

Proton Operation Cycles in SIS100

Vladimir Kornilov

WP 2.8.1 SIS100 Beam Dynamics

SIS100 Planungsgruppensitzung 31.03.2014

PROTON OPERATION IN SIS100

CANDIDATES: PROTON OPERATION CYCLES

- 1. Staying under Transition γ_t =45.5;
- 2. Using the "standard" lattice γ_t =18.3 => transition crossing, γ_t -jump not possible;
- 3. Low Tune lattice γ_t =8.9 => transition crossing, γ_t -jump possible.

CANDIDATES: PROTON OPERATION CYCLES

a sophisticated sextupole sequence (S.Sorge)

CANDIDATES: PROTON OPERATION CYCLES

- 1 Bunch from 4 Bunches, RF Manipulations necessary:
- Bunch merging (4b, h=10 => 2b, h=5)
- Batch compression 5 stages (2b, h=5 => 2b, h=10)
- Bunch merging
 (2b, h=10 => 1b, h=5)

Calculated (Chorniy, Feb 2012) with Beam Loading, Space Charge: needs time, blow-up necessary (x3),

higher synchrotron frequency better.

V₀=280kV, h=5

BUNCH PARAMETERS

 Q_{h} =21.8, Q_{v} =17.7, γ_{t} =18.3

Large safety margin for accumulation and rf manipulations

 Q_{h} =10.4, Q_{v} =10.3, γ_{t} =8.9

Magnet Field Quality and RF Manipulations: Involved Beam Loss studies necessary

Q_h=21.8, Q_v=17.7, γ_t=45.5

 ϵ_h = 13 mm mrad

Magnet Field Quality and RF Manipulations: Involved Beam Loss studies necessary

(sq+no1) $Q_x - Q_y = 4$ (skew quad, diff) $2Q_x - 2Q_y = 8$ (norm oct, diff) (sq+no2) $Q_x + Q_y = 39$ (skew quad, sum) $2Q_x + 2Q_y = 78$ (norm oct, sum) Q_h=21.8, Q_v=17.7

γ_t=45.5: |Qξ|<11

The present ξ-sextupoles: 42 Magnets, SL_{eff}=175T/m (S=350T/m², L_{eff}=0.5m)

For a safe operation up to 100Tm: $SL_{eff}=260T/m$ needed.

U⁹²⁺ 10GeV/u, Ion Lattice: SL_{eff}=170T/m for full compensation. **narrow margin**

 Q_h =10.4, Q_v =10.3, γ_t =8.9: a large margin (SL_{eff}=20T/m for a full compensation)

 Q_h =21.8, Q_v =17.7, γ_t =45.5: SL_{eff}=120T/m (no error), SL_{eff}=140T/m (Comp Model errors) narrow margin

- 1. Possible to get SL_{eff} =260T/m for a safe operation up to 100Tm?
- **2.** Operation with ξ <0 above transition?
- instabilities have thresholds: safe operation below this intensity
- feedback (TFS) to cure instabilities also above threshold
- octupoles to increase the thresholds and to cure instabilities

Various possibilities:

- compensate only one plane (vertically)
- usage of the resonance sextupoles (6 magnets, 110T/m)

Up to what beam intensity the safe operation is possible with the present ξ -sextupole magnets?

MAGNET FIELD ERRORS

EXAMPLE: Dipole Magnet FoS $Q_h=21.8, Q_v=17.7, \qquad Q_h\xi=-30, Q_v\xi=-26, \ \gamma_t=18.3$ goes to $Q_h=21.68, Q_v=17.84, \qquad Q_h\xi=-36, Q_v\xi=-19, \ \gamma_t=18.18$ $Q_h=10.4, Q_v=10.3, \qquad Q_h\xi=-12, \ Q_v\xi=-12, \ \gamma_t=8.9$ goes to $Q_h=10.16, Q_v=10.53, \qquad Q_h\xi=-72, \ Q_v\xi=+38, \ \gamma_t=8.4$ more sensitive to the magnet errors

Magnet Field Quality: 3ε-DA for the U beam means 8ε-DA for p

COLLECTIVE STABILITY

The Brad-Band Impedance: adopted from the CERN PS data

Bipolar Kicker PFN Calculations: U.Niedermayer, U.Blell

FAST BROAD-BAND INSTABILITY: ξ -SCENARIO

 γ_t -jump is necessary to cure the Beam Break-Up Instability

FAST BROAD-BAND INSTABILITY: ξ -SCENARIO

Transition Crossing without jump might be possible (or below an Intensity Border)

LONGITUDINAL STABILITY

Boussard Criterion for the Microwave Instability The inductive Broad-Band impedance measured at PS: $Z_{II}/n=i20\Omega$

Measures to control/minimize the SIS100 Broad-Band impedance are necessary.

PROTON OPERATION CYCLES

γ _t =8.9	γ _t =18.3	γ _t =45.5
safe transition crossing with γ_t -jump; no flexible ξ -scenario	no γ _t -jump possible: mismatch etc. flexible ξ-scenario	no transition crossing
2-bunches ramp needed; batch compression + bunch merging + stretching + rotation at the top (rf hardware?)	1-bunch ramp no rf-manipulations at the top	1-bunch ramp no rf-manipulations at the top
beam loss challenges at the bottom (rf manip): dispersion + strict δ _p -limit + magnet errors	good safety margin at the bottom for the accumulation and rf- manipulations	the γ _t =18.3 lattice needed at the bottom, beam loss still an issue; challenges at the top
safe ξ-compensation	no ξ>0 above 15GeV: operation above transition? + intensities? or SL_{eff}=260T/m sextupoles needed	sophisticated ξ-compensation necessary (magnet errors) narrow margin of ξ-sextupoles
(I.Strasik) halo collimation: 85%	halo collimation: 99%	high energy: no halo collimation
Beam Stability: Assessment of the machine Broad-Band Impedance (cold machine, later changes not possible) Bipolar Kickers: Feedback system TFS		