

gLite training at Sinaia '06

Victor Penso Kilian Schwarz GSI Darmstadt Germany

GGGG

Preliminaries Login information

login to the Sinaia PC as user t01-t30 with password "abc123"

via ssh login to one of the 4 gLite UI provided at FZK.

- iwrgks-4-5.fzk.de
- iwrgks-5-5.fzk.de
- iwrgks-6-5.fzk.de
- iwrgks-7-5.fzk.de

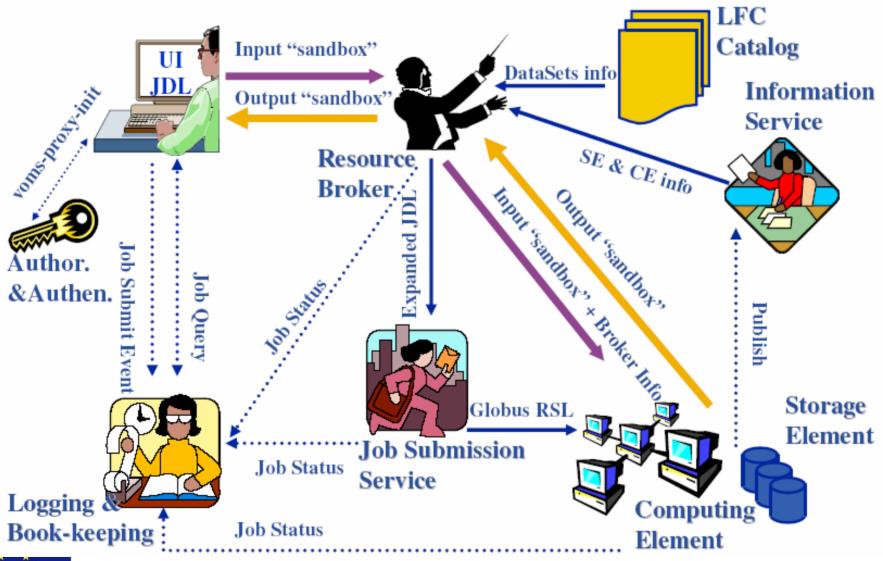
user and PW to be used by each group can be found in the handout

Preliminaries - Certificates

- Each user has 2 important files:
 - usercert.pem
 - Could be read by everyone file permission: 644
 - userkey.pem
 - Only the owner is allowed to read this file permission: 600
- They are located in \$HOME/.globus/
- The certificate is needed for all grid activities like submitting jobs, copying files, etc.
- Browser certificates allow authentication on different websites, e.g. grid user support sites.

Authentication

Enabling Grids for E-sciencE


- * To submit grid jobs, copy files to grid sites and all other activities in the grid requiring user authentication you need a 'grid proxy':
- Make a new grid-proxy:
 - voms-proxy-init -voms dgtest [-valid hh:mm]
 - enter your Grid pass phrase (see handout)
 - For long jobs, maybe you need to change the proxy lifetime using e.g. the '-valid 24:00' option for a lifetime of one day.
- Check the status of your proxy
 - voms-proxy-info
- Delete your proxy:
 - voms-proxy-destroy

Remark: in this course we use the VO "dgtest" of the German D-Grid project

gLite - Job Workflow

Enabling Grids for E-sciencE

- Job Description Language (JDL)
 - → "Hello World" & more
 - The JDL is used to specify special needs of your job like necessary inputfiles/variables, generated output- and logging-information or requirements concerning the computing resources on remote sites.

create the file "simple.jdl":

```
Executable = "simple.sh";
Arguments = "Hello world!";

StdOutput = "std.out";
StdError = "std.err";

InputSandbox = {"simple.sh"};
OutputSandbox = {"std.out", "std.err"};

VirtualOrganisation = "dgtest";
RetryCount = 2;
```


The executable

Enabling Grids for E-sciencE

- * The executable:
- in our example, the executable is "simple.sh"
- it is a shell script gathering useful information about the worker node
- please create it yourself: it contains, e.g.:

#!/bin/bash

```
echo "I am \"`whoami`\" on host \"`hostname`\"."
echo `pwd`
echo `cat /proc/cpuinfo`
echo `uname -a`
```

The output information is written to the two log-files specified in the JDL: std.out and std.err

Job Submission Enabling Grids for E-sciencE

- Overview of available computing element resources:
 - lcg-infosites --vo dgtest ce
- Check the sites matching your job requirements:
 - glite-job-list-match simple.jdl
- Job Submission:
 - glite-job-submit -o job.id [-r site] simple.jdl
 - Parameters:
 - -o <job.id> Specify the output file for gLite job IDs
 - not necessary but comfortable
 - -r <site> Specify a CE to directly send your job there

- Get the job status:
 - glite-job-status [-v 1] -i job.id
 - Parameters:
 - -i <job.id> Specifies the input file for gLite job IDs
 - -v <0|1|2|3> The higher the verbosity level, the more information you get (e.g. about rescheduled jobs)
- In case something goes wrong, your job can be cancelled via:
 - glite-job-cancel -i job.id

get job output

Enabling Grids for E-sciencE

Get job output:

- glite-job-output -i job.id [--dir <outputdir>]

* parameters: --dir <outputdir>specifies the job output directory (e.g. -dir .)

A Simple Job - Playing Around

Enabling Grids for E-sciencE

Run ./simple.sh locally and inspect the output

- Submit the job (2-3 times)
- You will see that the job will run at different sites
- To force the job to a specific site, requirements can be added to the jdl file see later in this tutorial

Data Management - Overview

- A file on the grid:
 - has a global unique identifier (GUID)
 - e.g. guid:c73cf5db-0f80-46c1-9571-111d281c70a7
 - can have several replicas at different sites, each having a different physical file name (PFN/SFN)
 - e.g. sfn://iwrgks-2-2.fzk.de/storage/dgtest/generated/2006-09-11/filedeab4811-0e1f-4439-bffa-4efc46f40b82
 - can be given several logical file names (LFN) by the user
 - e.g. lfn:/grid/dgtest/tarballs/dag.tar
 - This information is stored in the LCG file catalog (LFC).

Data Management - LFC

- Were is the LCG File Catalog located?
 - lcg-infosites --vo dgtest lfc
 - In our case: iwrlfc.fzk.de
 - export LFC_HOST=`lcg-infosites --vo dgtest lfc`
 - \$LFC_HOST is already set on our Uls (not on WNs)
- List the existing files and directories, e.g.:
 - lfc-ls -l /grid/dgtest
 - -1 gives more information like the file size in the catalog
- Create your own directory in the LFC:
 - lfc-mkdir /grid/dgtest/\$USER

Data Management - Storage

- "How to store a file on the grid?" rises two questions:
 - Where should the file be stored physically?
 - Which name should be assigned to the file?
- Get a list of available storage elements:
 - lcg-infosites --vo dgtest se
- Copy a file to a SE:
 - echo "my test file: \$USER" > test_\$USER.txt
 - Choose an SE, e.g. iwrgks-3-2.fzk.de

 - The -v option displays verbose output like used LFC, GUID, etc.

Data Management - Storage

Enabling Grids for E-sciencE

- Where is this file now?
 - lcg-lr --vo dgtest lfn:/grid/dgtest/\$USER/test.txt
 - You get the storage file name of the file: sfn://<host>/<path>
- Have a look at the file on the SE:
 - edg-gridftp-ls --verbose gsiftp://<host>/<path>
- Compare the physical size with the one from the catalog
 - use lfc-ls and edg-gridftp-ls

Copy the file back in your working directory:

Replicas: various copies of the same file on several SEs -

Data Management - Deleting

Enabling Grids for E-sciencE

Cleaning up:

- Remove the file from one specific SE:
 - lcg-del --vo dgtest -s iwrgks-3-2.fzk.de \
 lfn:/grid/dgtest/\$USER/test.txt
- Remove your directory in the LFC
 - Ifc-rm -r /grid/dgtest/\$USER

Enabling Grids for E-sciencE

An (almost) real life example from the Physics world

"data simulation" using ROOT (http://root.cern.ch)

- If you require special software packages, there is no need to send them together with every job.
- There is a special user-role in each VO, the softwaremanager:
 - In case of the VO "dgtest" this is "dgtestsgm"
 - The softwaremanager can install software in the directory \$VO_DGTEST_SW_DIR on each site.
- Installed software is published via "glue-tags". They
 can be put into the requirements of the jdl-file, e.g.:

Requirements = Member("VO-dgtest-ROOTv5.13.04", other.GlueHostApplicationSoftwareRunTimeEnvironment)

producing "data"

Enabling Grids for E-sciencE

our "data" shall be: a histogramm with random numbers following a Gauss distribution

for that please copy to your local work dir:

- /opt/root/jdl/gauss.jdl
- /opt/root/bin/gauss.sh
- /opt/root/macro/gauss.C

GGGG

gauss.jdl

```
Executable = "gauss.sh";
Arguments = "";
StdOutput = "stdout";
StdError = "stderr";
InputSandbox = {"gauss.sh", "gauss.C"};
OutputSandbox = {"stdout", "stderr", "gauss.root"};
VirtualOrganisation = "dgtest";
Requirements = Member("VO-dgtest-
ROOTv5.13.04",
other.GlueHostApplicationSoftwareRunTimeEnviron
ment);
RetryCount = 3;
```


gauss.sh

Enabling Grids for E-sciencE

#!/bin/bash
source /opt/root/.rootlogin
root -b -q gauss.C
export LFC_HOST=iwrlfc.fzk.de
please do locally beforehand:
Ifc-mkdir /grid/dgtest/\$USER
lcg-cr --vo dgtest -v -d iwrgks-3-2.fzk.de
-l Ifn:/grid/dgtest/YOURUSERNAME/gauss.root
file://\$PWD/gauss.root

please type indeed your user name, and not \$USER, since on the WNs only Pool accounts are existing !!!

GGGG

gauss.C

```
TObjArray Hlist(0);
TH1F* h1;
h1 = new TH1F("h1","Histo from a Gaussian",100,-
3,3);
Hlist->Add(h1);
h1->FillRandom("gaus",10000);
TFile f("gauss.root", "recreate");
Hlist->Write();
f.Close();
```


Geed

submit the job

as usual via

glite-job-submit -vo dgtest -o job.id gauss.jdl

it will only run on the FZK WNs since only there the proper ROOT version has been installed.

this can be checked also via

lcg-infosites -vo dgtest tag

Gee6

watch status, get output as usual

```
look at gauss.root via ROOT
. /opt/root/.rootlogin
root
root>TFile f("gauss.root")
root>f->ls()
root>h1->Draw()
```


Data Analysis

Enabling Grids for E-sciencE

in this exercise we try to find the "data" of the last exercise in the Grid to analyse them.

The analysis shall be: we do a gaussfit through the distribution we created in the last exercise

Please download to your work dir:

- /opt/root/jdl/gaussfit.jdl
- /opt/root/bin/gaussfit.sh
- /opt/root/macro/gaussfit.C

GGGG

gaussfit.jdl

```
Executable = "gaussfit.sh";
Arguments = "";
StdOutput = "stdout";
StdError = "stderr";
InputSandbox = {"gaussfit.sh","gaussfit.C"};
OutputSandbox = {"stdout", "stderr", "gaussfit.root"};
VirtualOrganisation = "dgtest";
Requirements = Member("VO-dgtest-
ROOTv5.13.04",
other.GlueHostApplicationSoftwareRunTimeEnviron
ment);
RetryCount = 3;
```


gaussfit.sh

Enabling Grids for E-sciencE

#!/bin/bash echo "LFC HOST = " \$LFC_HOST lcg-cp --vo dgtest -v

Ifn:/grid/dgtest/YOURUSERNAME/gauss.root file://\$PWD/gauss.root

source /opt/root/.rootlogin

root -b -q gaussfit.C

please type indeed your user name, and not \$USER, since on the WNs only Pool accounts are existing !!!

gaussfit.C

```
TObjArray Hlist(0);
TFile f("gauss.root");
Hlist->Add(h1);
h1->Fit("gaus");
TFile f2("gaussfit.root", "recreate");
Hlist->Write();
f.Close();
f2.Close();
```


submit, watch status, get ouput as learned before

GGGG]

start ROOT and look at ROOT output the way we have done it before.

Job Submission via the LHCb tool Ganga

see tutorial of Ulrik Egede

README at

/home/icfa26/README

