Ll
e 1 eer) g s 5
(=t s 55|

Fig. A.4. A virtual function call in LabVIEW. Any method or VI of known type
can be called by its name.

or VI of known type can be called by its name. By this, the event handling
thread, that is inherited from the BaseProcess class, can call the method
AG33250A. ProcCases by its name. Child classes of the BaseProcess class only
need to provide a simple wrapper around main method of the BaseProcess
class. Hence, child classes execute exactly the same code as the BaseProcess
class except for the five methods that are mentioned above. Figure A.5 shows
the main method of the AG33250A class. The main method of the AG33250A
class is extremely simple, since the functionality of the BaseProcess class is
encapsulated in the main method of the BaseProcess class. To summarize, a
developer of a new class ChildClass must at least provide five methods. Public
methods of ChildClass are called from the methods ChildClass.ProcCases.
This simplifies the development of a new class that is a child class of the
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EaseProcess. main, vi [CAEOR [ sttribute
EASEPRD [E=xk

nam ] EaseProcess.i attribute

[Sack

MEIIZ504.1 atkribube

[E=sk

Fig. A.5. Main method of the AG33250A class. It is just a wrapper around the main
method of the BaseProcess class.

BaseProcess class.
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