
CS - A Control System Framework for Experiments at GSI

Dietrich Beck and Holger Brand, DVEE, GSI

1 Introduction

In many cases, control systems have been developed for
specific experiments and the re-usability of such systems
was limited. Another approach is the development of a
general control system framework. A framework can be
applied to a large variety of experiments by implementing
a few experiment specific add-ons. During the past one
and a half years, such a framework has been developed
within DVEE at GSI. In the first stage, the framework
aims at experiments with up to 10,000 process variables.
In autumn 2002, that framework has gone into production
at the SHIPTRAP[1] facility.

2 Requirements and Tools

In most cases, control systems are maintained and devel-
oped further by PhD students. Only one development tool
that is easy to learn should be used. Hardware and drivers
must be available commercially. The connectivity to field
bus systems like CAN, CAN-OPEN, Profibus, Firewire or
GPIB as well as the employment of motion and vision
products must be easy. LabVIEW from National Instru-
ments fulfills these requirements on a Windows platform.

The control system must be highly flexible. Changes
between operational states may be required by the user
during run-time. This implies that the number of used
devices as well as the device types will be selected on
the fly. An object oriented approach eases the imple-
mentation of such a system. Within LabVIEW this
is made possible by the ObjectVIEW toolkit from Vo-
gel Automatisierungstechnik[2]. However, inheritance of
classes is not as comfortable as in C++. Thus, the num-
ber of levels of inheritance should be kept small which in
return results in large classes with quite a few methods.

A real-time system is not required. If needed, this will be
implemented in hardware. Nevertheless, the reaction time
of the system must be short (≈ 10ms), so that complex
sequences may be realized within an acceptable time. This
requires an event driven communication which is possible
in LabVIEW.

Trending and alarm management of a few thousand pro-
cess variables is realized by using the Datalogging and Su-
pervisory Control (DSC) module of LabVIEW. Also, this
module provides the connectivity to the OPC (OLE for
Process Control) world.

Often, control systems must be distributed over a larger
area. Event driven communication between different nodes
is implemented based on TCP/IP.

3 Classes of the Framework

The “BaseProcess” class is the base class of the system.
Almost all classes of the framework are direct children of
the BaseProcess class. Its main features are the follow-
ing. First, it has two threads. The first thread serves for
handling incoming events. The second thread can be used

to periodically perform actions. Second, status and errors
for all threads are logged. Third, there exist methods for
event driven communication. Fourth, there is the possi-
bility to query the methods of a class together with input
and output parameter types.

The “SuperProc” class serves for creating and deleting
instances of classes during run-time. A database contains
information on all instances of all classes together with in-
stance specific parameters. These data are retrieved from
the database prior to instantiation.

The “DSCIntProc” class serves as an interface to and
encapsulates the DSC module of LabVIEW. All trending
and alarming is done via the DSCIntProc class. Presently,
only one instance of the DSCIntProc class is used, even if
the control system is distributed over several nodes. This
is possible due to the event driven communication between
different nodes.

Next to the core classes described above, there exist
about 10-20 other classes. Mostly, these are classes for
specific instruments like arbitrary functions generators as
well as timing, data acquisition and motion devices.

4 Status and Outlook

The control system framework is functional and seems
to be robust. It is GPL licensed and available for
download[3]. The time that is needed to send an event
to an instance and to receive an answer from that instance
via a second event is typically about 3 ms on a local node
and 15ms across nodes. With about 100 instances per
node, the CPU load is less than 10 %. Quite some RAM is
required per node, since each instance takes a few MBytes.
This is due to the memory management of LabVIEW and
the fact that there is almost no optimization when compil-
ing code within LabVIEW. By increasing the number of
computer nodes, the framework can easily be scaled.

Presently, the framework is in operation at SHIP-
TRAP [1] and in commissioning at four other experiments,
ISOLTRAP[4], motion control in Cave A[5], LEBIT[6] and
PHELIX[7]. It is expected that the number of classes avail-
able will increase dramatically during the year 2003. It is
planned to extend the framework to a SCADA system. Al-
though some SCADA features like trending and alarming
are partly included already, others like user management,
access control and security have to be added.

References

[1] J. Dilling et al., Hyp. Int. 127 (2000) 491.

[2] http://www.vat.de/.

[3] http://labview.gsi.de/CS/cs.htm.

[4] G. Bollen et al., Nucl. Instr. Meth. A368 (1996) 675.

[5] Atom. Phys. Contributions, GSI Scient. Rep. 2001.

[6] S. Schwarz et al, Eur. Phys. J. submitted 2001.

[7] R. Bock et al., Inertial Fusion Sciences and Applica-
tions 99, C. Labaune, W.J. Hogan, K.A. Tanaka eds.
Elsevier Publishing (2000) 703.


