
Copyright © GSI 2001 For internal use only

Author: Dietrich Beck Inspector: Klaus Poppensieker
Dept.:
Name:
Tel.:

DVEE
Dietrich Beck
2520

Signature: Dept.:
Name:
Tel.:

DVEE
Klaus Poppensieker
2782

Signature:

File: E:\TEMP\FrontPageTempDir\detspec.doc Status: <doc status>
Date: 6 December 2001 File: Project file

File directory
Sect. <nn.nn>
<directory>

GSI

Detailed Design Specification for the SHIPTRAP Control
System

Version 1.0

Distribution list:

Name (alphab.) Department

Faouzi Attallah Atomic Physics/GSI
Wolfgang Quint Atomic Physics/GSI
Gerrit Marx Atomic Physics/GSI
Christophor Kozhuharov Atomic Physics/GSI
Klaus Poppensieker DVEE/GSI
Dietrich Beck DVEE/GSI
Holger Brand DVEE/GSI
Jürgen Neumayr SHIPTRAP/Munich

Detailed Design Specification SHIPTRAP control system
December 6, 2001 Document Management

 Page 2 / 15

Document Management

History of changes

Version Status Date Person resp. Reason for Change

0.0 created 6. Dec 2001 Dietrich Beck new

Persons authorized to make changes
Dietrich Beck DVEE/GSI
Klaus Poppensieker DVEE/GSI

Document created using the following tools:

WINWORD2000

Detailed Design Specification SHIPTRAP control system
December 6, 2001 Contents

 Page 3 / 15

Contents

1 Introduction ... 5

1.1 Purpose of the document .. 5

1.2 Validity of the document .. 5

1.3 Definitions of terms and abbreviations .. 5

1.4 Relationship with other documents... 5

2 Core of the Control System... 5

2.1 BaseProcess Class .. 5
2.1.1 Event, Periodic Action and State Machine Loops .. 6
2.1.2 Watchdogs ... 6
2.1.3 Calls ... 6

2.2 Relationship between Instances ... 6

3 Implemented Components .. 7

3.1 BaseProcess Class .. 7
3.1.1 Purpose.. 7
3.1.2 Functions.. 7
3.1.3 Non-functional features of the component... 7
3.1.4 Implementation... 8
3.1.5 Reason for detailed design decisions.. 8
3.1.6 Technical implementations conditions... 8

3.2 SuperProc class.. 8
3.2.1 Purpose.. 8
3.2.2 Functions.. 8
3.2.3 Non-functional features of the component... 9
3.2.4 Implementation... 9

3.3 DSCIntProc Class ... 9
3.3.1 Purpose.. 9
3.3.2 Functions.. 9
3.3.3 Implementation... 9
3.3.4 Reason for detailed design decisions.. 10

3.4 Defs Library... 10
3.4.1 Purpose.. 10
3.4.2 Data Types ... 10

3.5 ProjLib Library.. 10
3.5.1 Purpose.. 10
3.5.2 VIs... 10

3.6 Communication Interface .. 11
3.6.1 Purpose.. 11
3.6.2 Non-functional features of the component... 11
3.6.3 Implementation... 11
3.6.4 Alternatives ... 11

3.7 Database... 11
3.7.1 Purpose.. 11

Detailed Design Specification SHIPTRAP control system
December 6, 2001 Contents

 Page 4 / 15

3.7.2 Design.. 11
3.7.3 Implementation... 12
3.7.4 Technical implementations conditions... 12

3.8 DSC Engine... 12
3.8.1 Purpose.. 12
3.8.2 Reason for detailed design decisions.. 13
3.8.3 Alternatives ... 13

4 Not Yet Implemented Components ... 13

4.1 Control GUI.. 13
4.1.1 Purpose.. 13
4.1.2 Functions.. 13
4.1.3 Non-functional features of the component... 13

4.2 On-Line Analysis GUI.. 13
4.2.1 Purpose.. 13
4.2.2 Functions.. 13
4.2.3 Non-functional features of the component... 14

4.3 Central Process .. 14
4.3.1 Purpose.. 14
4.3.2 Functions.. 14
4.3.3 Non-functional features of the component... 14

4.4 Device Driver... 14
4.4.1 Purpose.. 14
4.4.2 Functions.. 14

4.5 Data Server ... 14
4.5.1 Purpose.. 14
4.5.2 Functions.. 15
4.5.3 Non-functional features of the component... 15

4.6 Data Handler.. 15
4.6.1 Purpose.. 15
4.6.2 Functions.. 15

Detailed Design Specification SHIPTRAP control system
December 6, 2001 Core of the Control System

 Page 5 / 15

1 Introduction

1.1 Purpose of the document
The purpose of a detailed design specification is to define how the product components described
in the associated architectural design specification are (to be) implemented. Moreover, these
design specifications will be updated during the implementation of the control system and do finally
serve as a documentation of the software.

1.2 Validity of the document
This documents describes all components of the SHIPTRAP control system. However, the
emphasis is on the general part of the control system that can be used by other experiments as
well.

1.3 Definitions of terms and abbreviations
• AFG: arbitrary function generator
• Device: a HW device like an AFG
• Device Driver: an independent process that is the interface of the control system to the

instrument driver of a device.
• DSC: Data logging and Supervisory Control (the DSC Module is an additional module for LV

replacing BridgeVIEW)
• HW: hardware
• NI: National Instruments
• OPC: OLE for Process Control: By this, lots of data items (that have simple types) can be

exchanged between machines of distributed systems. Typical examples are values for
voltages, DIGI I/O, …

• Static parameters: In general, “static parameters” are the parameters that can straightforwardly
be implemented with the help of OPC servers.

• SW: software
• VI: virtual instrument

1.4 Relationship with other documents
• Architectural design specification which forms the basis for this detailed design specification

and describe the general idea
• Software requirements specification
• Preliminary requirements and proposed solution

The documents above can be accessed via the SHIPTRAP control system home page, http://www-
wnt.gsi.de/shiptrap/.

2 Core of the Control System
The core of the control system is formed by three classes. The BaseProcess, the SuperProc and
the DSCIntProc class. The BaseProcess class is _THE_ base class of the system. The
SuperProc and the DSCIntProc are children of and inherit from the BaseProcess class.

2.1 BaseProcess Class
The BaseProcess class is the basic class of the system and inherits from classes that come with
the G++ toolkit. It has the following features.

1. Individual event, periodic action and state machine loops (three threads)
2. Watchdog (event and periodic action loop)

Detailed Design Specification SHIPTRAP control system
December 6, 2001 Core of the Control System

 Page 6 / 15

3. Communication between processes via calls
a. Simple (one way)
b. Synchronous (wait for answer)
c. Asynchronous (answer will be sent later)

4. Trending and alarming via the DSC interface process
5. Parent class for ALL other processes. Child classes add new events, attributes and methods

2.1.1 Event, Periodic Action and State Machine Loops
These three loops serve to decouple different types of action. The event loop is used to receive
events and calls from other processes. The action performed within the event loop should not be
time consuming. Time consuming things should be performed in the periodic loop. The periodic
loop is also used for action that has to be performed periodically, like reading a value from a ADC.

2.1.2 Watchdogs
The watchdog for the periodic loop of a process is checked by the event loop of the same process.
The watchdog of the event loop is checked by another process in regular intervals. For this, the
BaseProcess class provides a Ping method which is used to check the event loop via a
synchronous call.

2.1.3 Calls
Calls can be simple, synchronous or asynchronous.

1. Simple call. The caller calls the callee. Neither does the caller wait for an answer, nor
answers the callee.

2. Synchronous call. The caller calls the callee and waits for the answer of the callee. The
callee receives the call, performs the required action, and answers the call of the caller. The
thread of the caller will only proceed, after having received the answer or a timeout.

3. Asynchronous call. The caller calls the callee but does not wait for an answer. The callee
receives the call, performs the action required, and sends the answer as a simple call to a
receiver that has been specified by the original caller.

A LV cluster is used and must be filled with the information by the caller. The call cluster is defined
in the Defs library (see sect. 3.4.2)

2.2 Relationship between Instances
The relationship between instances of these classes is depicted below. To make it more clear,
there is a device driver name DeviceProcess.

Device Process

DSC EngineDSCIntProcSuperProc

watchdog

set tagsset watchdog alarm

set status and error

BaseProcess

inheritance
install/remove

Detailed Design Specification SHIPTRAP control system
December 6, 2001 Implemented Components

 Page 7 / 15

The SuperProc installs and removes the DeviceProcess on request by other processes. The
Device Process sets its status and error tags in the DSC Engine via the DSCIntProc. If the
watchdog for the periodic loop is in an alarm state, the watchdog tag in the DSC Engine is updated
via the DSCIntProc. The watchdog of the event loop is checked by the SuperProc. On a periodic
basis, it communicates with the DeviceProcess by calling its Ping function to check the event loop
of the DeviceProcess. If that fails, a watchdog alarm is set via the DSCIntProc.

All other classes for other processes (except the GUIs) will be child classes of the BaseProcess
class.

3 Implemented Components
The general idea of the interplay between the components is described in the architectural design
specifications. Here are the detailed design specification of the components that should also serve
as a documentation.

3.1 BaseProcess Class

3.1.1 Purpose
The BaseProcess class serves as parent class for all other classes in the control system, except
for GUI classes. It provides the methods for communication (see sect. 2.1.3), setting error and
status, an LabVIEW object.vit template and the watchdog functionality (see sect. 2.1.2).

3.1.2 Functions
The BaseProcess class inherits from system classes of the G++ toolkit. Only public methods that
are accessible via calls and that have been added are listed. Methods that have already been
accessible via calls of system classes from the G++ toolkit are not listed. The names in the list
below are the names of the defined events of the BaseProcess class.

1. S0. Change to the default state S0.
2. Ping. A function that does nothing and is used for the watchdog of the event loop.
3. GetDescriptors. Gets a list of the event names together with the descriptors of the data type

for the events.
4. SetPdcInterval. Sets the interval of the periodic loop.
5. SetPdcPreset. Sets the preset value for the periodic loop. This value is the time interval

used by the watchdog of the periodic loop.
6. SetEvtPreset. Sets the preset value for the event loop. This value is the time interval used

by the watchdog of the event loop.
7. GetEvtStatus. Gets a list of the event names together with their URLs and the enable bit.
8. GetCNames. Gets a list containing the class name of the instance together with the class

names of the parent classes.
9. GetIList. Gets a list containing the names of all instances of this instance class type.
10. Reset. This is the reset function. The corresponding reset method is just a dummy method

that must be filled by child classes.

3.1.3 Non-functional features of the component
See also sect. 2.1. When inheriting classes from the BaseProcess class, the object.vit template
should not be changed by child classes. Instead, the four methods ProcEvents, ProcCases,
ProcPeriodic, ProcState and Reset should be changed for the child classes.

1. ProcEvents. Method that serves to define the events for the child classes.
2. ProcCases. Here, the methods that correspond to the defined events will be called.

ProcCases is called by the event loop each time the instance receives a valid event.
3. ProcPeriodic. Here, functionality that should be performed in periodic intervals can be

inserted. ProcPeriodic is called by the periodic loop in intervals defined by PdcInterval.

Detailed Design Specification SHIPTRAP control system
December 6, 2001 Implemented Components

 Page 8 / 15

4. ProcState. Here, functionality that should be performed within the state machine loop can be
inserted. ProcState is called by the state machine loop.

3.1.4 Implementation
The BaseProcess class is a child of the System.EvScObj class of the G++ toolkit. The watchdog
for the event loop requires an instance of the SuperProc class. Instantiation should be done by an
instance of the SuperProc class. Instances of the BaseProcess Class and all child classes(!)
should get the BaseProcess.i attribute.ctl data. This LV cluster contains the following information.

1. status and error of the event loop.
2. status and error of the periodic loop.
3. status and error of the state machine loop.
4. a list of interfaces together with a list of interface addresses.
5. a list with special parameters.
6. the name of the DSCIntProc instance where status and errors will be sent to.
7. the name of the Super class that created the object.
8. the timeout for the event loop.
9. the preset value for the watchdog of the event loop.
10. the interval for the periodic loop.
11. the preset value for the watchdog of the periodic loop.
12. the alarm time for the watchdog of the periodic loop. If the periodic loop has not acted when

this alarm time is reached, the watchdog alarm bit of the periodic loop is set to true.
13. the watchdog alarm bit of the periodic loop.
14. the timeout for the state machine loop.

3.1.5 Reason for detailed design decisions
The design has some ideas of a device driver of the ISOLTRAP control system. Added are the
object oriented approach, the periodic loop, the state machine loop and the watchdog mechanism.
The watchdog for the periodic loop is only checked internally by the event loop in order to save
system resources. Thus, one must enable the watchdog for the event loop to guarantee the
functionality of the watchdog of the periodic loop.

3.1.6 Technical implementations conditions
The implementation depends on LabVIEW version 6.0.2 or later and the G++ toolkit from Vogel
Automatisierungstechnik. There should be no dependency on the operating system. Each instance
of the BaseProcess class requires a few hundred kByte of RAM. About 50 instances of the
BaseProcess class (together with one instance of SuperProc class (watchdog for event loops) and
one instance of the DSCIntProc class) use about 10% CPU time on a 700MHz Pentium III. The
typical rate for synchronous “Ping” events (see sect. 3.1.2) on the same machine is about 150Hz.

3.2 SuperProc class

3.2.1 Purpose
With the SuperProc class one can instantiate and destroy instances of other classes. An instance
of the SuperProc class maintains a list of active instances “process table” and serves as a
watchdog for instances of other classes.

3.2.2 Functions
The SuperProc class is a child of the BaseProcess class. Only public methods that are accessible
via calls and that have been added are listed. The names in the list below are the names of the
defined events of the SuperProc class.

1. EvtPreset. Sets the value of the event preset of an instance. That instance must have an
entry in the process table. The event loop of that instance will be “pinged” within that preset
value.

Detailed Design Specification SHIPTRAP control system
December 6, 2001 Implemented Components

 Page 9 / 15

2. LoadProcess. Creates an instance of a class and adds it to the process table. If the
instance is existing, not action is undertaken.

3. UnloadProcess. Destroys an instance of a class and removes it from the process table.
The instance is only destroyed if no other process has an open connection to that ins tance.

4. RemoveAll. Removes all instances that are listed in the process table even if there are open
connections by other processes.

5. ConnectProcess. Establishes a connection from instance A to instance B. “UnloadProcess”
of instance B can not be done unless the connection is removed.

6. DisconnectProcess. Removes a connection from instance A to instance B.
7. Disconnect All. Removes all connections to all instances that are listed in the process table.
8. GetProcTable. Gets a copy of the process table.

3.2.3 Non-functional features of the component
When creating an instance “LoadProcess”, the SuperProc class must supply the BaseProcess.i
attribute.ctl data. That data is obtained from a database (see sect. 3.7).

3.2.4 Implementation
The SuperProc class is a child of the BaseProcess class. When creating an instance of the
SuperProc class, an instance of the DSCIntProc class is created as well (it is not clear whether
this will also be done in the future). When destroying an instance of the SuperProc class all
instances listed in the process table will be destroyed. The Process table is a list that has entries of
a type defined in the Defs library (see sect. 3.4.2).

3.3 DSCIntProc Class

3.3.1 Purpose
This class provides an interface to the DSC engine. Setting values in the DSC engine should only
be done via an instance of this class.

3.3.2 Functions
The DSCIntProc class is a child of the BaseProcess class. Only public methods that are
accessible via calls and that have been added are listed. The names in the list below are the names
of the defined events of the DSCIntProc class.

1. DSCStart. Starts the DSC engine.
2. DSCStop. Stops the DSC engine.
3. SetEventError. Sets the error of the event loop of a process.
4. SetPeriodicError. Sets the error of the periodic loop of a process.
5. SetStateError. Sets the error of the state machine loop of a process.
6. SetEventStatus. Sets the status of the event loop of a process.
7. SetPeriodicStatus. Sets the status of the periodic loop of a process.
8. SetStateStatus. Sets the status of the state machine loop of a process.
9. SetProcInstalled. Sets the status and errors to default for an created instance.
10. SetProcRemoved. Sets the status and error to default for a destroyed instance.
11. SetValue. Sets the value of a tag in the DSC engine.
12. GetValue. Gets the value of a tag in the DSC engine.
13. SetEvtWatchdog. Updates the tag for the watchdog of the event loop of a process.
14. SetPdcWatchdog. Updates the tag for the watchdog of the periodic loop of a process.

3.3.3 Implementation
The DSCIntProc class is a child of the BaseProcess class. The DSCIntProc.i attribute.ctl gives
information about the status of the DSC engine and the name of the *.scf file used.

Detailed Design Specification SHIPTRAP control system
December 6, 2001 Implemented Components

 Page 10 / 15

3.3.4 Reason for detailed design decisions
The DSCIntProc was implemented such, that the DSC engine can easily be replaced by some
other database or server like a DataSocket server.

3.4 Defs Library

3.4.1 Purpose
Provide definitions of data types that are used within the SHIPTRAP control system. The data types
are defined by LV strict typed controls. Given below are the names of the typedefs.

3.4.2 Data Types
1. Defs.call_cluster.ctl. The Cluster that is used when calling another process via the call

process.vi.
1. the destination object (callee)
2. an error number
3. a data descriptor (only needed when the data type changes during run-time)
4. the data that is flattened to string
5. type of call (simple, synchronous or asynchronous)
6. event type and receiver for an asynchronous answer.

2. Defs.descriptor_type.ctl. The cluster defining the element type of the list that is obtained
when calling and instance of the BaseProcess (or child) class with the GetDescriptors
event.

3. Defs.error_type.ctl. An enum defining errors that are frequently used.
4. Defs.proc_table.type.ctl. A cluster defining the element type of the process table used by the

SuperProc class.
1. name of the process
2. # of connections to that process
3. names of the connected clients
4. the alarm time for the event loop (when the alarm time is reached, the event loop of that

process will be checked. After this check the next alarm time is set be adding the preset
value for the event loop watchdog.

5. the preset value for the event loop watchdog
6. busy bit. True: event loop of the process is not responding. False: event loop is

responding
7. reference to the process

3.5 ProjLib Library

3.5.1 Purpose
The ProbjLib library is a collection of Vis that are used within the project and that do not really fit into
a class.

3.5.2 VIs
Given below are the names of the Vis that are part of the ProjLib

1. ProjLib.call process. Calls another process. This VI should only be used by classes that are
not children of the BaseProc class.

2. ProjLib.fill baseproc attrib. Converts BaseProcess.i attrib data in query format (see below:
ProjLib.sql read) into BaseProcess. I attrib.ctl format.

3. ProjLib.get dscint proc. Gets the name of the DSC interface process of an instance
4. ProjLib.get error string. Gets an error string to an error number.
5. ProjLib.install process. Creates an instance. This VI should only be used by an instance of

the SuperProc class. Comment: When creating a new class, this VI must be modified.
6. ProjbLib.my to LV error. Converts an error number as given by the Defs.error_type.ctl (see

sect. 3.4.2) to a valid LV error number.

Detailed Design Specification SHIPTRAP control system
December 6, 2001 Implemented Components

 Page 11 / 15

7. ProjLib.remove process. Destroys an instance. This VI should only be used by an instance
of the SuperProc class.

8. ProjLib.sql read. Reads the information necessary to instantiate an object out of a data
base. This is mainly the information of the BaseProcess.i attribute cluster. The information
is given in a query format that can be converted into BaseProcess.i attribute.ctl format by
using the ProjLib.fill baseproc attrib.vi.

9. ProjLib.variant to call cluster. Converts variant type data into a data type as defined in
Defs.call cluster.ctl (see sect. 3.4.2).

3.6 Communication Interface

3.6.1 Purpose
Calls processes on remote machines. The communication interface makes calls of processes on
remote nodes completely transparent as if the remote processes were on the local host.

3.6.2 Non-functional features of the component
The communication interface must be implemented such, that the reaction times for the
CALL_PROCESS command are as fast as possible. Furthermore, the communication interface
must be capable of serving more than one request at a time so that calls do not block each other.

3.6.3 Implementation
Presently, the communication interface is implemented via the VI server from NI. This is an
extremely elegant approach since it does not even require additional processes on the local or
remote machine but just an extension of the BaseProcess.call process.vi. The big disadvantage is,
that this is very slow (1-2Hz event rate). The present implementation is just a first solution that must
be replaced on the long term.

3.6.4 Alternatives
1. Implementation with LV. TCP/IP will be used for the communication between different PCs. This

is quite some work but can be fast (50-100Hz event rate)
2. Use the universal license of the G++ toolkit from Vogel Automatisierungstechnik. (100Hz event

rate).
3. LabVIEW 6.1 may possibly have the feature to insert queue elements into queues of remote

machines. In this case, the communication interface may become redundant.

3.7 Database

3.7.1 Purpose
Each instance of the BaseProcess class or its child classes need to get information via the
BaseProcess.i attribute.ctl cluster when created. This information is available via the database and
can be retrieved with the ProjLib.sql read.vi (see sect. 3.5.2). Also the class name of an instance is
needed for instantiation and is available via the database.

3.7.2 Design
The database has four tables.

1. instances
2. classes
3. attributes
4. data

The instance table contains the name of an instance, an instanceID and the class name of that
instance. The class table contains the name of a class and an classID. The attribute table contains
the attribute name, an attributeID, the classID to which the attribute belongs and the data type of
that attribute (Note: So far, there are only the BaseProcess class attributes, since these are the
attributes that are needed for instantiation of objec ts of the BaseProcess class and its child

Detailed Design Specification SHIPTRAP control system
December 6, 2001 Implemented Components

 Page 12 / 15

classes). The data table contains a dataID, the attributeID, the instanceID, the value and a
comment. The relationships between the tables are shown below.

Assume, one would like to retrieve the information. First, one needs the class name. For this one
has to search for the name of the instance in the instance table and gets its classID. With the
classID one can search in the class table for the name of the class. Then one needs the data to fill
the BaseProcess.i attribute cluster. From the instance table, we get the instanceID. Then one can
look in the data table to find all entries for the instance via the instanceID. From the data table we
get the values and the attributeID. From the attribute table one can then get the attribute name and
its type via the attributeID.

3.7.3 Implementation
MS Access was choosen as a database, since it is available almost everywhere and gives easy
access to edit the data. The data are only retrieved programmatically via the ProjLib.sql read.vi. The
database is modified via “forms” in MS Access. Like this, it is not necessary to lock the database for
different instances of the SuperProc class since it is never changed during run-time but only off-line
by developers. The database is accessed via the SQL toolkit from NI.

3.7.4 Technical implementations conditions
In the present implementation, one is restricted to MS Windows. Since the database is accessed
via SQL, one can easily switch to another database like Oracle, if desired.

3.8 DSC Engine

3.8.1 Purpose
Alarming, trending, safety. The processes/functions do error handling and status reporting via the
DSC engine. The DSC engine provides complex process variables, the tags. The tags are also
used by devices with static parameters that use the “wait for changed value” mechanism. The DSC
engine and its documentation is available from NI.

Detailed Design Specification SHIPTRAP control system
December 6, 2001 Not Yet Implemented Components

 Page 13 / 15

3.8.2 Reason for detailed design decisions
The DSC engine can be bought and costs no development time. Access to the DSC engine is done
via an instance of the DSCIntProc class or via the classname.wait call.vi.

The DSCIntProc allows to set or get values of tags in the DSC engine. However, one can not use
the feature of “waiting for a changed value” (see LV documentation for the read tag.vi’s). If this is
desired, one should define an OPC event by adding the tag to the event list in the
classname.DefEvents.vi (see sect. 3.1.3). Then, the event loop will receive an event each time the
value of the tag changes.

3.8.3 Alternatives
If desired, one can easily replace the DSC engine with a DataSocket server. The only thing that has
to be changed are the low level read tag and write tag methods in the DSCIntProc class. However,
one looses the alarming, trending and safety features of the DSC engine.

4 Not Yet Implemented Components

4.1 Control GUI

4.1.1 Purpose
User interface for the controls but not for the on-line analysis.

4.1.2 Functions
• LOGIN: login of a user
• LOGOUT: logout of a user
• CHANGE_MODE: switch between control and monitor mode. The GUI can only switch to control

mode if a) no other GUI is in control mode or b) the user is logged in as an administrator
• CREATE_CONFIG: create configuration data for static and dynamic parameters
• INIT: sends the configuration data to the data server and the init command to the central process
• DEINIT: sends the deinit command to the central process
• START: sends the start command to the central process. The start command can only be sent

if a) there are no pending alarms or b) as an administrator
• STOP: sends the stop command to the central process (finish the current scan and BREAK)
• BREAK: sends a break command to the central process (stop cycle and scan immediately)
• VIEW: display the current status and pending alarms of SHIPTRAP from the DSC engine
• ACKNOWLEDGE: acknowledge pending alarms
• EXIT: sends a deinit command to the central process and exits the control GUI
• SET_PARAM_VALUE: any value of a scannable parameter can directly be set at any time

4.1.3 Non-functional features of the component
The functions of the control GUI are not really time critical. On the other hand, it would be nice to
have reaction times that permit to change a parameter value fast enough, so that the parameter
can be tuned “by hand”. All controls and parameters must not be by more than one mouse-click
away. If an alarm is pending, appropriate information always visible and never hidden behind sub-
windows.

4.2 On-Line Analysis GUI

4.2.1 Purpose
The on-line analysis GUI displays the data of the current measurement.

4.2.2 Functions
This is not really complete, since the requirements from SHIPTRAP are not clear yet.

Detailed Design Specification SHIPTRAP control system
December 6, 2001 Not Yet Implemented Components

 Page 14 / 15

• CONNECT: the on-line analysis GUI connects to a data server
• DISCONNECT: the GUI disconnects from the data server
• GET_DATA: the GUI gets new data from the data server
• UPDATE: the GUI updates its data buffer with the new data
• CLEAR: if a new measurement has started, the data buffer and the display are cleared
• DISPLAY: the GUI displays its data buffer
• EXIT: the GUI disconnects from the data server and exits

4.2.3 Non-functional features of the component
The on-line analysis GUI displays a predefined set of graphs. It can also do fits and things like that.
Basically, the only interaction by the user is to chose the data server and to exit the GUI. Of course,
some interaction is allowed to move graphs around and do some fitting and so on. The on-line
analysis GUI knows when to clear the display and its data buffer from the change of a file name and
when getting the data element with element number 0. The on-line analysis GUI is not time-critical.

4.3 Central Process

4.3.1 Purpose
A SHIPTRAP specific process that is the heart of the system and an image of the experiment.
Loading/initializing/unloading of device drivers, scanning etc. are done here.

4.3.2 Functions

• INIT: get the configuration data for the dynamic parameters, loads device drivers, initializes the
hardware, creates a data module via the data server

• START: changes the state of the central process to perform cycles and scans, starts first cycle
• CYCLE_FINISHED: a cycle has finished. Now, read out data, prepare and start next cycle
• DEINIT: unloads all device drives
• STOP: sets a stop flag. Cycling and scanning will stop on completion of present scan
• BREAK: cycling and scanning are stopped immediately
• EXIT: the central process exits

4.3.3 Non-functional features of the component
The requirements of the experimentalists are directly programmed into the central process. It is
very similar to the massmeas.c of ISOLTRAP.

4.4 Device Driver

4.4.1 Purpose
A device driver is the interface between the instrument driver from LV and the control system.

4.4.2 Functions

• The functions depend on the functionality of the driver and the instrument. The device driver is an
instance of a device driver class which is a daughter of the BaseProcess class. The device
driver has all functions of the BaseProcess class and additional events and methods. Examples
for additional methods for an AFG are “SetFrequency” and “SetAmplitue”.

4.5 Data Server

4.5.1 Purpose
Provides data buffer and a interface for transferring data between processes.

Detailed Design Specification SHIPTRAP control system
December 6, 2001 Not Yet Implemented Components

 Page 15 / 15

4.5.2 Functions

• CREATE_DATA: creates a data module
• DELETE_DATA: deletes a data module
• LINK_DATA: creates a “fixed” connection to data module
• UNLINK_DATA: terminates a fixed connection to a data module
• RESET_DATA: resets the data module to the default state (state after RESET)
• READ_DATA: reads the data elements of a memory module and marks them for deletion
• WRITE_DATA: write a data element(s) to the memory module
• EXIT: exits the data server

4.5.3 Non-functional features of the component
Every data module can just contain a certain number of data elements. The data can be retrieved
with the READ_DATA function, which marks for deletion. The data elements will be deleted (oldest
element first) if a) a new WRITE_DATA is executed, b) the buffer is full and c) the have been
marked for deletion. The data server allows multiple connections which (with LINK_DATA) to a data
module. Connections can be of type “hard” and “soft” (see Sect. Error! Reference source not
found.).

4.6 Data Handler

4.6.1 Purpose
Storing of data to data storage device.

4.6.2 Functions
• CONNECT: the data handler connects to a data module of a data server
• WRITE_DATA: function is executed periodically. Retrieves data from data server and writes

them to the storage device(s).
• CONFIG_DISK: configures the storage device
• EXIT: exits the data handler

