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1 Introduction 

1.1 Purpose of the document 
The purpose of this architectural design specification is to define the architecture of the SHIPTRAP 
control system and to describe the behavior between the product components. Moreover, these 
design specifications will be updated during the implementation of the control system and finally 
serve as a documentation of the software. 

1.2 Validity of the document 
The architectural design specification does apply to the SW and the HW of the SHIPTRAP control 
system. Only HW devices like the DS345 function generator, that are directly connected by the 
software, are regarded as being part of the control system. Other HW like an einzel-lense in a 
CF150 crosspiece are not regarded as being part of the control system.  
The design specification is based on the SW requirements specification. However, for the first 
versions of this document this design specification was/is still based on the preliminary 
requirements.  

1.3 Definitions of terms and abbreviations 
• AFG: arbitrary function generator 
• Configuration Data: the requested parameter values to be set at the HW, the operational mode 

of the experiment, the HW devices and processes to be used, the scan range, etc…. 
• CDD: Configuration Data for the Dynamic parameters 
• CDS: Configuration Data for the Static parameters  
• Device: a HW device like an AFG 
• Device Driver: an independent process that is the interface of the control system to the 

instrument driver of a device.   
• DSC: Data logging and Supervisory Control (the DSC Module is an additional module for LV 

replacing BridgeVIEW) 
• Dynamic Parameters: “Dynamic parameters” are the parameters that can _not_ be 

implemented with the help of OPC servers in a straightforward way, like loading a waveform to 
an AFG generator. 

• HW: hardware 
• NI: National Instruments 
• OPC: OLE for Process Control: By this, lots of data items (that have simple types) can be 

exchanged between the nodes of distributed systems. Typical examples are values for 
voltages, DIGI I/O, … 

• Static parameters: In general, “static parameters” are the parameters that can straightforwardly 
be implemented with the help of OPC servers. 

• SW: software 
• VI: virtual instrument 

1.4 Relationship with other documents 
The document is related to the SW design specifications as a basis. Later, the architectural design 
specifications will be refined by the detailed design specifications. These documents can be 
accessed via the SHIPTRAP control system home page http://www-wnt.gsi.de/shiptrap/. 

2 Product architecture 
The control system will be developed with LV from NI. It consists of two parts. There is a general 
part that is not SHIPTRAP specific and another part that is SHIPTRAP specific.  
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2.1 Distributed Computing 
In principle, the control and data acquisition could be done on one single PC. However, it may be 
good to separate functions and to distribute certain tasks to different nodes. 
 
First, there is(are) the user node(s). In principle, those nodes can be anywhere at GSI or in the 
world. These are the nodes where the GUIs run on. 
 
Second, there is exactly one central node. Here run the central process, the DSC engine, the DSC 
interface process, the super process, the data handler and the data server. Also, some HW 
devices may be connected to this node. 
Third, there is(are) the front end node(s). Here, one typically will host processes that either 
consume lots of resources and/or processes that are safety relevant and should have a node for 
their own.  

2.2 Product structure 

 
The processes that are SHIPTRAP specific are the  

1. Control GUI, the 
2. On-line analysis GUI, the 
3. Central Process(es), and the 
4. Data Handler. 

Everything else belongs to the general part that is not SHIPTRAP specific. The idea behind the 
general part is to provide a framework that allows for the implementation of control systems for 
(almost) any experiment. The whole control system is event driven.   
 

2.2.1 Event Driven Processing 
The event driven properties of the control system are implemented in two ways.  
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One possibility are “calls”. Here, a caller sends an event to another process, the callee. A callee 
may be any process that does basically nothing but waiting for calls. After receiving a call, the callee 
will perform the requested action. If requested, the callee will return an answer. Communication by 
calls does only consume very little CPU time and avoids polling. 
 
Instead of waiting for a call, a process can listen to an OPC tag for a requested parameter value to 
change its value. This can be done by the read tag VI from NI without using CPU time. Waiting for a 
change of an OPC tag is always an asynchronous process, since no answer is returned to the 
callee. Instead, the process will update the actual parameter value which is a second OPC tag.  
 

2.2.2 Control GUI 
Here, the experimentalist configures the parameter values that have to be sent to the HW and 
configures how the measurement will be done (scan range, parameter to scan, used devices, 
etc…). Also, the control GUI allows to monitor the actual parameters and serves as the user 
interface for the alarming. When the configuration of the requested parameters (configuration data) 
has been done, this configuration data will be sent to the central process and the DSC interface 
process for initialization of the hardware via the device drivers. After initialization, the measurement 
is started and stopped from the control GUI. From the control GUI, one can also change parameter 
values of devices on-line and during a measurement. 
 
The control GUI will be implemented with LV.  

2.2.3 On-Line Analysis GUI 
The on-line analysis GUI serves to view/check the performance of the experiment and the incoming 
data on-line. It can, as an example, be implemented with LV but one could also think of something 
different like Root. 

2.2.4 Super 
The super process is similar to the one used for the ISOLTRAP experiment. It manages loading 
and unloading of device drivers and other processes. Moreover, it maintains lists the processes 
currently loaded. There will be a super process on all nodes with a DSC engine and/or processes. 
 
The super process will be implemented with LV. 

2.2.5 Central Process 
The central process serves to control the devices with dynamic parameters. It receives the 
configuration data for the dynamic parameters, loads the required device drivers, sets the 
requested values and configures the data module at the data server. When a measurement is 
started, it changes the scan parameter, triggers the read out of the data via a data acquisition 
device, etc… . The design of the central process itself is not yet drawn up, since it depends on the 
requirements of SHIPTRAP which are not yet clear. The DSC engine is linked to the central 
process via the DSC interface process. 
 
The central process class is written in LV. 
 
Comment: In principle, there can be more than one central process or sub-processes depending 
on the requirements of the experiment. An example for such a sub-process may be a vacuum 
control process that may run on a front end node. For simplicity, only one central process is shown 
in the figure in Sect. 2.2. 

2.2.6 The DSC engine  
The DSC engine is a process within the environment of the operation system. The DSC engine 
maintains so called tags which are complex process variables with a value, alarm limits, etc… . 
Basically the DSC engine serves to handle devices with static parameters. Moreover, it handles the 
alarming and trending of the parameters of the control system.  
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The DSC engine is a process provided by the DSC module from NI. 

2.2.7 The DSC Interface Process 
The DSC interface process serves for various things. First, it is used to set the tag values for static 
devices according to the configuration data. Second, it serves as an interface when the central (or 
another) process wants to change values of static parameters. Third, the central process can 
check if all values requested for the static parameters have been applied via the DSC interface 
process.  
 
The DSC interface process class is implemented with LV. 

2.2.8 Communication Interface 
A communication interfaces can be used to transfer events/call from one node to another. For 
example, if the central process will call a (device)process for a dynamic device on its local node, it 
will not use the communication interface. However, if the central process calls a (device)process 
for a dynamic device on a remote node, this call will go via the communication interface on the 
remote node. One has to watch out, that the communication must have the capability of serving 
multiple calls at the same time. 
 
The implementation will be done with LV. 

2.2.9 Front End DSC Engine 
A front end DSC engine may be needed when devices with static parameters are installed on 
remote nodes different from the central node. Like this, one avoids that device drivers have to 
read/write from/to a remote DSC engine. Especially, device drivers do not have to reconnect to their 
tags, when the DSC engine on the remote node restarts after a shut down.  
 
The parameter values of devices with static parameters are only set by the front end DSC engine. 
The problem of a  front end DSC engine is that alarms and other properties can not be transferred 
between different DSC engines. But this will be implemented in future versions by NI. 
 
An alternative would be if device drivers on the front end nodes are directly connected to the DSC 
engine on the central node via DataSocket. 
 
The DSC engine is a process provided by the DSC module from NI. 

2.2.10 Devices and Drivers 
Everything from the instrument driver, to the HW device is straight forward according to standard NI 
solutions. As an example, the HW device may be represented by an AFG DS345 from Stanford 
Research. This is connected by the HW interface, a GPIB card, to the computer. For the GPIB 
card, the driver provided by NI is used. In many cases, an instrument driver is already provided by 
NI. For devices where this is not the case, one has to write an instrument driver according to the 
recommendations by NI. Up to this point, everything can be off-the shelf. The device driver sitting on 
top of all this is self-written and interfaces the instrument driver to the rest of the control system. 
The device driver is called from the central process or via a change of a tag value of the DSC 
engine. The device driver is an instance of a device driver class and a process within the LV 
environment. Each hardware device is represented by a device driver instance. As an example, if 
there are three DS345 AFGs, there will be three instances (processes) instantiated from a DS345 
class.  
 
A device driver class will be implemented in LV. 

2.2.11 Data Server 
The data server is used by the data acquisition device driver to write its data to. It represents an 
interface for further data processing. It basically buffers the data in memory for a limited time. The 
data can then be retrieved via a TCP/IP connection. For further data processing one can either use 
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LV or something completely different like MBS. Also multiple connections should be possible via a 
publisher and subscriber model. There are two types of connections, “hard” and “soft” connections. 
If the internal buffer of the data server is full and a “hard” connection is established, the data server 
will no longer accept the upload of new data and a measurement will stop. For a “soft” connection 
the same situation will cause a disconnect. 
 
The data server is a process within the LV environment and written in LV. Typically, the data server 
will run on the same node as the data acquisition device driver. 

2.2.12 Data Handling 
The procedure how to handle the data is still an open question, since no clear requirements have 
been given yet. In any case, the data handling is not a general part of the control system but specific 
for the SHIPTRAP experiment. However, many different scenarios for the data handling are open, 
since the data server serves as an interface for almost any data handling procedure. 
 
Possible scenarios 

1. A data handler gets the data from the data server. Then, the data handler writes the data to 
the backup medium and to a network disk. The on-line analysis GUI then operates on the 
open file on the network disk where the data handler continuously writes the data to.  

2. A data handler gets the data from the data server. Then, the data handler writes the data to 
the backup medium and to the network disk. The on-line analysis GUI gets the data as an 
additional subscriber from the data server. 

3. The on-line analysis GUI gets the data from the data server and also writes the data to the 
network disk. Here, an optional data handler can be used as an additional subscriber to the 
data server to get the data and store it to the backup medium. 

4. MBS gets the data from the data server and writes the data to the backup medium as well 
as to the network disk. The data are then shuffled to the on-line analysis GUI buy MBS as 
well. 

It is proposed to use scenario 2 since this does not restrict the number of on-line analysis GUIs (0-
n) and has the advantage that there is no need to operate on the open file where the data is 
continuously stored. But it has the disadvantage that one does not have an instant feedback, if the 
storing of the data really works. The data handler will be implemented with LV. 

2.3 Behavior of the product components 
Here, a typical procedure is given to demonstrate the behavior and the relationship of the product 
components.  

2.3.1 Power-Up 
After power up of the PCs there is the following situation. All PCs are running, nobody is logged in.  
 

2.3.2 Startup 
Here, one has to start the Super process and the DSC engines on the central node as well as on 
the front end nodes. Some device drivers and special control processes for safety sensitive HW 
are started. The question is, if all these processes can be started automatically. It is not straight 
forward to start those processes as services in Windows. Maybe, NI will find a solution. 

2.3.3 Control GUI Start and Setting up Configuration Data 
The user starts the control GUI. Then, he/she has to login and sets up the configuration data for the 
dynamic parameters (CDD) of the control system and the configuration data for the static 
parameters (CDS) of the control system. The configuration data contains the devices to be used, 
the parameter values to be set at the device drivers and the configuration of the central process 
itself.  
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2.3.4 Initializing the Hardware and the Central Process 
The CDD are transferred to the central process, while the CDS are transferred to the DSC engine 
on the central node via the DSC interface process. The central process then loads all device 
drivers required to set the parameter values for the dynamic parameters and sets the values. 
Moreover, the central process itself is configured by setting the scan range, the operational mode, 
etc… . The device drivers required to set the parameter values for the static parameters are 
instantiated via the Super process. Who tells the Super process to instantiate the device drivers 
and sets their values? 

2.3.4.1 Example: Loading and Initializing a PPG100 
The pattern generator PPG100 is a device which has dynamic parameters. The central process 
instantiates the PPG100 device driver via the Super process. Then, the central process  resets the 
PPG100 device to its default values and transfers the pattern data to the device driver. For 
transferring the pattern data, the central process and the device driver communicate via the “call 
and answer mechanism” (see sect. 2.1 ). 

2.3.4.2 Example: Loading and Initializing a HV power supply 
A HV power supply is a device which has static parameters. The HV power supply device driver is 
loaded (by whom?) via the Super process. The requested values are then set by setting the values 
corresponding tags in the DSC engine via the DSC interface process. The device driver of the HV 
power supply gets the requested value by the “wait for changed value mechanism” (see sect. 2.1) 
and will set the requested values at the hardware according to the tag values. 

2.3.4.3 Example: Loading and Initializing a MCS 
An MCS is used for data acquisition and is a device with dynamic parameters. Its device driver is 
instantiated by  the central process via the Super process. Moreover, the device driver gets the 
information to which data object of the data server the acquired data will be transferred to.  

2.3.5 Starting a Measurement 
Once the hardware has been configured, the user can enter the start command in the control GUI. 
That command is then sent to the central process. Then, the central process has to prepare 
everything for the start. That is 

1. the loop with the scan values 
2. the data server 
3. the data acquisition device 
4. the pattern generator 

2.3.6 Doing a Measurement 
Within the scan loop the central process has to do the following for each cycle. 

1. set the next scan value 
2. start the data acquisition device 
3. (enable external triggers for the pattern generator) 
4. start the pattern generator 
5. wait for the pattern generator to finish 
6. (disable external triggers for the pattern generator) 
7. tell the data acquisition to process the data. The device driver of the data acquisition then 

a. reads the data from the hardware 
b. puts the data to the data object at the data server 

8. clear the data acquisition device 
9. go back to 1. 

2.3.7 Stopping a Measurement 
The measurement is stopped whenever the user gives a stop command at the control GUI. That 
command is transferred to the central process. The central process does the following. 

1. (disable external triggers for the pattern generator) 
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2. stop the pattern generator 
3. stop the data acquisition device 

There are two modes for stopping a measurement. First, a measurement can be stopped 
immediately without waiting for the present scan to finish (BREAK). Second, a measurement will 
continue until the present scan is finished. After that, the measurement is stopped (STOP). 

2.3.8 De-Initializing the hardware and the central process 
After a request by the user, the control GUI will send the de-initialize command to the central 
process and the DSC interface process. Those two processes will stop and unload all running 
devices drivers that have been loaded an initialized earlier (see Sect. 2.3.4). Then, the central 
process itself will terminate. The DSC interface process will continue running.   

2.3.9 Shutdown 
After de-initializing the hardware and the central process, the DSC engines, the communication 
interfaces, the data server and the super process will still run. The shutdown procedure will force 
those processes to terminate. 

2.3.10 On-Line Analysis GUI 
The on-line analysis is separated from the control GUI and does not get the init/start/stop 
commands. So, the on-line analysis GUI connects to the data server upon start and gets the data. 
An identifier of the current measurement and a data event number is coming with the data (see 
Sect. 2.6). By this, the on-line analysis GUI knows when a new measurement has started.  
 
It is not yet clear, how the on-line analysis will be implemented. 

2.3.11 Trending and Alarming 
For each process, there exist three status tags, three error tags and a watchdog tag. The event 
loop, the periodic loop and the state machine loop have each a status and a error tag. The 
watchdog tag gives information about the watchdog status for a device. The tags have to be 
created for each process that exists in the control system. They will be present even if the process 
has not been instantiated. The processes write their status as well as their error information to 
these tags via the DSC interface process. Like this, historic trending and alarming is all done by the 
DSC engine. However, for this method a strict naming conventions for the tags has to be used. 
Once an error has occurred, the ongoing action will discontinue and the alarm will be transferred to 
the control GUI where the user has to acknowledge it. 
Note: Additional tags can be created and used by user classes. 

2.3.12 Security 
There may be more than one instance of the control GUI running. However, only one GUI can be the 
active one (control mode) that is allowed to set controls. All other control GUI just serve to display 
the parameters values presently set (monitor mode).  For normal users: If another GUI wants to 
switch to control mode, the first GUI must switch to monitor mode first. For administrator users: An 
administrator can always switch any GUI from monitor to control mode, independently whether 
another GUI is in control mode. In this case, the other GUI that was in control mode, is switched to 
monitor mode.  
 
Buy using different user levels one would also have an additional security for safety critical controls, 
like the one for venting a vacuum chamber.  
 
There may be more than one instance of the on-line analysis GUI running. 
 
Security will be implemented using the features of the DSC engine. 

2.3.13 Non-Functional Characteristics 
Windoze is not a real time operation system. Nevertheless, short reaction times smaller than 10ms 
can be achieved when using the “call and answer” mechanism on one node. Reaction times can be 
a factor of up to 10-100 longer, when using the “wait for changed value” mechanism and/or the two 
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communicating processes are running on different nodes. For time critical sequences or 
procedures, HW modules like the PPG100 are used that have a time granularity of about 100ns. 
However, one has to keep in mind that some hardware devices may also take their time. For 
example, it may take a few 100ms for the MCS SR430 to read out its data, clear the internal buffer 
and get ready for the next cycle. 

2.4 Reason for decisions relating to the product architecture 

2.4.1 Decision 
The decision for this design is strongly based on the experience with the control system for 
ISOLTRAP. There have been a few feasibility studies showing that such a system can also be 
implemented with LV. An “ISOLTRAP control system” like system has the advantage of being event 
driven and very flexible concerning changes of the sequences, devices used and procedures. 
Device driver processes following the idea of the ISOLTRAP system are well suited for devices with 
dynamic parameters.  
 
Additionally, it is required to have alarming, trending and security features. Since it would take a long 
time to implement those features by ourselves, the DSC engine from NI will be used which provides 
those features already.  Moreover, the DSC engine is ideally suited for the handling of static 
parameters from OPC servers. Here, the combination of an OPC server and the DSC engine 
already has some functionality of a device driver and there is no need for the implementation of a 
software device driver. 

2.4.2 Advantage 
Both approaches are quite complementary. On the one side, there is the high flexibility of the 
ISOLTRAP type system for changes even during run-time. On the other side, there is industry 
standard, alarming, security, trending and an off-the shelf solution in the case of the DSC engine. A 
merge of the two approaches makes an ideal system. For each HW device one can choose the 
approach that is best suited. For setting new parameter values, one can change a parameter value 
for ANY device, even if it is connected via the DSC engine, with the “call and answer” mechanism 
thanks to the DSC interface process. That makes the system extremely transparent from the GUI 
as well as from the central process.  
 
Although the principle relationships between the components will not change, the architecture itself 
is quite flexible depending on the requirements of SHIPTRAP, that may change with time. For large 
systems, one can have more processes like the central process. For small systems one can have 
two scenarios. First, one can think of systems entirely without DSC engine depending on the “call 
and answer” mechanism. Even devices with static parameters can be implemented with device 
driver for dynamic parameters. For this scenario one does not have DSC features like alarming, 
trending and security but there is the need for the implementation of a simple error logging. Second, 
one can think of systems which have no devices driver for devices with dynamic parameters and 
that have no sequences like the one required for the cycles and scans for SHIPTRAP. Then, one 
can do with the DSC engine alone and there is only a simple central process for communication 
with the DSC engine.  

2.4.3 Disadvantage 
There are two disadvantages of the present design. First, the use of the DSC module(s) is a cost 
factor. Its about 3700.- Euro for the DSC module and one(!) run-time system. Second, one has to 
have the some know-how of the event oriented “call and answer” mechanism that is needed on the 
one side, and the DSC engine on the other side. Also, it takes some time to learn how the G++ 
toolkit from Vogel Automatisierungstechnik works. 

2.4.4 Other Solution Paths 
For a control system like the one needed for SHIPTRAP, one could think of having system of 
ISOLTRAP type alone and without a DSC engine. This would imply the need of programming the 
functionality of the DSC engine, which would take too long.  
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The other extreme, the DSC engine alone, has other disadvantages. Here, not all hardware devices 
can be programmed as being stupid devices like DACs or ADCs. One would need to implement a 
protocol above the DSC engine.  There are two disadvantages. First, communication will be slower. 
Second, one needs workarounds for implementing device drivers having dynamic parameters. 
 
One could also do without the G++ toolkit from Vogel Automatisierungstechnik. As an advantage, 
one does not depend on this toolkit. As a disadvantage, one has to invest a few man months to 
implement the basic features of this toolkit.  

2.5 Interfaces 
The control GUI and the on-line analysis GUI have user interfaces. These interfaces depend 
strongly on the requirements of the experimentalists which are not clear yet. The interface to the 
central process and the DSC interface process is realized by a call from the control GUI via the 
communication interface running on the central node. The configuration data for dynamic and static 
parameters are both transferred to the central node by the call itself or via a data server. The control 
GUI also allows to change single process variables via the communication interface. 
 
The central process, sub-processes of the type of the central process and device drivers 
communicate by sending and receiving calls  (LV queues), signals (notifications) and 
listening/writing to OPC variables (DSC engine tags). All these processes can also connect 
themselves to a data server for uploading or downloading data. 
 
The DSC engine is interfaced by listening/writing to its tags and the alarm and security 
mechanisms. For high level processes, the DSC interface process is used for passing the data. 
Low(er) level processes like device driver can listen to tags via the OPC-events from the G++ 
toolkit. 
 
An OPC Server communicates with a DSC engine via the tags. Each tag at the OPC server has a 
corresponding tag in the DSC engine. 
 
Data can be uploaded/downloaded to/from the data server via TCP/IP connections. The ins tallation, 
removal of data modules as well as operations on data modules is done via the “call and answer” 
mechanism. For SHIPTRAP, the data elements for the data acquired do have the following 
structure. 

• data  identifier 
• number of data element (to know if the data are complete and when to clear the display 

for example in the on-line analysis GUI) 
• THE data 

 
A data handler connects to the interface to the data server via TCP/IP via a “hard” link. In the 
scenario shown in the figure in sect. 2.2 the data handler just writes the data to files. 
 
On the local node, the communication interface does the communication via the “call and answer” 
mechanism. To/from a remote node, the communication is done via TCP/IP. 

2.6 Data model 
The configuration data created by the control GUI is based on a database. The data model of this 
data base depends on the requirements of SHIPTRAP and is not yet clear. 

2.7 Technical constraints 
For the support of HW drivers, we restrict ourselves to the Windoze operating systems. Another 
option would be LV RT. 
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3 Product components 
This is just an overview of the product components. The functions and non-functional features are 
described in the document with the detailed design specifications. 

3.1 Experiment specific 
1. Control GUI: User interface for the controls but not for the on-line analysis. 
2. On-Line Analysis GUI: The on-line analysis GUI displays the data of the current 

measurement. 
3. Central Process: A SHIPTRAP specific process that is the heart of the system and an 

image of the experiment. Loading/initializing/unloading of device drivers, scanning etc. are 
done here.  

4. Data Handler: Storing of data to data storage device. 

3.2 General part, not experiment specific 
1. Super: Shuts - down and restarts the control system (DSC-engine, data server, 

communication interface, etc… ). Does some management concerning loading and 
unloading of device drivers and processes. 

2. DSC Engine: Alarming, trending, safety. The processes/functions do error handling and 
status reporting via the DSC engine. The DSC engine provides complex process variables, 
the tags. The tags are also used by devices with static parameters for the “wait for changed 
value” mechanism. 

3. DSC Interface Process: The DSC interface process serves as an interface for other 
processes to the DSC engine.  

4. Communication Interface: allows for transparent communication with processes on remote 
nodes. 

5. Front End DSC Engine: A front end DSC engine has the task of making the processes on 
the front end nodes independent of the status of the DSC engine on the central node. The 
functionality of the front end DSC engine is the same as for the DSC engine on the central 
node. It is not yet clear whether one needs also a front end DSC engine interface process. 

6. Device Driver: A device driver is the interface between the instrument driver from LV and the 
control system. 

7. Data Server: Provides data buffer and an interface for transferring data between processes. 


