
Copyright © GSI 2001 For internal use only

Author: Inspector:
Dept.:
Name:
Tel.:

DVEE
Dietrich Beck
2520

Signature: Dept.:
Name:
Tel.:

DVEE
K. Poppensieker
2782

Signature:

File: G:\beck\shiptrap\documents\archsp.doc Status: <doc status>
Date: December 6, 2001 File: Project file

File directory
Sect. <nn.nn>
<directory>

GSI

Architectural Design Specification

1.0

SHIPTRAP Control System

Distribution list:

Name (alphab.) Department
Faouzi Attallah Atomic Physics/GSI
Wolfgang Quint Atomic Physics/GSI
Gerrit Marx Atomic Physics/GSI
Christophor Kozhuharov Atomic Physics/GSI
Klaus Poppensieker DVEE/GSI
Dietrich Beck DVEE/GSI
Holger Brand DVEE/GSI
Jürgen Neumayr SHIPTRAP/Munich

Architectural Design Specification SHIPTRAP Control System
December 6, 2001 Document Management

 Page 2 / 14

Document Management

History of changes

Version Status Date Person resp. Reason for Change

0.0 created 11 Sep 2001 Dietrich Beck

1.0 update 6 Dec 2001 Dietrich Beck alpha version of framework

Persons authorized to make changes
Dietrich Beck DVEE/GSI
Klaus Poppensieker DVEE/GSI

Document was created using the following tools:

WINWORD 2000

Architectural Design Specification SHIPTRAP Control System
December 6, 2001 Contents

 Page 3 / 14

Contents

1 Introduction ... 5

1.1 Purpose of the document .. 5

1.2 Validity of the document .. 5

1.3 Definitions of terms and abbreviations .. 5

1.4 Relationship with other documents... 5

2 Product architecture .. 5

2.1 Distributed Computing... 6

2.2 Product structure... 6
2.2.1 Event Driven Processing ... 6
2.2.2 Control GUI... 7
2.2.3 On-Line Analysis GUI... 7
2.2.4 Super .. 7
2.2.5 Central Process ... 7
2.2.6 The DSC engine... 7
2.2.7 The DSC Interface Process... 8
2.2.8 Communication Interface... 8
2.2.9 Front End DSC Engine .. 8
2.2.10 Devices and Drivers... 8
2.2.11 Data Server.. 8
2.2.12 Data Handling ... 9

2.3 Behavior of the product components .. 9
2.3.1 Power-Up ... 9
2.3.2 Startup.. 9
2.3.3 Control GUI Start and Setting up Configuration Data... 9
2.3.4 Initializing the Hardware and the Central Process ... 10

2.3.4.1 Example: Loading and Initializing a PPG100 .. 10
2.3.4.2 Example: Loading and Initializing a HV power supply... 10
2.3.4.3 Example: Loading and Initializing a MCS.. 10

2.3.5 Starting a Measurement... 10
2.3.6 Doing a Measurement.. 10
2.3.7 Stopping a Measurement ... 10
2.3.8 De-Initializing the hardware and the central process... 11
2.3.9 Shutdown... 11
2.3.10 On-Line Analysis GUI... 11
2.3.11 Trending and Alarming... 11
2.3.12 Security .. 11
2.3.13 Non-Functional Characteristics ... 11

2.4 Reason for decisions relating to the product architecture.. 12
2.4.1 Decision ... 12
2.4.2 Advantage... 12
2.4.3 Disadvantage ... 12
2.4.4 Other Solution Paths .. 12

2.5 Interfaces... 13

2.6 Data model.. 13

Architectural Design Specification SHIPTRAP Control System
December 6, 2001 Contents

 Page 4 / 14

2.7 Technical constraints .. 13

3 Product components .. 14

3.1 Experiment specific... 14

3.2 General part, not experiment specific ... 14

Architectural Design Specification SHIPTRAP Control System
December 6, 2001 Introduction

 Page 5 / 14

1 Introduction

1.1 Purpose of the document
The purpose of this architectural design specification is to define the architecture of the SHIPTRAP
control system and to describe the behavior between the product components. Moreover, these
design specifications will be updated during the implementation of the control system and finally
serve as a documentation of the software.

1.2 Validity of the document
The architectural design specification does apply to the SW and the HW of the SHIPTRAP control
system. Only HW devices like the DS345 function generator, that are directly connected by the
software, are regarded as being part of the control system. Other HW like an einzel-lense in a
CF150 crosspiece are not regarded as being part of the control system.
The design specification is based on the SW requirements specification. However, for the first
versions of this document this design specification was/is still based on the preliminary
requirements.

1.3 Definitions of terms and abbreviations
• AFG: arbitrary function generator
• Configuration Data: the requested parameter values to be set at the HW, the operational mode

of the experiment, the HW devices and processes to be used, the scan range, etc….
• CDD: Configuration Data for the Dynamic parameters
• CDS: Configuration Data for the Static parameters
• Device: a HW device like an AFG
• Device Driver: an independent process that is the interface of the control system to the

instrument driver of a device.
• DSC: Data logging and Supervisory Control (the DSC Module is an additional module for LV

replacing BridgeVIEW)
• Dynamic Parameters: “Dynamic parameters” are the parameters that can _not_ be

implemented with the help of OPC servers in a straightforward way, like loading a waveform to
an AFG generator.

• HW: hardware
• NI: National Instruments
• OPC: OLE for Process Control: By this, lots of data items (that have simple types) can be

exchanged between the nodes of distributed systems. Typical examples are values for
voltages, DIGI I/O, …

• Static parameters: In general, “static parameters” are the parameters that can straightforwardly
be implemented with the help of OPC servers.

• SW: software
• VI: virtual instrument

1.4 Relationship with other documents
The document is related to the SW design specifications as a basis. Later, the architectural design
specifications will be refined by the detailed design specifications. These documents can be
accessed via the SHIPTRAP control system home page http://www-wnt.gsi.de/shiptrap/.

2 Product architecture
The control system will be developed with LV from NI. It consists of two parts. There is a general
part that is not SHIPTRAP specific and another part that is SHIPTRAP specific.

Architectural Design Specification SHIPTRAP Control System
December 6, 2001 Product architecture

 Page 6 / 14

2.1 Distributed Computing
In principle, the control and data acquisition could be done on one single PC. However, it may be
good to separate functions and to distribute certain tasks to different nodes.

First, there is(are) the user node(s). In principle, those nodes can be anywhere at GSI or in the
world. These are the nodes where the GUIs run on.

Second, there is exactly one central node. Here run the central process, the DSC engine, the DSC
interface process, the super process, the data handler and the data server. Also, some HW
devices may be connected to this node.
Third, there is(are) the front end node(s). Here, one typically will host processes that either
consume lots of resources and/or processes that are safety relevant and should have a node for
their own.

2.2 Product structure

The processes that are SHIPTRAP specific are the

1. Control GUI, the
2. On-line analysis GUI, the
3. Central Process(es), and the
4. Data Handler.

Everything else belongs to the general part that is not SHIPTRAP specific. The idea behind the
general part is to provide a framework that allows for the implementation of control systems for
(almost) any experiment. The whole control system is event driven.

2.2.1 Event Driven Processing
The event driven properties of the control system are implemented in two ways.

LEGO-like Software Package
User PC

Control GUIOn-line Analysis GUI

User PC

Control GUIOn-line Analysis GUI

Central PC

Central Process

Comm. InterfaceData Server DSC EngineDSC Interface

SR430 PPG100 DS345

Frond-end PC
Comm. Interface

Data Acquisition

DataAcq. Instr. Driver

Timing

Timing Instr. Driver

AFG

AFG Instr. Driver

High Voltage

HV Instr. Driver

IHQF015pSR430 PPG100 DS345

Frond-end PC
Comm. Interface

Data Acquisition

DataAcq. Instr. Driver

Timing

Timing Instr. Driver

AFG

AFG Instr. Driver

High Voltage

HV Instr. Driver

Frond-end PC
Comm. Interface

Data Acquisition

DataAcq. Instr. Driver

Timing

Timing Instr. Driver

AFG

AFG Instr. Driver

High Voltage

HV Instr. Driver

IHQF015p

Super

Hardware Software (Proc) Software (Lib) Exp. Specific General Part Buy! Call OPC TCP/IP?Hardware Software (Proc) Software (Lib) Exp. Specific General Part Buy! CallCall OPCOPC TCP/IP?TCP/IP?

Super

Architectural Design Specification SHIPTRAP Control System
December 6, 2001 Product architecture

 Page 7 / 14

One possibility are “calls”. Here, a caller sends an event to another process, the callee. A callee
may be any process that does basically nothing but waiting for calls. After receiving a call, the callee
will perform the requested action. If requested, the callee will return an answer. Communication by
calls does only consume very little CPU time and avoids polling.

Instead of waiting for a call, a process can listen to an OPC tag for a requested parameter value to
change its value. This can be done by the read tag VI from NI without using CPU time. Waiting for a
change of an OPC tag is always an asynchronous process, since no answer is returned to the
callee. Instead, the process will update the actual parameter value which is a second OPC tag.

2.2.2 Control GUI
Here, the experimentalist configures the parameter values that have to be sent to the HW and
configures how the measurement will be done (scan range, parameter to scan, used devices,
etc…). Also, the control GUI allows to monitor the actual parameters and serves as the user
interface for the alarming. When the configuration of the requested parameters (configuration data)
has been done, this configuration data will be sent to the central process and the DSC interface
process for initialization of the hardware via the device drivers. After initialization, the measurement
is started and stopped from the control GUI. From the control GUI, one can also change parameter
values of devices on-line and during a measurement.

The control GUI will be implemented with LV.

2.2.3 On-Line Analysis GUI
The on-line analysis GUI serves to view/check the performance of the experiment and the incoming
data on-line. It can, as an example, be implemented with LV but one could also think of something
different like Root.

2.2.4 Super
The super process is similar to the one used for the ISOLTRAP experiment. It manages loading
and unloading of device drivers and other processes. Moreover, it maintains lists the processes
currently loaded. There will be a super process on all nodes with a DSC engine and/or processes.

The super process will be implemented with LV.

2.2.5 Central Process
The central process serves to control the devices with dynamic parameters. It receives the
configuration data for the dynamic parameters, loads the required device drivers, sets the
requested values and configures the data module at the data server. When a measurement is
started, it changes the scan parameter, triggers the read out of the data via a data acquisition
device, etc… . The design of the central process itself is not yet drawn up, since it depends on the
requirements of SHIPTRAP which are not yet clear. The DSC engine is linked to the central
process via the DSC interface process.

The central process class is written in LV.

Comment: In principle, there can be more than one central process or sub-processes depending
on the requirements of the experiment. An example for such a sub-process may be a vacuum
control process that may run on a front end node. For simplicity, only one central process is shown
in the figure in Sect. 2.2.

2.2.6 The DSC engine
The DSC engine is a process within the environment of the operation system. The DSC engine
maintains so called tags which are complex process variables with a value, alarm limits, etc… .
Basically the DSC engine serves to handle devices with static parameters. Moreover, it handles the
alarming and trending of the parameters of the control system.

Architectural Design Specification SHIPTRAP Control System
December 6, 2001 Product architecture

 Page 8 / 14

The DSC engine is a process provided by the DSC module from NI.

2.2.7 The DSC Interface Process
The DSC interface process serves for various things. First, it is used to set the tag values for static
devices according to the configuration data. Second, it serves as an interface when the central (or
another) process wants to change values of static parameters. Third, the central process can
check if all values requested for the static parameters have been applied via the DSC interface
process.

The DSC interface process class is implemented with LV.

2.2.8 Communication Interface
A communication interfaces can be used to transfer events/call from one node to another. For
example, if the central process will call a (device)process for a dynamic device on its local node, it
will not use the communication interface. However, if the central process calls a (device)process
for a dynamic device on a remote node, this call will go via the communication interface on the
remote node. One has to watch out, that the communication must have the capability of serving
multiple calls at the same time.

The implementation will be done with LV.

2.2.9 Front End DSC Engine
A front end DSC engine may be needed when devices with static parameters are installed on
remote nodes different from the central node. Like this, one avoids that device drivers have to
read/write from/to a remote DSC engine. Especially, device drivers do not have to reconnect to their
tags, when the DSC engine on the remote node restarts after a shut down.

The parameter values of devices with static parameters are only set by the front end DSC engine.
The problem of a front end DSC engine is that alarms and other properties can not be transferred
between different DSC engines. But this will be implemented in future versions by NI.

An alternative would be if device drivers on the front end nodes are directly connected to the DSC
engine on the central node via DataSocket.

The DSC engine is a process provided by the DSC module from NI.

2.2.10 Devices and Drivers
Everything from the instrument driver, to the HW device is straight forward according to standard NI
solutions. As an example, the HW device may be represented by an AFG DS345 from Stanford
Research. This is connected by the HW interface, a GPIB card, to the computer. For the GPIB
card, the driver provided by NI is used. In many cases, an instrument driver is already provided by
NI. For devices where this is not the case, one has to write an instrument driver according to the
recommendations by NI. Up to this point, everything can be off-the shelf. The device driver sitting on
top of all this is self-written and interfaces the instrument driver to the rest of the control system.
The device driver is called from the central process or via a change of a tag value of the DSC
engine. The device driver is an instance of a device driver class and a process within the LV
environment. Each hardware device is represented by a device driver instance. As an example, if
there are three DS345 AFGs, there will be three instances (processes) instantiated from a DS345
class.

A device driver class will be implemented in LV.

2.2.11 Data Server
The data server is used by the data acquisition device driver to write its data to. It represents an
interface for further data processing. It basically buffers the data in memory for a limited time. The
data can then be retrieved via a TCP/IP connection. For further data processing one can either use

Architectural Design Specification SHIPTRAP Control System
December 6, 2001 Product architecture

 Page 9 / 14

LV or something completely different like MBS. Also multiple connections should be possible via a
publisher and subscriber model. There are two types of connections, “hard” and “soft” connections.
If the internal buffer of the data server is full and a “hard” connection is established, the data server
will no longer accept the upload of new data and a measurement will stop. For a “soft” connection
the same situation will cause a disconnect.

The data server is a process within the LV environment and written in LV. Typically, the data server
will run on the same node as the data acquisition device driver.

2.2.12 Data Handling
The procedure how to handle the data is still an open question, since no clear requirements have
been given yet. In any case, the data handling is not a general part of the control system but specific
for the SHIPTRAP experiment. However, many different scenarios for the data handling are open,
since the data server serves as an interface for almost any data handling procedure.

Possible scenarios

1. A data handler gets the data from the data server. Then, the data handler writes the data to
the backup medium and to a network disk. The on-line analysis GUI then operates on the
open file on the network disk where the data handler continuously writes the data to.

2. A data handler gets the data from the data server. Then, the data handler writes the data to
the backup medium and to the network disk. The on-line analysis GUI gets the data as an
additional subscriber from the data server.

3. The on-line analysis GUI gets the data from the data server and also writes the data to the
network disk. Here, an optional data handler can be used as an additional subscriber to the
data server to get the data and store it to the backup medium.

4. MBS gets the data from the data server and writes the data to the backup medium as well
as to the network disk. The data are then shuffled to the on-line analysis GUI buy MBS as
well.

It is proposed to use scenario 2 since this does not restrict the number of on-line analysis GUIs (0-
n) and has the advantage that there is no need to operate on the open file where the data is
continuously stored. But it has the disadvantage that one does not have an instant feedback, if the
storing of the data really works. The data handler will be implemented with LV.

2.3 Behavior of the product components
Here, a typical procedure is given to demonstrate the behavior and the relationship of the product
components.

2.3.1 Power-Up
After power up of the PCs there is the following situation. All PCs are running, nobody is logged in.

2.3.2 Startup
Here, one has to start the Super process and the DSC engines on the central node as well as on
the front end nodes. Some device drivers and special control processes for safety sensitive HW
are started. The question is, if all these processes can be started automatically. It is not straight
forward to start those processes as services in Windows. Maybe, NI will find a solution.

2.3.3 Control GUI Start and Setting up Configuration Data
The user starts the control GUI. Then, he/she has to login and sets up the configuration data for the
dynamic parameters (CDD) of the control system and the configuration data for the static
parameters (CDS) of the control system. The configuration data contains the devices to be used,
the parameter values to be set at the device drivers and the configuration of the central process
itself.

Architectural Design Specification SHIPTRAP Control System
December 6, 2001 Product architecture

 Page 10 / 14

2.3.4 Initializing the Hardware and the Central Process
The CDD are transferred to the central process, while the CDS are transferred to the DSC engine
on the central node via the DSC interface process. The central process then loads all device
drivers required to set the parameter values for the dynamic parameters and sets the values.
Moreover, the central process itself is configured by setting the scan range, the operational mode,
etc… . The device drivers required to set the parameter values for the static parameters are
instantiated via the Super process. Who tells the Super process to instantiate the device drivers
and sets their values?

2.3.4.1 Example: Loading and Initializing a PPG100
The pattern generator PPG100 is a device which has dynamic parameters. The central process
instantiates the PPG100 device driver via the Super process. Then, the central process resets the
PPG100 device to its default values and transfers the pattern data to the device driver. For
transferring the pattern data, the central process and the device driver communicate via the “call
and answer mechanism” (see sect. 2.1).

2.3.4.2 Example: Loading and Initializing a HV power supply
A HV power supply is a device which has static parameters. The HV power supply device driver is
loaded (by whom?) via the Super process. The requested values are then set by setting the values
corresponding tags in the DSC engine via the DSC interface process. The device driver of the HV
power supply gets the requested value by the “wait for changed value mechanism” (see sect. 2.1)
and will set the requested values at the hardware according to the tag values.

2.3.4.3 Example: Loading and Initializing a MCS
An MCS is used for data acquisition and is a device with dynamic parameters. Its device driver is
instantiated by the central process via the Super process. Moreover, the device driver gets the
information to which data object of the data server the acquired data will be transferred to.

2.3.5 Starting a Measurement
Once the hardware has been configured, the user can enter the start command in the control GUI.
That command is then sent to the central process. Then, the central process has to prepare
everything for the start. That is

1. the loop with the scan values
2. the data server
3. the data acquisition device
4. the pattern generator

2.3.6 Doing a Measurement
Within the scan loop the central process has to do the following for each cycle.

1. set the next scan value
2. start the data acquisition device
3. (enable external triggers for the pattern generator)
4. start the pattern generator
5. wait for the pattern generator to finish
6. (disable external triggers for the pattern generator)
7. tell the data acquisition to process the data. The device driver of the data acquisition then

a. reads the data from the hardware
b. puts the data to the data object at the data server

8. clear the data acquisition device
9. go back to 1.

2.3.7 Stopping a Measurement
The measurement is stopped whenever the user gives a stop command at the control GUI. That
command is transferred to the central process. The central process does the following.

1. (disable external triggers for the pattern generator)

Architectural Design Specification SHIPTRAP Control System
December 6, 2001 Product architecture

 Page 11 / 14

2. stop the pattern generator
3. stop the data acquisition device

There are two modes for stopping a measurement. First, a measurement can be stopped
immediately without waiting for the present scan to finish (BREAK). Second, a measurement will
continue until the present scan is finished. After that, the measurement is stopped (STOP).

2.3.8 De-Initializing the hardware and the central process
After a request by the user, the control GUI will send the de-initialize command to the central
process and the DSC interface process. Those two processes will stop and unload all running
devices drivers that have been loaded an initialized earlier (see Sect. 2.3.4). Then, the central
process itself will terminate. The DSC interface process will continue running.

2.3.9 Shutdown
After de-initializing the hardware and the central process, the DSC engines, the communication
interfaces, the data server and the super process will still run. The shutdown procedure will force
those processes to terminate.

2.3.10 On-Line Analysis GUI
The on-line analysis is separated from the control GUI and does not get the init/start/stop
commands. So, the on-line analysis GUI connects to the data server upon start and gets the data.
An identifier of the current measurement and a data event number is coming with the data (see
Sect. 2.6). By this, the on-line analysis GUI knows when a new measurement has started.

It is not yet clear, how the on-line analysis will be implemented.

2.3.11 Trending and Alarming
For each process, there exist three status tags, three error tags and a watchdog tag. The event
loop, the periodic loop and the state machine loop have each a status and a error tag. The
watchdog tag gives information about the watchdog status for a device. The tags have to be
created for each process that exists in the control system. They will be present even if the process
has not been instantiated. The processes write their status as well as their error information to
these tags via the DSC interface process. Like this, historic trending and alarming is all done by the
DSC engine. However, for this method a strict naming conventions for the tags has to be used.
Once an error has occurred, the ongoing action will discontinue and the alarm will be transferred to
the control GUI where the user has to acknowledge it.
Note: Additional tags can be created and used by user classes.

2.3.12 Security
There may be more than one instance of the control GUI running. However, only one GUI can be the
active one (control mode) that is allowed to set controls. All other control GUI just serve to display
the parameters values presently set (monitor mode). For normal users: If another GUI wants to
switch to control mode, the first GUI must switch to monitor mode first. For administrator users: An
administrator can always switch any GUI from monitor to control mode, independently whether
another GUI is in control mode. In this case, the other GUI that was in control mode, is switched to
monitor mode.

Buy using different user levels one would also have an additional security for safety critical controls,
like the one for venting a vacuum chamber.

There may be more than one instance of the on-line analysis GUI running.

Security will be implemented using the features of the DSC engine.

2.3.13 Non-Functional Characteristics
Windoze is not a real time operation system. Nevertheless, short reaction times smaller than 10ms
can be achieved when using the “call and answer” mechanism on one node. Reaction times can be
a factor of up to 10-100 longer, when using the “wait for changed value” mechanism and/or the two

Architectural Design Specification SHIPTRAP Control System
December 6, 2001 Product architecture

 Page 12 / 14

communicating processes are running on different nodes. For time critical sequences or
procedures, HW modules like the PPG100 are used that have a time granularity of about 100ns.
However, one has to keep in mind that some hardware devices may also take their time. For
example, it may take a few 100ms for the MCS SR430 to read out its data, clear the internal buffer
and get ready for the next cycle.

2.4 Reason for decisions relating to the product architecture

2.4.1 Decision
The decision for this design is strongly based on the experience with the control system for
ISOLTRAP. There have been a few feasibility studies showing that such a system can also be
implemented with LV. An “ISOLTRAP control system” like system has the advantage of being event
driven and very flexible concerning changes of the sequences, devices used and procedures.
Device driver processes following the idea of the ISOLTRAP system are well suited for devices with
dynamic parameters.

Additionally, it is required to have alarming, trending and security features. Since it would take a long
time to implement those features by ourselves, the DSC engine from NI will be used which provides
those features already. Moreover, the DSC engine is ideally suited for the handling of static
parameters from OPC servers. Here, the combination of an OPC server and the DSC engine
already has some functionality of a device driver and there is no need for the implementation of a
software device driver.

2.4.2 Advantage
Both approaches are quite complementary. On the one side, there is the high flexibility of the
ISOLTRAP type system for changes even during run-time. On the other side, there is industry
standard, alarming, security, trending and an off-the shelf solution in the case of the DSC engine. A
merge of the two approaches makes an ideal system. For each HW device one can choose the
approach that is best suited. For setting new parameter values, one can change a parameter value
for ANY device, even if it is connected via the DSC engine, with the “call and answer” mechanism
thanks to the DSC interface process. That makes the system extremely transparent from the GUI
as well as from the central process.

Although the principle relationships between the components will not change, the architecture itself
is quite flexible depending on the requirements of SHIPTRAP, that may change with time. For large
systems, one can have more processes like the central process. For small systems one can have
two scenarios. First, one can think of systems entirely without DSC engine depending on the “call
and answer” mechanism. Even devices with static parameters can be implemented with device
driver for dynamic parameters. For this scenario one does not have DSC features like alarming,
trending and security but there is the need for the implementation of a simple error logging. Second,
one can think of systems which have no devices driver for devices with dynamic parameters and
that have no sequences like the one required for the cycles and scans for SHIPTRAP. Then, one
can do with the DSC engine alone and there is only a simple central process for communication
with the DSC engine.

2.4.3 Disadvantage
There are two disadvantages of the present design. First, the use of the DSC module(s) is a cost
factor. Its about 3700.- Euro for the DSC module and one(!) run-time system. Second, one has to
have the some know-how of the event oriented “call and answer” mechanism that is needed on the
one side, and the DSC engine on the other side. Also, it takes some time to learn how the G++
toolkit from Vogel Automatisierungstechnik works.

2.4.4 Other Solution Paths
For a control system like the one needed for SHIPTRAP, one could think of having system of
ISOLTRAP type alone and without a DSC engine. This would imply the need of programming the
functionality of the DSC engine, which would take too long.

Architectural Design Specification SHIPTRAP Control System
December 6, 2001 Product architecture

 Page 13 / 14

The other extreme, the DSC engine alone, has other disadvantages. Here, not all hardware devices
can be programmed as being stupid devices like DACs or ADCs. One would need to implement a
protocol above the DSC engine. There are two disadvantages. First, communication will be slower.
Second, one needs workarounds for implementing device drivers having dynamic parameters.

One could also do without the G++ toolkit from Vogel Automatisierungstechnik. As an advantage,
one does not depend on this toolkit. As a disadvantage, one has to invest a few man months to
implement the basic features of this toolkit.

2.5 Interfaces
The control GUI and the on-line analysis GUI have user interfaces. These interfaces depend
strongly on the requirements of the experimentalists which are not clear yet. The interface to the
central process and the DSC interface process is realized by a call from the control GUI via the
communication interface running on the central node. The configuration data for dynamic and static
parameters are both transferred to the central node by the call itself or via a data server. The control
GUI also allows to change single process variables via the communication interface.

The central process, sub-processes of the type of the central process and device drivers
communicate by sending and receiving calls (LV queues), signals (notifications) and
listening/writing to OPC variables (DSC engine tags). All these processes can also connect
themselves to a data server for uploading or downloading data.

The DSC engine is interfaced by listening/writing to its tags and the alarm and security
mechanisms. For high level processes, the DSC interface process is used for passing the data.
Low(er) level processes like device driver can listen to tags via the OPC-events from the G++
toolkit.

An OPC Server communicates with a DSC engine via the tags. Each tag at the OPC server has a
corresponding tag in the DSC engine.

Data can be uploaded/downloaded to/from the data server via TCP/IP connections. The ins tallation,
removal of data modules as well as operations on data modules is done via the “call and answer”
mechanism. For SHIPTRAP, the data elements for the data acquired do have the following
structure.

• data identifier
• number of data element (to know if the data are complete and when to clear the display

for example in the on-line analysis GUI)
• THE data

A data handler connects to the interface to the data server via TCP/IP via a “hard” link. In the
scenario shown in the figure in sect. 2.2 the data handler just writes the data to files.

On the local node, the communication interface does the communication via the “call and answer”
mechanism. To/from a remote node, the communication is done via TCP/IP.

2.6 Data model
The configuration data created by the control GUI is based on a database. The data model of this
data base depends on the requirements of SHIPTRAP and is not yet clear.

2.7 Technical constraints
For the support of HW drivers, we restrict ourselves to the Windoze operating systems. Another
option would be LV RT.

Architectural Design Specification SHIPTRAP Control System
December 6, 2001 Product components

 Page 14 / 14

3 Product components
This is just an overview of the product components. The functions and non-functional features are
described in the document with the detailed design specifications.

3.1 Experiment specific
1. Control GUI: User interface for the controls but not for the on-line analysis.
2. On-Line Analysis GUI: The on-line analysis GUI displays the data of the current

measurement.
3. Central Process: A SHIPTRAP specific process that is the heart of the system and an

image of the experiment. Loading/initializing/unloading of device drivers, scanning etc. are
done here.

4. Data Handler: Storing of data to data storage device.

3.2 General part, not experiment specific
1. Super: Shuts - down and restarts the control system (DSC-engine, data server,

communication interface, etc…). Does some management concerning loading and
unloading of device drivers and processes.

2. DSC Engine: Alarming, trending, safety. The processes/functions do error handling and
status reporting via the DSC engine. The DSC engine provides complex process variables,
the tags. The tags are also used by devices with static parameters for the “wait for changed
value” mechanism.

3. DSC Interface Process: The DSC interface process serves as an interface for other
processes to the DSC engine.

4. Communication Interface: allows for transparent communication with processes on remote
nodes.

5. Front End DSC Engine: A front end DSC engine has the task of making the processes on
the front end nodes independent of the status of the DSC engine on the central node. The
functionality of the front end DSC engine is the same as for the DSC engine on the central
node. It is not yet clear whether one needs also a front end DSC engine interface process.

6. Device Driver: A device driver is the interface between the instrument driver from LV and the
control system.

7. Data Server: Provides data buffer and an interface for transferring data between processes.

